Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids, and Media
2.2. Enzyme Assays
2.3. Molecular Techniques
2.4. Construction of P. versatile KD103
2.5. RT-qPCR
2.6. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)
3. Results
3.1. Intracellular Mg2+ Concentrations in a CorA− Mutant
3.2. Effect of CorA Inhibitor on Exoenzyme Production
3.3. CorA Influences Exoenzymes at the Transcriptional Level
3.4. corA Expression in P. versatile
3.5. corA Expression Is HrpL-Dependent
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Perombelon, M.C.M.; Kelman, A. Ecology of the soft rot erwinas. Annu. Rev. Phytopathol. 1980, 18, 361–387. [Google Scholar] [CrossRef]
- Barras, F.; Van Gijsegem, F.; Chatterjee, A.K. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 1994, 32, 201–234. [Google Scholar] [CrossRef]
- Hauben, L.; Moore, E.R.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [Google Scholar] [CrossRef]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, P.R.; Kariola, T.; Niemi, O.; Palva, E.T. Pathogenicity of and plant immunity to soft rot pectobacteria. Front. Plant Sci. 2013, 4, 191. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Hibbing, M.E.; Kim, H.S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; Charkowski, A.O. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 2007, 97, 1150–1163. [Google Scholar] [CrossRef] [Green Version]
- Joshi, J.R.; Khazanov, N.; Charkowski, A.; Faigenboim, A.; Senderowitz, H.; Yedidia, I. Interkingdom Signaling interference: The effect of plant-derived small molecules on quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2021, 59, 153–190. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Dumenyo, C.K.; Liu, Y.; Chatterjee, A. Erwinia: Genetics of pathogenicity factors. In Encyclopedia of Microbiology, 2nd ed.; Lederberg, J., Ed.; Academic Press: San Diego, CA, USA, 2000; Volume 2, pp. 236–259. [Google Scholar]
- Thomson, N.R.; Thomas, J.D.; Salmond, G.P.C. Virulence determinants in the bacterial phytopathogen Erwinia. In Methods Microbiol; Margaret, C.M.S., Sockett, R.E., Eds.; Academic Press: Cambridge, MA, USA, 1999; Volume 29, pp. 347–426. [Google Scholar]
- Chatterjee, A.; Cui, Y.; Chatterjee, A.K. Regulation of Erwinia carotovora hrpLEcc (Sigma-LEcc), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Mol. Plant Microbe Interact. 2002, 15, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, A.; Cui, Y.; Chaudhuri, S.; Chatterjee, A.K. Identification of regulators of hrp/hop genes of Erwinia carotovora ssp. carotovora and characterization of HrpLEcc (SigmaLEcc), an alternative sigma factor. Mol. Plant Pathol. 2002, 3, 359–370. [Google Scholar] [CrossRef]
- Salmond, G.P.C. Secretion of Extracellular Virulence Factors by Plant Pathogenic Bacteria. Annu. Rev. Phytopathol. 1994, 32, 181–200. [Google Scholar] [CrossRef]
- Rantakari, A.; Virtaharju, O.; Vahamiko, S.; Taira, S.; Palva, E.T.; Saarilahti, H.T.; Romantschuk, M. Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: Partial characterization of the hrp gene cluster. Mol. Plant. Microbe Interact. 2001, 14, 962–968. [Google Scholar] [CrossRef] [Green Version]
- Hogan, C.S.; Mole, B.M.; Grant, S.R.; Willis, D.K.; Charkowski, A.O. The type III secreted effector DspE is required early in solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS ONE 2013, 8, e65534. [Google Scholar] [CrossRef] [Green Version]
- Condemine, G.; Robert-Baudouy, J. 2-keto-3-deoxygluconate transport system in Erwinia chrysanthemi. J. Bacteriol. 1987, 169, 1972–1978. [Google Scholar] [CrossRef] [Green Version]
- Haseloff, B.J.; Freeman, T.L.; Valmeekam, V.; Melkus, M.W.; Oner, F.; Valachovic, M.S.; San Francisco, M.J. The exuT gene of Erwinia chrysanthemi EC16: Nucleotide sequence, expression, localization, and relevance of the gene product. Mol. Plant Microbe Interact. 1998, 11, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hugouvieux-Cotte-Pattat, N.; Reverchon, S. Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937. Mol. Microbiol. 2001, 41, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Hugouvieux-Cotte-Pattat, N.; Blot, N.; Reverchon, S. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937. Mol. Microbiol. 2001, 41, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Urbany, C.; Neuhaus, H.E. Citrate uptake into Pectobacterium atrosepticum is critical for bacterial virulence. Mol. Plant. Microbe Interact. 2008, 21, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Barabote, R.D.; Johnson, O.L.; Zetina, E.; San Francisco, S.K.; Fralick, J.A.; San Francisco, M.J. Erwinia chrysanthemi tolC is involved in resistance to antimicrobial plant chemicals and is essential for phytopathogenesis. J. Bacteriol. 2003, 185, 5772–5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggiorani Valecillos, A.; Rodríguez Palenzuela, P.; López-Solanilla, E. The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. Mol. Plant Microbe Interact. 2006, 19, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Gloux, K.; Touze, T.; Pagot, Y.; Jouan, B.; Blanco, C. Mutations of ousA alter the virulence of Erwinia chrysanthemi. Mol. Plant Microbe Interact. 2005, 18, 150–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kersey, C.M.; Agyemang, P.A.; Dumenyo, C.K. CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen Pectobacterium carotovorum. Mol. Plant Pathol. 2012, 13, 58–71. [Google Scholar] [CrossRef]
- Romani, A.M.; Scarpa, A. Regulation of cellular magnesium. Front. Biosci.-Landmark 2000, 5, D720–D734. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Wu Orr, M.; Wang, H.; Hobbs, E.C.; Shabalina, S.A.; Storz, G. The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol. Microbiol. 2019, 111, 131–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, M.E. Magnesium transporters: Properties, regulation and structure. Front. Biosci.-Landmark 2006, 11, 3149–3163. [Google Scholar] [CrossRef]
- Wang, H.; Yin, X.; Wu Orr, M.; Dambach, M.; Curtis, R.; Storz, G. Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc. Natl. Acad. Sci. USA 2017, 114, 5689–5694. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Maguire, M.E. Distribution of the CorA Mg2+ transport system in gram-negative bacteria. J. Bacteriol. 1995, 177, 1638–1640. [Google Scholar] [CrossRef] [Green Version]
- Papp-Wallace, K.M.; Nartea, M.; Kehres, D.G.; Porwollik, S.; McClelland, M.; Libby, S.J.; Fang, F.C.; Maguire, M.E. The CorA Mg2+ channel is required for the virulence of Salmonella enterica serovar typhimurium. J. Bacteriol. 2008, 190, 6517–6523. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. The Condensed Protocols from Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2006; p. 800. [Google Scholar]
- Simon, R.; Priefer, U.; Puhler, A. A broad host range mobilization system for in vivo genetic-engineering: Transposon mutagenesis in gram-negative bacteria. Biotechnology 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Zink, R.T.; Engwall, J.K.; McEvoy, J.L.; Chatterjee, A.K. recA is required in the induction of pectin lyase and carotovoricin in Erwinia carotovora subsp. carotovora. J. Bacteriol. 1985, 164, 390–396. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Mukherjee, A.; Dumenyo, C.K.; Liu, Y.; Chatterjee, A.K. rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpin(Ecc) production and virulence by modulating levels of regulatory RNA (rsmB) and RNA-binding protein (RsmA). J. Bacteriol. 1999, 181, 6042–6052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Chatterjee, A.; Yang, H.; Chatterjee, A.K. Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J. Bacteriol. 2008, 190, 4610–4623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, A.; Cui, Y.; Liu, Y.; Dumenyo, C.K.; Chatterjee, A.K. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl. Environ. Microbiol. 1995, 61, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Cui, Y.; Ma, W.; Liu, Y.; Chatterjee, A.K. hexA of Erwinia carotovora ssp. carotovora strain Ecc71 negatively regulates production of RpoS and rsmB RNA, a global regulator of extracellular proteins, plant virulence and the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Environ. Microbiol. 2000, 2, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto-Gotoh, T.; Yamaguchi, M.; Yasojima, K.; Tsujimura, A.; Wakabayashi, Y.; Watanabe, Y. A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene 2000, 241, 185–191. [Google Scholar] [CrossRef]
- Keen, N.T.; Tamaki, S.; Kobayashi, D.; Trollinger, D. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 1988, 70, 191–197. [Google Scholar] [CrossRef]
- Spaink, H.P.; Okker, R.J.H.; Wijffelman, C.A.; Pees, E.; Lugtenberg, B.J.J. Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol. Biol. 1987, 9, 29–39. [Google Scholar] [CrossRef]
- Cui, Y.; Chatterjee, A.; Hasegawa, H.; Dixit, V.; Leigh, N.; Chatterjee, A.K. ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein. J. Bacteriol. 2005, 187, 4792–4803. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1972; p. 468. [Google Scholar]
- Liu, Y.; Chatterjee, A.; Chatterjee, A.K. Nucleotide sequence and expression of a novel pectate lyase gene (pel-3) and a closely linked endopolygalacturonase gene (peh-1) of Erwinia carotovora subsp. carotovora 71. Appl. Environ. Microbiol. 1994, 60, 2545–2552. [Google Scholar] [CrossRef] [Green Version]
- Kucharski, L.M.; Lubbe, W.J.; Maguire, M.E. Cation hexaammines are selective and potent inhibitors of the CorA magnesium transport system. J. Biol. Chem. 2000, 275, 16767–16773. [Google Scholar] [CrossRef] [Green Version]
- Lehtimaki, S.; Rantakari, A.; Routtu, J.; Tuikkala, A.; Li, J.; Virtaharju, O.; Palva, E.T.; Romantschuk, M.; Saarilahti, H.T. Characterization of the hrp pathogenicity cluster of Erwinia carotovora subsp. carotovora: High basal level expression in a mutant is associated with reduced virulence. Mol. Genet. Genom. 2003, 270, 263–272. [Google Scholar] [CrossRef]
- Wei, Z.M.; Beer, S.V. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 1995, 177, 6201–6210. [Google Scholar] [CrossRef] [Green Version]
- Vencato, M.; Tian, F.; Alfano, J.R.; Buell, C.R.; Cartinhour, S.; DeClerck, G.A.; Guttman, D.S.; Stavrinides, J.; Joardar, V.; Lindeberg, M.; et al. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol. Plant Microbe Interact. 2006, 19, 1193–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, A.; Cui, Y.; Liu, Y.; Chatterjee, A.K. Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mol. Plant Microbe Interact. 1997, 10, 462–471. [Google Scholar] [CrossRef] [Green Version]
- Papp-Wallace, K.M.; Maguire, M.E. Regulation of CorA Mg2+ channel function affects the virulence of Salmonella enterica serovar Typhimurium. J. Bacteriol. 2008, 190, 6509–6516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Heu, S.; Yi, J.; Lu, Y.; Hutcheson, S.W. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 1994, 176, 1025–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.; Keen, N.T. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 1993, 175, 5916–5924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innes, R.W.; Bent, A.F.; Kunkel, B.N.; Bisgrove, S.R.; Staskawicz, B.J. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 1993, 175, 4859–4869. [Google Scholar] [CrossRef] [Green Version]
- Nissan, G.; Manulis, S.; Weinthal, D.M.; Sessa, G.; Barash, I. Analysis of promoters recognized by HrpL, an alternative sigma-factor protein from Pantoea agglomerans pv. gypsophilae. Mol. Plant Microbe Interact. 2005, 18, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Lonetto, M.; Gribskov, M.; Gross, C.A. The sigma 70 family: Sequence conservation and evolutionary relationships. J. Bacteriol. 1992, 174, 3843–3849. [Google Scholar] [CrossRef] [Green Version]
- Fouts, D.E.; Abramovitch, R.B.; Alfano, J.R.; Baldo, A.M.; Buell, C.R.; Cartinhour, S.; Chatterjee, A.K.; D’Ascenzo, M.; Gwinn, M.L.; Lazarowitz, S.G.; et al. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA 2002, 99, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, R.; Spanu, P.D.; Panopoulos, N.J.; Stevens, C.; Mansfield, J.W. Transcriptional regulation of components of the type III secretion system and effectors in Pseudomonas syringae pv. phaseolicola. Mol. Plant Microbe Interact. 2004, 17, 1250–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmann, J.D. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 2002, 46, 47–110. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, M.J.; Wiedmann, M.; Boor, K.J. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 2005, 69, 527–543. [Google Scholar] [CrossRef] [Green Version]
- Brooks, B.E.; Buchanan, S.K. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. Biochim. Biophys. Acta 2008, 1778, 1930–1945. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, S.; Mergeay, M.; Nies, D.; van der Lelie, D. Alcaligenes eutrophus as a model system for bacterial interactions with heavy metals in the environment. Res. Microbiol. 1997, 148, 536–551. [Google Scholar] [CrossRef]
- Yang, S.H.; Peng, Q.A.; Zhang, Q.; Zou, L.F.; Li, Y.; Robert, C.; Pritchard, L.; Liu, H.; Hovey, R.; Wang, Q.; et al. Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937. PLoS ONE 2010, 5, e13472. [Google Scholar] [CrossRef]
Bacteria and Plasmids | Relevant Characteristics | Reference or Source |
---|---|---|
Bacteria | ||
Escherichia coli | ||
S17-1 λ pir | recA pro hsdR RP4-2-Tc::Mu-Km::Tn7 | [32] |
XL 10 Gold | Δ(mcrA)183 Δ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Hte [F’proAB lacI q ZΔM15 Tn10(Tetr) Amy Cmr | Agilent |
Pectobacterium versatile | ||
Ecc71 | Wild-type | [33] |
KD100 | lacZ−, NalR, Derived from Ecc71 | [24] |
KD101 | corA::lacZ, KmR of KD100. | [24] |
KD103 | corA-EZTN, KmR of KD100 | This study |
AC5050 | rsmC− | [34] |
AC5057 | gacA− | [35] |
AC5070 | rsmA− | [36] |
AC5077 | hexA− | [37] |
AC5086 | hrpL− | [11] |
AC5091 | ahlI− | [36] |
Plasmids | ||
pTH19cr | Cmr, low copy cloning vector, pSC101 replicon. | [38] |
pRK415 | Tcr, low copy cloning vector | [39] |
pMP220 | Tcr, promoter–probe vector | [40] |
pLAFR5 | Tcr, cosmid cloning vector | [39] |
pCKD120 | Kmr, Tcr corA−::Tn5 lacZ1 in pLAFR5 | [24] |
pCKD121 | Cmr, corA+ DNA in pTH19cr | [24] |
pCKD122 | corA+ DNA in pRK415, TcR | This study |
pCKD123 | EZ-TN cassette inserted into corA in pCKD122; used to construct KD103. | This study |
pAKC1203 | Tcr, pel-1-lacZ in pMP220 | [41] |
Gene | Relevant Host Genotype | Fold Change § |
---|---|---|
corA | corA− | +3.11 ± 0.74 |
corA | hrpL− | −3.95 ± 0.77 |
hrpN | hrpL− | −17.25 ± 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kersey, C.M.; Dumenyo, C.K. Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71. Microorganisms 2023, 11, 1747. https://doi.org/10.3390/microorganisms11071747
Kersey CM, Dumenyo CK. Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71. Microorganisms. 2023; 11(7):1747. https://doi.org/10.3390/microorganisms11071747
Chicago/Turabian StyleKersey, Caleb M., and C. Korsi Dumenyo. 2023. "Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71" Microorganisms 11, no. 7: 1747. https://doi.org/10.3390/microorganisms11071747
APA StyleKersey, C. M., & Dumenyo, C. K. (2023). Regulation of corA, the Magnesium, Nickel, Cobalt Transporter, and Its Role in the Virulence of the Soft Rot Pathogen, Pectobacterium versatile Strain Ecc71. Microorganisms, 11(7), 1747. https://doi.org/10.3390/microorganisms11071747