Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review
Abstract
:1. Introduction
2. Methodology
3. Probiotics: Definition, Characteristics, and Use of Microorganisms as Probiotics
4. Role of Probiotics on Animal Health and Nutrition
5. Effects of Probiotics on Meat Quality
5.1. Effects of Probiotic Supplementation on General Eating Quality Traits
5.2. Effects of Probiotic Supplementation on Lipid Oxidation
6. Safety Concerns Relate to Probiotic Use
- (i)
- Safety assessment of one probiotic or specific probiotic cannot be generalized to other probiotics. Each probiotic requires its own specific safety and risk assessment.
- (ii)
- The adverse and severe effects of the probiotics could be context specific, depending on the host’s susceptibility and physiological state.
- (iii)
- No probiotics can be issued as 100% safe or zero risk in the case of drug use.
- (iv)
- Public awareness related to probiotic safety and risk is limited. There is a need for risk-benefit analysis and information to the user or consumer.
- o Any infection to the animals when fed the probiotic.
- o Any infection to the consumers of animal products produced by animals fed probiotics.
- o Transfer of antibiotic resistance from probiotics to other pathogenic microorganisms.
- o Release of infectious and pernicious compounds to the environment from the animal production systems.
- o Chance of transfer infection to the animal and animal feed handlers.
- o Skin and/or eye and/or mucus membrane sensitization in the handler of probiotics.
- o Any detrimental metabolic or toxic effects in the host due to production of toxins by probiotics.
- o Hyper-stimulation of the immune system of the animal.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srutee, R.; Sowmya, R.S.; Annapure, U.S. Clean meat: Techniques for meat production and its upcoming challenges. Anim. Biotechnol. 2021, 33, 1721–1729. [Google Scholar] [CrossRef]
- Mazhangara, I.R.; Chivandi, E.; Mupangwa, J.F.; Muchenje, V. The potential of goat meat in the red meat industry. Sustainability 2019, 11, 3671. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Guo, Y.; Su, R.; Corazzin, M.; Hou, R.; Xie, J.; Zhang, Y.; Zhao, L.; Jin, Y. Transcriptome analysis reveals the molecular regulatory network of muscle development and meat quality in Sunit lamb supplemented with dietary probiotic. Meat Sci. 2022, 194, 108996. [Google Scholar] [CrossRef]
- Saha, S.; Singha, S.; Ahmed, S.S.; Toledo-Alvarado, H.; Khan, M.M. Effects of yeast (Saccharomyces cerevisiae type boulardii CNCM I-1079) supplementation on growth performance and blood metabolites in Black Bengal goat kids. Vet. Arh. 2018, 88, 661–672. [Google Scholar] [CrossRef]
- Nie, C.; Hu, Y.; Chen, R.; Guo, B.; Li, L.; Chen, H.; Chen, H.; Song, X. Effect of probiotics and Chinese medicine polysaccharides on meat quality, muscle fibre type and intramuscular fat deposition in lambs. Ital. J. Anim. Sci. 2022, 21, 811–820. [Google Scholar] [CrossRef]
- Tekce, E.; Bayraktar, B.; Aksakal, V.; Dertli, E.; Kamíloglu, A.; Karaalp, M.; Timurkaan, S.; Mehmet, G.Ü.L. Response of probiotics and yeast added in diff erent doses to rations of Anatolian Merino lambs on fattening performance, meat quality, duodenum, and rumen histology. Kafkas Üniv. Vet. Fak. Derg. 2021, 27, 57–65. [Google Scholar]
- Musa, H.H.; Wu, S.L.; Zhu, C.H.; Seri, H.I.; Zhu, G.Q. The potential benefits of probiotics in animal production and health. J. Anim. Vet. Adv. 2009, 8, 313–321. [Google Scholar]
- Saleem, A.M.; Zanouny, A.I.; Singer, A.M. Growth performance, nutrients digestibility, and blood metabolites of lambs fed diets supplemented with probiotics during pre-and post-weaning period. Asian-Australas. J. Anim. Sci. 2017, 30, 523–527. [Google Scholar] [CrossRef] [Green Version]
- Hernández-García, P.A.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Bárcena-Gama, J.R.; Plata-Pérez, F.X.; López-Ordaz, R.; Martínez-García, J.A. Effects of feeding yeast (Saccharomyces cerevisiae), organic selenium and chromium mixed on growth performance and carcass traits of hair lambs. J. Integr. Agric. 2015, 14, 575–582. [Google Scholar] [CrossRef]
- Lu, J.; Chen, Z.; Gao, Q.; Li, P.; Wang, J.; Cai, Y.; Wang, Z.; Li, D.; Li, H.; Wang, F.; et al. Combined Supplementation of Probiotics and Enzymes Improves Performance and Regulates Rumen Microbiota in Fattening Goats; Research Square: Durham, NC, USA, 2021; pp. 1–26. [Google Scholar]
- Muthuramalingam, T.; Jemimah, E.R.; Gnanaraj, P.T.; Pothiappan, P. Effect of feeding in the growth performance and carcass quality in native kids. Indian J. Vet. Anim. Sci. Res. 2019, 48, 21–30. [Google Scholar]
- Liu, C.; Hou, Y.; Su, R.; Luo, Y.; Dou, L.; Yang, Z.; Yao, D.; Wang, B.; Zhao, L.; Su, L.; et al. Effect of dietary probiotics supplementation on meat quality, volatile flavor compounds, muscle fiber characteristics, and antioxidant capacity in lambs. Food Sci. Nutr. 2022, 10, 2646–2658. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, T.; Zhang, Y.; Yang, L.; Duan, Y.; Su, L.; Tian, J.; Sun, L.; Wang, B.; Jin, Y. Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep. Foods 2022, 11, 2644. [Google Scholar] [CrossRef]
- Inyang, U.A.; Akpan, I.P.; Enyenihi, G.E. Effect of probiotic fortified diets on physicochemical and sensory characteristics of wad goat (buck) meat. WJAS 2020, 11, 1852–1858. [Google Scholar]
- Ayala-Monter, M.A.; Hernandez-Sanchez, D.; Pinto-Ruiz, R.; Torres-Salado, N.; Martinez-Aispuro, J.A.; Barcena-Gama, J.R.; Caro-Hernandez, J.M. Effect of inulin and Lactobacillus casei on productive performance, ruminal variables and blood metabolites in weaned lambs. Agrociencia 2019, 53, 303–317. [Google Scholar]
- Li, A.; Wang, Y.; Li, Z.; Qamar, H.; Mehmood, K.; Zhang, L.; Liu, J.; Zhang, H.; Li, J. Probiotics isolated from yaks improves the growth performance, antioxidant activity, and cytokines related to immunity and inflammation in mice. Microb. Cell Factories 2019, 18, 112. [Google Scholar] [CrossRef] [Green Version]
- Gadekar, Y.P.; Shinde, A.K.; Sahoo, A.; Karim, S.A. Effect of probiotic supplementation on carcass traits and meat quality of Malpura lambs. Indian J. Small Rumin. 2015, 2, 306–310. [Google Scholar] [CrossRef]
- Picard, B.; Gagaoua, M. Muscle fiber properties in cattle and their relationships with meat qualities: An overview. J. Agric. Food Chem. 2020, 68, 6021–6039. [Google Scholar] [CrossRef]
- Reuben, R.C.; Elghandour, M.M.; Alqaisi, O.; Cone, J.W.; Márquez, O.; Salem, A.Z. Influence of microbial probiotics on ruminant health and nutrition: Sources, mode of action and implications. J. Sci. Food Agric. 2022, 102, 1319–1340. [Google Scholar] [CrossRef]
- Espitia, P.J.; Batista, R.A.; Azeredo, H.M.; Otoni, C.G. Probiotics and their potential applications in active edible films and coatings. Food Res. Int. 2016, 90, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-promoting factors produced by microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef]
- Fujii, A.; Cook, E.S. Probiotics. Antistaphylococcal and antifibrinolytic activities of omega-guanidine acids andomega-guanidinoacyl-L-histidines. J. Med. Chem. 1973, 16, 1409–1411. [Google Scholar] [CrossRef]
- Parker, R.B. Probiotics, the other half of the antibiotic story. Anim. Nutr. Health 1974, 29, 4–8. [Google Scholar]
- Fuller, R. Probiotics in man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [PubMed]
- Food and Agricultural Organization of the United Nations; World Health Organization. Probiotics in Food-Health and Nutritional Properties and Guidelines for Evaluation; Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agricultural Organization of the United Nations: Rome, Italy, 2002; Volume 85, Available online: https://www.fao.org/3/a0512e/a0512e.pdf (accessed on 11 January 2023).
- Bhogoju, S.; Nahashon, S. Recent advances in probiotic application in animal health and nutrition: A review. Agriculture 2022, 12, 304. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Martín-Orúe, S.M.; Castillejos, L. Practical aspects of the use of probiotics in pig production: A review. Livst. Sci. 2019, 223, 84–96. [Google Scholar] [CrossRef]
- Abd El-Trwab, M.M.; Youssef, I.I.; Bakr, H.A.; Fthenakis, G.C.; Giadinis, N.D. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 2016, 19, 893–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Verma, A.K.; Singh, P. Effect of live Saccharomyces cerevisiae on immune response in early weaned crossbred piglets. Indian J. Anim. Nutr. 2012, 29, 393–396. [Google Scholar]
- Seo, J.K.; Kim, S.W.; Kim, M.H.; Santi, D.; Kam, D.K.; Ha, J.K. Direct-fed microbials for ruminant animals. Asian Australas. J. Anim. Sci. 2010, 23, 1657–1667. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N.; Fakiri, E.M. Health benefits of probiotics: A review. Int. Sch. Res. Notices. 2013, 2013, 481651. [Google Scholar] [CrossRef] [Green Version]
- Ban, Y.; Guan, L.L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim.l Sci. Biotechnol. 2021, 12, 109. [Google Scholar] [CrossRef]
- Kober, A.H.; Saha, S.; Islam, M.A.; Rajoka, M.S.R.; Fukuyama, K.; Aso, H.; Villena, J.; Kitazawa, H. Immunomodulatory Effects of Probiotics: A Novel Preventive Approach for the Control of Bovine Mastitis. Microorganisms 2022, 10, 2255. [Google Scholar] [CrossRef]
- Chen, H.; Guo, B.; Yang, M.; Luo, J.; Hu, Y.; Qu, M.; Song, X. Response of growth performance, blood biochemistry indices, and rumen bacterial diversity in lambs to diets containing supplemental probiotics and chinese medicine polysaccharides. Front. Vet. Sci. 2021, 8, 681389. [Google Scholar] [CrossRef]
- Rolfe, R.D. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 2000, 130, 396S–402S. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wang, M.; Zheng, Y.; Miao, K.; Qu, X. The carbohydrate metabolism of Lactobacillus plantarum. Int. J. Mol. Sci. 2021, 22, 13452. [Google Scholar] [CrossRef]
- Khalid, M.F.; Shahzad, M.A.; Sarwar, M.; Rehman, A.U.; Sharif, M.; Mukhtar, N. Probiotics and lamb performance: A review. Afr. J. Agric. Res. 2011, 6, 5198–5203. [Google Scholar]
- Schierack, P.; Filter, M.; Scharek, L.; Toelke, C.; Taras, D.; Tedin, K.; Haverson, K.; Lübke-Becker, A.; Wieler, L.H. Effects of Bacillus cereus var. toyoi on immune parameters of pregnant sows. Vet. Immunol. Immunopathol. 2009, 127, 26–37. [Google Scholar] [CrossRef]
- Villena, J.; Kitazawa, H. The modulation of mucosal antiviral immunity by immunobiotics: Could they offer any benefit in the SARS-CoV-2 pandemic? Front. Physiol. 2020, 11, 699. [Google Scholar] [CrossRef]
- Villena, J.; Vizoso-Pinto, M.G.; Kitazawa, H. Intestinal innate antiviral immunity and immunobiotics: Beneficial effects against rotavirus infection. Front. Immunol. 2016, 7, 563. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.F. Effect of probiotics on growth, some plasma biochemical parameters and immunoglobulins of growing Najdi lambs. World’s Vet. J. 2018, 8, 80–89. [Google Scholar]
- Islam, M.A.; Hashiguchi, K.; Kober, A.H.; Morie, K.; Zhou, B.; Tomokiyo, M.; Shimazu, T.; Aso, H.; Villena, J.; Suda, Y.; et al. Effect of dietary supplementation of immunobiotic lactiplantibacillus plantarum n14 fermented rakkyo (Allium chinense) pickled juice on the immunocompetence and production performance of pigs. Animals 2021, 11, 752. [Google Scholar] [CrossRef]
- Mishra, S.; Acharya, S. A brief overview on probiotics: The health friendly microbes. Biomed. Pharmacol. J. 2021, 14, 1869–1880. [Google Scholar] [CrossRef]
- Ding, Y.H.; Qian, L.Y.; Pang, J.; Lin, J.Y.; Xu, Q.; Wang, L.H.; Huang, D.S.; Zou, H. The regulation of immune cells by Lactobacilli: A potential therapeutic target for anti-atherosclerosis therapy. Oncotarget 2017, 8, 59915. [Google Scholar] [CrossRef] [Green Version]
- Ha, M.; Warner, R.D.; King, C.; Wu, S.; Ponnampalam, E.N. Retail packaging affects colour, water holding capacity, texture and oxidation of sheep meat more than breed and finishing feed. Foods 2022, 11, 144. [Google Scholar] [CrossRef]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The potential use of probiotics to improve animal health, efficiency, and meat quality: A Review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Issakowicz, J.; Bueno, M.S.; Sampaio, A.C.K.; Duarte, K.M.R. Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livest. Sci. 2013, 155, 44–52. [Google Scholar] [CrossRef]
- Arilov, A.; Pogodaev, V.; Appaev, B.; Lidzhiev, E.; Mashtykov, S. Sheep productivity when probiotic feed additive “Amilocin” introduced into the diets. IOP Conf. Ser. Earth Environ. Sci. 2019, 403, 012109. [Google Scholar] [CrossRef]
- Paengkoum, P.; Yong, H.; Traiyakun, S.; Khotsakdee, J. Effect of blend probiotics on rumen fermentation and plasma fatty acid contents and plasma n6:n3 ratios of growing goats. J. Anim. Vet. Adv. 2011, 10, 3112–3117. [Google Scholar]
- Domínguez-Vara, I.A.; González-Muñoz, S.S.; Pinos-Rodríguez, J.M.; Bórquez-Gastelum, J.L.; Bárcena-Gama, R.; Mendoza-Martínez, G.; Zapata, L.E.; Landois-Palencia, L.L. Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Anim. Feed Sci. Technol. 2009, 152, 42–49. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Karim, S.A. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest. Sci. 2011, 135, 17–25. [Google Scholar] [CrossRef]
- Guimarães, L.J.; Santiago, L.F.; Nicolau, J.P.; de Almeida Rego, F.C.; Castilho, C.; Cunha Filho, L.F.; Giotto, F.M.; Zundt, M. Effect of yeast (Saccharomyces cerevisiae) associated or not to micro minerals in chemical composition, tissue composition, lipid oxidation and quality of meat of feedlot lambs. Res. Soc. Dev. 2020, 9, e1539119563. [Google Scholar] [CrossRef]
- Raghebian, M.; Dabiri, N.; Yazdi, A.B.; Bahrani, M.J.; Shomeyzi, J.; Raghebian, A.; Hatami, P. Probiotic effect on meat quality and carcass parameters of Iranian Zandi lambs. J. Livest. Sci. 2007, 8, 163–168. [Google Scholar]
- Freitas, H.S.; Alcalde, C.R.; Lima, L.S.D.; Macedo, F.D.A.F.D.; Macedo, V.D.P.; Molina, B.S.D.L. Quantitative characteristics of carcass and meat quality of ¾ Boer+ ¼ Saanen and Saanen goat kids fed diets with dry yeast. Rev. Bras. Zootec. 2011, 40, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Whitley, N.C.; Cazac, D.; Rude, B.J.; Jackson-O’Brien, D.; Parveen, S. Use of a commercial probiotic supplement in meat goats. J. Anim. Sci. 2009, 87, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Mancini, R.A.; Hunt, M. Current research in meat color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef]
- Lambe, N.R.; McLean, K.A.; Gordon, J.; Evans, D.; Clelland, N.; Bunger, L. Prediction of intramuscular fat content using CT scanning of packaged lamb cuts and relationships with meat eating quality. Meat Sci. 2017, 123, 112–119. [Google Scholar] [CrossRef]
- Yu, L.; Peng, Z.; Dong, L.; Wang, H.; Shi, S. Enterococcus faecium NCIMB 10415 supplementation improves the meat quality and antioxidant capacity of muscle of broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1099–1106. [Google Scholar] [CrossRef]
- Santillo, A.; Annicchiarico, G.; Caroprese, M.; Marino, R.; Sevi, A.; Albenzio, M. Probiotics in milk replacer influence lamb immune function and meat quality. Animal. 2012, 6, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio, R.; Aymerich, T.; Bover-Cid, S.; Guàrdia, M.D.; Arnau, J.; Garriga, M. Probiotic strains Lactobacillus plantarum 299V and Lactobacillus rhamnosus GG as starter cultures for fermented sausages. LWT-Food Sci. Technol. 2013, 54, 51–56. [Google Scholar] [CrossRef]
- Love, J.D.; Pearson, A. Lipid oxidation in meat and meat products—A review. J. Am. Oil Chem. Soc. 1971, 48, 547–549. [Google Scholar] [CrossRef]
- Gianelli, M.P.; Salazar, V.; Mojica, L.; Friz, M. Volatile compounds present in traditional meat products (charqui and longaniza sausage) in Chile. Braz. Arch. Biol. Technol. 2012, 55, 603–612. [Google Scholar] [CrossRef] [Green Version]
- Slima, S.B.; Ktari, N.; Triki, M.; Trabelsi, I.; Abdeslam, A.; Moussa, H.; Makni, I.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. E ects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico-chemical characteristics of beef sausages. LWT-Food Sci. Technol. 2018, 92, 195–203. [Google Scholar] [CrossRef]
- Smaoui, S.; Ennouri, K.; Chakchouk-Mtibaa, A.; Karray-Rebai, I.; Hmidi, M.; Bouchaala, K.; Mellouli, L. Relationships between textural modifications, lipid and protein oxidation and sensory attributes of refrigerated turkey meat sausage treated with bacteriocin BacTN635. Food Bioprocess Technol. 2017, 10, 1655–1667. [Google Scholar] [CrossRef]
- Smaoui, S.; Elleuch, L.; Ben Salah, R.; Najah, S.; Chakchouk-Mtibaa, A.; Sellem, I.; Besbes, S.; Mellouli, L. Efficient role of BacTN635 on the safety properties, sensory attributes, and texture profile of raw minced meat beef and chicken breast. Food Addit. Contam. Part A 2014, 31, 218–225. [Google Scholar] [CrossRef]
- Özer, C.O.; Kılıç, B.; Kılıç, G.B. In-vitro microbial production of conjugated linoleic acid by probiotic L. plantarum strains: Utilization as a functional starter culture in sucuk fermentation. Meat Sci. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Trabelsi, I.; Slima, S.B.; Ktari, N.; Triki, M.; Abdehedi, R.; Abaza, W.; Moussa, H.; Abdeslam, A.; Salah, R.B. Incorporation of probiotic strain in raw minced beef meat: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Sci. 2019, 154, 29–36. [Google Scholar] [CrossRef]
- Amanatidou, A.; Smid, E.J.; Bennik, M.H.; Gorris, L.G. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentrations. FEMS Microbiol. Lett. 2001, 203, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Talon, R.; Leroy, S.; Lebert, I. Microbial ecosystems of traditional fermented meat products: The importance of indigenous starters. Meat Sci. 2007, 77, 55–62. [Google Scholar] [CrossRef]
- Simion, A.M.C.; Vizireanu, C.; Alexe, P.; Franco, I.; Carballo, J. Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control. 2014, 35, 123–131. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Martín-Orúe, S.M.; Castillejos, L. Are we using probiotics correctly in post-weaning piglets? Animal 2018, 12, 2489–2498. [Google Scholar] [CrossRef] [Green Version]
- Marteau, P. Safety aspects of probiotic products. Näringsforskning 2001, 45, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.F.; Nyachoti, M. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 2017, 3, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, F. A commentary on the safety of probiotics. Gastroenterol. Clin. 2012, 41, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Food and Agricultural Organization of the United Nations; World Health Organization. Probiotics in Animal Nutrition: Production, Impact and Regulation; Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; Food and Agricultural Organization of the United Nations: Rome, Italy, 2016; Volume 179, Available online: https://www.fao.org/3/i5933e/i5933e.pdf (accessed on 6 February 2023).
- Doron, S.; Snydman, D.R. Risk and safety of probiotics. Clin. Infect. Dis. 2015, 60, S129–S134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genus | Species | Genus | Species |
---|---|---|---|
Lactobacillus | L. acidophilus | Enterococcus | E. faecium |
L. plantarum | Pediococcus | P. acidilactici | |
L. rhamnosus | Bacillus | B. subtilis | |
L. reuteri | B. licheniformis | ||
L. casei | B. mesentericus | ||
L. brevis | B. cereus | ||
L. delbrueckii sub sp. bulgaricus | B. toyoi | ||
L. salivarus | Aspergillus | A. oryzae | |
Lactococcus | L. lactis | A. niger | |
L. cremoris | Saccharomyces | S. cerevisiae | |
Bifidobacterium | B. bifidum | S. boulardi | |
B. animalis | |||
B. thermophilum | |||
B. pseudolongum |
Probiotics | Administration /Dosage | Host | Duration | Effects on Carcass/Meat Quality | References |
---|---|---|---|---|---|
Se-yeast (Saccharomyces cerevisiae); Cr-yeast (Saccharomyces cerevisiae) | 0.3 mg Se/d/head 0.25, 0.35 Cr/d/head | 54 Rambouilet lamb | 95 d | ↑ meat quality ↑ retained protein in carcass ↑ total protein content in meat | [50] |
Live yeast (Saccharomyces cerevisiae) (Yea Sac 1026) | 5 g/d/head 1 × 108 CFU/g | 24 newly weaned Texel male lamb | 62 d | ↑ carcass weight ↑ carcass length ~ dressing percentage, compactness index, external chest depth, buttock circumference | [47] |
Dairy yeast (Kluyveromyces marximanus NRRL3234; Saccharomyces cerevisiae NCDC42; Saccharomyces cerevisiae ATCC9080) | 1 mL/kg body weight 1.5-2.0 × 109 CFU/mL | 60 lambs | 91 d | ~ carcass weight, carcass yield, carcass composition | [51] |
Lacticaseibacillus casei HM-09 and of Lactiplantibacillus plantaru HM-10 (Probiotic supplement, Inner Mongolia Sci-Plus Biotech company, Beijing, China) | L. casei (1.5 × 109 CFU/g) L. plantarum (1.5 × 109 CFU/g) | 24 Sunit lambs | 90 d | ↑total antioxidative capacity (T-AOC) and catalase (CAT) activity of LT muscle ↓ superoxide dismutase (SOD) activity ↑meat tenderness and flavor ↓shear force values and lightness in LT) muscle ~ pH, meat color (lightness, redness, yellowness) ~ cooking loss Alter the composition of meat volatile flavor compunds (nonanal, undecanal, 1-pentanol, 1-hexanol, and 2,3-octanedione) (observed by electric nose) | [12] |
Lactiplantibacillus plantarum powder (Shandong Baolai Bioengineering Co., Ltd., Taian, China) | 12 g/d/head 3 × 1010 CFU/g | 12 Sunit sheep | 90 d | ↑ volatile flavor compounds (nonanal, decanal, and 1-hexanol) in tail fat ↑ Nonanal and decanal compounds in muscle | [13] |
Lacticaseibacillus casei Zhang and Lactiplantibacillus plantarum P-8 | 1% level in diet 1.5 × 109 CFU/g | 12 Sunit lamb | 90 d | ↑ muscle production (myogenesis) and meat quality ↑ intramuscular fat deposition ↓ cooking loss and shear force ↑body length, LT area ↓ MYOD1 gene expression in muscle ↑ MAPK signaling pathway activity in muscle | [3] |
Saccharomyces cerevisiae Se-Cr-yeast (Saccharomyces cerevisiae) | 1.50 g/kg DM/d 1.65 × 1010 CFU/g | 32 Pelibuey × Katahdin lambs | 56 d | ~ body weight ~ chop area, dorsal fat, carcass yield | [9] |
Commercial probiotic feed “Amilotsin” Lacobacillus spp. | 10 g/d/head | 40 castrated Kalmyk breed rams | 42 d | ↑ carcass weight ↑ protein and energy value in meat ↑ unsaturated fatty acid composition in the fat of lambs ↑ smell, taste, juciness, and tenderness of meat (observed by panelists) ↑ organoleptic characteristics of meat ↑weight (liver, heart, lungs, kidney, and spleen) | [48] |
Mixture of Bacillus licheniformis, B. subtilis and Lactiplantibacillus plantarum (ratio of 1:1:0.5) | 10 g/kg feed | 40 lambs (Chuanzhong blak) | 70 d | ↑ carcass yield ↑ abdominal fat% ↑ moisture and intramuscular fat in LT muscle ↑ mRNA expression of MyHC ↓ shear force value, lightness, yellowness, and heneicosanoic acid in LT muscle ↑ meat quality (color and tenderness) | [5] |
Yeast; Lactic acid bacteria (Lactobacillus spp.) | 2.5 g yeast/d/head 5 g yeast/d/head 2.5 g yeast + LAB/d/head 5 g yeast + LAB/d/head | 18 West African Dwarf Buck | - | ~ body weight, carcass weight ↓ cholesterol in carcass and liver ↑ quality of Longissimus dorsi muscle Affect color, juciness, tenderness, water-holding capacity, marbling of meat | [14] |
Saccharomyces cerevisiae | 0.5, 1.0 and 1.5 mL/kg body weight (3.6 × 109 cells/mL) | 16 Malpura lambs | 180 d | ~ carcass trait (weight and composition) ~ meat quality (cooking loss, chilling loss, and water-holding capacity) | [17] |
Saccharomyces cerevisiae (Yea Sace cepa 1026) Saccharomyces cerevisiae + Selenium | 3 g/d/head (5 × 106 CFU/g) | 24 male Texel lambs | 120 d | ↑ fat% in meat ~ moisture%, protein%, ash% ~ meat quality (color, cooking loss, shear force) ~ sensory traits (flavor, tenderness, and juciness) (observed by panelists) | [52] |
Lactobacillus reuteri E81 Lactobacillus rhamnosus GG Saccharomyces cerevisiae | 300/600 ppm of Lactobacillus/head (4 × 1010 CFU/g) | 90 Anaolian Merino weanling lambs | 70 d | ↑ body weight, daily weight gain, and feed conversion ratio ↑ lightnessin meat ~ redness and yellowness in meat ↑ fattening performance of lamb ↑ meat pH value | [6] |
Saccharomyces cerevisiae SC47 | 3 g/d/head 4.5 g/d head | 27 male Zandi lambs | 84 d | ~ muscle fatty acid profile (saturated, unsaturated, monounsaturated, and polyunsaturated) ~ meat quality (% fat, protein, ash, pH, organic matter, and dry matter) ~ carcass traits (% muscle, bone, and fat) | [53] |
Dry yeast (Saccharomyces cerevisiae); Soybean meal + dried yeast (Saccharomyces cerevis) | Dry yeast: 22.42% DM/d Soybean meal + dried yeast: 9.78% DM/d | 27 goat kids (18: 3/4 Boer + ¼ Sanen; 9: Sanen) | 154 d | ~ carcass weight, weight loss by cooling, carcass yield, carcass compactness index | [54] |
Lactobacillus acidophilus Saccharomyces cerevisiae (Probiotics, L.P. Feeds Tech Co., Ltd., Bangkok, Thailand) | 2.5 and 5.0 g/h/d L. acidophilus 2.0 × 1012 CFU/g and S. cerevisia 5.0 × 1011 CFU/g | 30 growing goats (Thai native × Anglo-Nubian) | 56 d | ↑ conjugate linoleic acid, total n-6 and total poly-unsaturated fatty acids in plasma ↑ rumen metabolism and growth performance | [49] |
Streptococcus faecalis T -110 Bacillus mesentericus TO-A Clostridium butyricum TO -A Lactose (Probiotic mixture) | 5 g/d/kid S.faecalis T -110 (2 × 108 CFU/g); B. mesentericus TO-A (2 × 106 CFU/g) C. butyricum TO -A (2 × 106 CFU/g) | 30 male native goat kids | 180 d | ↑ pre-slaughter weight ↑ carcass weight ↑ dressed weight and dressing percentage ↑ head and stomach weight ↑ carcass yield | [11] |
Dry yeast, Lactobacillus acidophilus, Enterococcus faecium, Baciluus subtilis and Aspergillus oryzae | L. acidophilus (2.5 × 109 CFU/g) E. faecium (2.5 × 109 CFU/g) B. subtilis (22,125 protein catalytic unit/g) A. oryzae (13,289 bacterial amylase unit) | 63 Boer crossbred meat goats but 24 goats were used for carcass traits experiment | 3 years (57 days for carcass traits experiment) | ~ Carcass weights and weights of fabricated cuts (shoulder, loin, leg, rack, shank, and total parts) as well as carcass length, leg circumference, loin eye area, and backfat | [55] |
Bacillus subtilis and Bacillus licheniformis | 600 mg/kg 1 × 1011 CFU/g | 39 male goats (Yantse River Delta White) | 80 d | ↑ pre-slaughter weight ↑ rib tissue thickness (GR) | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, S.; Fukuyama, K.; Debnath, M.; Namai, F.; Nishiyama, K.; Kitazawa, H. Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review. Microorganisms 2023, 11, 1652. https://doi.org/10.3390/microorganisms11071652
Saha S, Fukuyama K, Debnath M, Namai F, Nishiyama K, Kitazawa H. Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review. Microorganisms. 2023; 11(7):1652. https://doi.org/10.3390/microorganisms11071652
Chicago/Turabian StyleSaha, Sudeb, Kohtaro Fukuyama, Marina Debnath, Fu Namai, Keita Nishiyama, and Haruki Kitazawa. 2023. "Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review" Microorganisms 11, no. 7: 1652. https://doi.org/10.3390/microorganisms11071652