Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods
Abstract
:1. Introduction
2. Public Health Significance of Cronobacter Species as a Bacterial Hazard
2.1. Impact on Public Health
2.2. Defining the Population at Risk
2.2.1. Neonatal Infections
2.2.2. Infections in Susceptible Older Adults
2.3. Quantitative Risk Assessment (QRA) for Cronobacter in PIF
2.3.1. Infectious Dose
2.3.2. Transmission Pathways and Exposure Routes
2.3.3. Sampling Protocols
2.3.4. Total Consumption and Global Exposure
2.4. Control Measures in the Context of Public Health
3. Global Manufacture and Trade of PIF
3.1. Sales and Consumption of PIF
3.1.1. Global Market
3.1.2. Trends in Sales and Manufacture
4. Regulatory Guidance and Legislation for PIF
4.1. Codex Framework
4.1.1. Developments and Trends in Guidelines
4.1.2. Standards for Manufacture of PIF
4.1.3. Microbiological Criteria
4.2. National Specifications in Formula for Infants
4.2.1. European Union
4.2.2. United States
4.2.3. Canada
4.2.4. China
5. Phenotypes Expressed by Cronobacter Species Contributing to Their Persistence in a Production Environment Setting
5.1. Biofilm Formation
5.2. Thermal Tolerance
5.3. Acid Tolerance
5.4. Osmosis and Desiccation
6. Cronobacter Species Pathogenicity
7. Sources of Cronobacter Species Contamination
Powdered Infant Formula (PIF)
8. Current Detection Methods for Cronobacter Species
8.1. Culture-Based Detection of Cronobacter Species
8.2. PCR-Based Detection Methods
8.3. Immunological-Based Detection Platforms
8.4. Biosensor-Based Detection Systems
8.5. Whole Genome Sequencing-Based Approaches
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iversen, C.; Lehner, A.; Mullane, N.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H. Identification of “Cronobacter” spp. (Enterobacter sakazakii). J. Clin. Microbiol. 2007, 45, 3814–3816. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, J.; Gangiredla, J.; Cao, Y.; Martins, M.; Gopinath, G.R.; Stephan, R.; Lampel, K.; Tall, B.D.; Fanning, S. Comparative Genotypic and Phenotypic Analysis of Cronobacter Species Cultured from Four Powdered Infant Formula Production Facilities: Indication of Pathoadaptation along the Food Chain. Appl. Environ. Microbiol. 2015, 81, 4388–4402. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.Q.; Power, K.A.; Cooney, S.; Fox, E.; Gopinath, G.R.; Grim, C.J.; Tall, B.D.; McCusker, M.P.; Fanning, S. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: A persistent isolate cultured from a powdered infant formula production facility. Front. Microbiol. 2013, 4, 256. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.; Lehner, A.; Mullane, N.; Bidlas, E.; Cleenwerck, I.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H. The taxonomy of Enterobacter sakazakii: Proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 2007, 7, 64. [Google Scholar] [CrossRef]
- Costa, P.V.; Vasconcellos, L.; da Silva, I.C.; Medeiros, V.D.M.; Forsythe, S.J.; Brandão, M.L.L. Multi-locus sequence typing and antimicrobial susceptibility profile of Cronobacter sakazakii and Cronobacter malonaticus isolated from corn-based farinaceous foods commercialized in Brazil. Food Res. Int. 2020, 129, 108805. [Google Scholar] [CrossRef]
- Craven, H.M.; McAuley, C.M.; Duffy, L.L.; Fegan, N. Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the nonprocessing and processing environments of five milk powder factories. J. Appl. Microbiol. 2010, 109, 1044–1052. [Google Scholar] [CrossRef]
- Jackson, E.E.; Forsythe, S.J. Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol. 2016, 16, 10. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Fanning, S. Pulsed-Field Gel Electrophoresis (PFGE) for Pathogenic Cronobacter Species. In Pulse Field Gel Electrophoresis: Methods and Protocols; Jordan, K., Dalmasso, M., Eds.; Humana Press Inc.: Totowa, NJ, USA, 2015; Volume 1301, pp. 55–69. [Google Scholar]
- Aly, M.A.; Domig, K.J.; Kneifel, W.; Reimhult, E. Whole Genome Sequencing-Based Comparison of Food Isolates of Cronobacter sakazakii. Front. Microbiol. 2019, 10, 1464. [Google Scholar] [CrossRef]
- Jang, H.; Chase, H.R.; Gangiredla, J.; Grim, C.J.; Patel, I.R.; Kothary, M.H.; Jackson, S.A.; Mammel, M.K.; Carter, L.; Negrete, F.; et al. Analysis of the Molecular Diversity Among Cronobacter Species Isolated From Filth Flies Using Targeted PCR, Pan Genomic DNA Microarray, and Whole Genome Sequencing Analyses. Front. Microbiol. 2020, 11, 561204. [Google Scholar] [CrossRef]
- Iversen, C.; Mullane, N.; McCardell, B.; Tall, B.D.; Lehner, A.; Fanning, S.; Stephan, R.; Joosten, H. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442–1447. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Condell, O.; Power, K.; Butler, F.; Tall, B.D.; Fanning, S. Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: A review of our current understanding of the biology of this bacterium. J. Appl. Microbiol. 2012, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Fanning, S. Strategies for the identification and tracking of cronobacter species: An opportunistic pathogen of concern to neonatal health. Front. Pediatr. 2015, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Akineden, O.; Wittwer, T.; Geister, K.; Plotz, M.; Usleber, E. Nucleic acid lateral flow immunoassay (NALFIA) with integrated DNA probe degradation for the rapid detection of Cronobacter sakazakii and Cronobacter malonaticus in powdered infant formula. Food Control 2020, 109, 8. [Google Scholar] [CrossRef]
- Fei, P.; Jiang, Y.; Jiang, Y.; Yuan, X.; Yang, T.; Chen, J.; Wang, Z.; Kang, H.; Forsythe, S.J. Prevalence, Molecular Characterization, and Antibiotic Susceptibility of Cronobacter sakazakii Isolates from Powdered Infant Formula Collected from Chinese Retail Markets. Front. Microbiol. 2017, 8, 2026. [Google Scholar] [CrossRef]
- Fei, P.; Man, C.; Lou, B.; Forsythe, S.J.; Chai, Y.; Li, R.; Niu, J.; Jiang, Y. Genotyping and Source Tracking of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and an Infant Formula Production Factory in China. Appl. Environ. Microbiol. 2015, 81, 5430–5439. [Google Scholar] [CrossRef]
- Cetinkaya, E.; Joseph, S.; Ayhan, K.; Forsythe, S.J. Comparison of methods for the microbiological identification and profiling of Cronobacter species from ingredients used in the preparation of infant formula. Mol. Cell. Probes 2013, 27, 60–64. [Google Scholar] [CrossRef]
- Brandao, M.L.L.; Umeda, N.S.; Jackson, E.; Forsythe, S.J.; de Filippis, I. Isolation, molecular and phenotypic characterization, and antibiotic susceptibility of Cronobacter spp. from Brazilian retail foods. Food Microbiol. 2017, 63, 129–138. [Google Scholar] [CrossRef]
- Joseph, S.; Forsythe, S.J. Predominance of Cronobacter sakazakii Sequence Type 4 in Neonatal Infections. Emerg. Infect. Dis. 2011, 17, 1713–1715. [Google Scholar] [CrossRef]
- FAO/WHO (Ed.) Enterobacter Sakazakii and Other Microorganisms in Powdered Infant Formula: Meeting Report; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Rome, Italy; Geneva, Switzerland, 2004; p. 59. [Google Scholar]
- Pagotto, F.J.; Farber, J.M. Cronobacter spp. (Enterobacter sakazakii): Advice, policy and research in Canada. Int. J. Food Microbiol. 2009, 136, 238–245. [Google Scholar] [CrossRef]
- Boué, G.; Cummins, E.; Guillou, S.; Antignac, J.-P.; Le Bizec, B.; Membré, J.-M. Development and Application of a Probabilistic Risk–Benefit Assessment Model for Infant Feeding Integrating Microbiological, Nutritional, and Chemical Components. Risk Anal. 2017, 37, 2360–2388. [Google Scholar] [CrossRef]
- Cossey, V.; Jeurissen, A.; Thelissen, M.-J.; Vanhole, C.; Schuermans, A. Expressed breast milk on a neonatal unit: A hazard analysis and critical control points approach. Am. J. Infect. Control 2011, 39, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Jones, C. Maternal transmission of infectious pathogens in breast milk. J. Paediatr. Child Health 2001, 37, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Bowen, A. Notes from the Field: Cronobacter sakazakii Infection Associated with Feeding Extrinsically Contaminated Expressed Human Milk to a Premature Infant—Pennsylvania, 2016. MMWR. Morb. Mortal. Wkly. Rep. 2017, 66, 761. [Google Scholar] [CrossRef]
- McMullan, R.; Menon, V.; Beukers, A.G.; Jensen, S.O.; van Hal, S.J.; Davis, R. Cronobacter sakazakii Infection from Expressed Breast Milk, Australia. Emerg. Infect. Dis. 2018, 24, 393. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Enterobacter sakazakii (Cronobacter spp.) in Powdered Follow-Up Formula: Meeting Report. Microbiological Risk Assessment Series (MRA) 15; FAO/WHO: Rome, Italy, 2008; p. 97. [Google Scholar]
- Jason, J. The Roles of Epidemiologists, Laboratorians, and Public Health Agencies in Preventing Invasive Cronobacter Infection. Front. Pediatr. 2015, 3, 11. [Google Scholar] [CrossRef]
- Mead, P.S.; Slutsker, L.; Dietz, V.; McCaig, L.F.; Bresee, J.S.; Shapiro, C.; Griffin, P.M.; Tauxe, R.V. Food-related illness and death in the United States. Emerg. Infect. Dis. 1999, 5, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Reij, M.W.; Jongenburger, I.; Gkogka, E.; Gorris, L.G.M.; Zwietering, M.H. Perspective on the risk to infants in the Netherlands associated with Cronobacter spp. occurring in powdered infant formula. Int. J. Food Microbiol. 2009, 136, 232–237. [Google Scholar] [CrossRef]
- Norberg, S.; Stanton, C.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Cotter, P.D. Cronobacter spp. in powdered infant formula. J. Food Prot. 2012, 75, 607–620. [Google Scholar] [CrossRef]
- RASFF. Notifications List, 2018–2021. 2021. Available online: https://webgate.ec.europa.eu/rasff-window/screen/notification/487976 (accessed on 18 April 2023).
- FDA. Archive for Recalls, Market Withdrawals & Safety Alerts, 2018–2021; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Bowen, A.B.; Braden, C.R. Invasive Enterobacter sakazakii disease in infants. Emerg. Infect. Dis. 2006, 12, 1185–1189. [Google Scholar] [CrossRef]
- Friedemann, M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 1297–1304. [Google Scholar] [CrossRef]
- Jason, J. Prevention of Invasive Cronobacter Infections in Young Infants Fed Powdered Infant Formulas. Pediatrics 2012, 130, E1076–E1084. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Fouladkhah, A. Outbreak History, Biofilm Formation, and Preventive Measures for Control of Cronobacter sakazakii in Infant Formula and Infant Care Settings. Microorganisms 2019, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Gemba, M.; Rosiak, E.; Kolozyn-Krajewska, D. Cronobacter spp.—The serious risk in a baby food. Adv. Microbiol. 2020, 59, 139–151. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Power, K.A.; Tall, B.D.; Fanning, S. Cronobacter spp. (Formerly Enterobacter sakazakii); Blackwell Science Publ: Oxford, UK, 2013. [Google Scholar]
- Parra-Flores, J.; Holý, O.; Riffo, F.; Lepuschitz, S.; Maury-Sintjago, E.; Rodríguez-Fernández, A.; Cruz-Córdova, A.; Xicohtencatl-Cortes, J.; Mancilla-Rojano, J.; Troncoso, M. Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing. Front. Microbiol. 2021, 12, 1730. [Google Scholar] [CrossRef]
- Kalyantanda, G.; Shumyak, L.; Archibald, L.K. Cronobacter Species Contamination of Powdered Infant Formula and the Implications for Neonatal Health. Front Pediatr. 2015, 3, 56. [Google Scholar] [CrossRef]
- Healy, B.; Cooney, S.; O’Brien, S.; Iversen, C.; Whyte, P.; Nally, J.; Callanan, J.J.; Fanning, S. Cronobacter (Enterobacter sakazakii): An opportunistic foodborne pathogen. Foodborne Pathog. Dis. 2010, 7, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Parra, J.; Oliveras, L.; Rodriguez, A.; Riffo, F.; Jackson, E.; Forsythe, S. Risk of Cronobacter sakazakii contamination in powdered milk for infant nutrition. Rev. Chil. Nutr. 2015, 42, 83–89. [Google Scholar] [CrossRef]
- Strysko, J.; Cope, J.R.; Martin, H.; Tarr, C.; Hise, K.; Collier, S.; Bowen, A. Food Safety and Invasive Cronobacter Infections during Early Infancy, 1961–2018. Emerg. Infect. Dis. 2020, 26, 857–865. [Google Scholar] [CrossRef]
- FAO/WHO. Enterobacter sakazakii and Salmonella in Powdered Infant Formula: Meeting Report; Microbiological Risk Assessment Series (MRA) 10; FAO/WHO: Rome, Italy, 2006; p. 120. [Google Scholar]
- Parra-Flores, J.; Rodriguez, A.; Riffo, F.; Arvizu-Medrano, S.M.; Arias-Rios, E.V.; Aguirre, J. Investigation on the Factors Affecting Cronobacter sakazakii Contamination Levels in Reconstituted Powdered Infant Formula. Front. Pediatr. 2015, 3, 72. [Google Scholar] [CrossRef]
- Pagotto, F.; Nazarowec-White, M.; Bidawid, S.; Farber, J. Enterobacter sakazakii: Infectivity and Enterotoxin Production In Vitro and In Vivo. J. Food Prot. 2003, 66, 370–375. [Google Scholar] [CrossRef]
- Mittal, R.; Wang, Y.; Hunter, C.J.; Gonzalez-Gomez, I.; Prasadarao, N.V. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: A role for outer membrane protein A. Lab. Investig. 2009, 89, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.N.; Lambert, S.; Smith, M.A. Neonatal mice as models for Cronobacter sakazakii infection in infants. J. Food Prot. 2009, 72, 2363–2367. [Google Scholar] [CrossRef]
- Reich, F.; Konig, R.; von Wiese, W.; Klein, G. Prevalence of Cronobacter spp. in a powdered infant formula processing environment. Int. J. Food Microbiol. 2010, 140, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Bar-Oz, B.; Preminger, A.; Peleg, O.; Block, C.; Arad, I. Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001, 90, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Habraken, C.; Mossel, D.; Den, R.S.v. Management of Salmonella risks in the production of powdered milk products. Neth. Milk Dairy J. 1986, 40, 99–116. [Google Scholar]
- von Westerholt, F.; Butler, F. A Bayesian estimation of the concentration of microbial organisms in powdered foods arising from repeat testing for microbial contamination. Microb. Risk Anal. 2020, 14, 100083. [Google Scholar] [CrossRef]
- Mussida, A.; Vose, D.; Butler, F. Efficiency of the sampling plan for Cronobacter spp. assuming a Poisson lognormal distribution of the bacteria in powder infant formula and the implications of assuming a fixed within and between-lot variability. Food Control 2013, 33, 174–185. [Google Scholar] [CrossRef]
- Jongenburger, I.; Reij, M.W.; Boer, E.P.J.; Gorris, L.G.M.; Zwietering, M.H. Actual distribution of Cronobacter spp. in industrial batches of powdered infant formula and consequences for performance of sampling strategies. Int. J. Food Microbiol. 2011, 151, 62–69. [Google Scholar] [CrossRef]
- Jongenburger, I.; Reij, M.W.; Boer, E.P.J.; Zwietering, M.H.; Gorris, L.G.M. Modelling homogeneous and heterogeneous microbial contaminations in a powdered food product. Int. J. Food Microbiol. 2012, 157, 35–44. [Google Scholar] [CrossRef]
- Gonzales-Barron, U.; Zwietering, M.H.; Butler, F. A novel derivation of a within-batch sampling plan based on a Poisson-gamma model characterising low microbial counts in foods. Int. J. Food Microbiol. 2013, 161, 84–96. [Google Scholar] [CrossRef]
- von Westerholt, F.; Gonzales-Barron, U.; Butler, F. A Bayesian approach to estimating the uncertainty in the distribution of Cronobacter spp. in powdered infant formula arising from microbiological criteria test outcomes. Microb. Risk Anal. 2016, 4, 36–42. [Google Scholar] [CrossRef]
- Nauta, M. Chapter 2—Microbial food safety risk assessment. In Foodborne Infections and Intoxications, 5th ed.; Morris, J.G., Vugia, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 19–34. [Google Scholar]
- Chap, J.; Jackson, P.; Siqueira, R.; Gaspar, N.; Quintas, C.; Park, J.; Osaili, T.; Shaker, R.; Jaradat, Z.; Hartantyo, S.H.; et al. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 2009, 136, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Parra-Flores, J.; Cerda-Leal, F.; Contreras, A.; Valenzuela-Riffo, N.; Rodríguez, A.; Aguirre, J. Cronobacter sakazakii and Microbiological Parameters in Dairy Formulas Associated With a Food Alert in Chile. Front. Microbiol. 2018, 9, 1708. [Google Scholar] [CrossRef]
- Santos, R.F.S.; Silva, N.d.; Junqueira, V.C.A.; Kajsik, M.; Forsythe, S.; Pereira, J.L. Screening for Cronobacter Species in Powdered and Reconstituted Infant Formulas and from Equipment Used in Formula Preparation in Maternity Hospitals. Ann. Nutr. Metab. 2013, 63, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.J.; Bean, J.F. Cronobacter: An emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis. J. Perinatol. 2013, 33, 581–585. [Google Scholar] [CrossRef]
- Cordier, J.-L. Production of Powdered Infant Formulae and Microbiological Control Measures. In Enterobacter sakazakii; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 145–185. [Google Scholar]
- Farber, J.M. Enterobacter sakazakii—New foods for thought? Lancet 2004, 363, 5–6. [Google Scholar] [CrossRef]
- Bourdichon, F.; Betts, R.; Dufour, C.; Fanning, S.; Farber, J.; McClure, P.; Stavropoulou, D.A.; Wemmenhove, E.; Zwietering, M.H.; Winkler, A. Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms? Int. J. Food Microbiol. 2021, 356, 109351. [Google Scholar] [CrossRef]
- Jang, H.; Gopinath, G.; Negrete, F.; Weinstein, L.; Lehner, A.; Fanning, S.; Tall, B.D. Chapter 15—Cronobacter species. In Foodborne Infections and Intoxications, 5th ed.; Morris, J.G., Vugia, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 265–283. [Google Scholar]
- Baker, P.; Santos, T.; Neves, P.A.; Machado, P.; Smith, J.; Piwoz, E.; Barros, A.J.D.; Victora, C.G.; McCoy, D. First-food systems transformations and the ultra-processing of infant and young child diets: The determinants, dynamics and consequences of the global rise in commercial milk formula consumption. Matern. Child Nutr. 2021, 17, e13097. [Google Scholar] [CrossRef]
- Kent, G. Global infant formula: Monitoring and regulating the impacts to protect human health. Int. Breastfeed. J. 2015, 10, 6. [Google Scholar] [CrossRef]
- Hastings, G.; Angus, K.; Eadie, D.; Hunt, K. Selling second best: How infant formula marketing works. Glob. Health 2020, 16, 77. [Google Scholar] [CrossRef]
- Cadwell, K.; Blair, A.; Turner-Maffei, C.; Gabel, M.; Brimdyr, K. Powdered Baby Formula Sold in North America: Assessing the Environmental Impact. Breastfeed. Med. 2020, 15, 671–679. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Breastfeeding Scorecard, 2018: Enabling Women to Breastfeed through Better Policies and Programmes; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Yan, X.; Gurtler, J.; Fratamico, P.; Hu, J.; Gunther, N.W.t.; Juneja, V.; Huang, L. Comprehensive approaches to molecular biomarker discovery for detection and identification of Cronobacter spp. (Enterobacter sakazakii) and Salmonella spp. Appl. Environ. Microbiol. 2011, 77, 1833–1843. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Global Infant Formula Products Market: Estimations and Forecasts for Production and Consumption; Gira Food: China, 2018. [Google Scholar]
- Joffe, N.; Webster, F.; Shenker, N. Support for breastfeeding is an environmental imperative. BMJ 2019, 367, l5646. [Google Scholar] [CrossRef] [PubMed]
- Turck, D. Safety aspects in preparation and handling of infant food. Ann. Nutr. Metab. 2012, 60, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Kent, R.M.; Fitzgerald, G.F.; Hill, C.; Stanton, C.; Ross, R.P. Novel Approaches to Improve the Intrinsic Microbiological Safety of Powdered Infant Milk Formula. Nutrients 2015, 7, 1217–1244. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.; Druggan, P.; Schumacher, S.; Lehner, A.; Feer, C.; Gschwend, K.; Joosten, H.; Stephan, R. Development of a novel screening method for the isolation of “Cronobacter” spp. (Enterobacter sakazakii). Appl. Environ. Microbiol. 2008, 74, 2550–2553. [Google Scholar] [CrossRef]
- Iversen, C.; Forsythe, S. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 2004, 21, 771–777. [Google Scholar] [CrossRef]
- Ahmad, S.; Guo, M.R. Infant formula quality control. In Human Milk Biochemistry and Infant Formula Manufacturing Technology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 255–280. [Google Scholar]
- CXC 66-2008; Code of Hygienic Practice for Powdered Formulae for Infants and Young Children. CAC Standards: Ottawa, ON, Canada, 2008.
- EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef]
- ISO 22964:2017; Microbiology of the Food Chain—Horizontal Method for the Detection of Cronobacter spp. ISO: Geneva, Switzerland, 2013.
- Vanderveen, J.E. The Role of the Food and Drug Administration in Regulating Food Products for Children. Ann. N. Y. Acad. Sci. 1991, 623, 400–405. [Google Scholar] [CrossRef]
- DiMaggio, D.M.; Du, N.; Scherer, C.; Brodlie, S.; Shabanova, V.; Belamarich, P.; Porto, A.F. Comparison of Imported European and US Infant Formulas: Labeling, Nutrient and Safety Concerns. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 480–486. [Google Scholar] [CrossRef]
- Health Canada. Official Methods for the Microbiological Analysis of Foods; Health Canada: Ottawa, ON, Canada, 2013. [Google Scholar]
- Ji, A.-L.; Wong, Y.-L.I.; Cai, T.-J.; Liu, J. Infant formula safety concerns and consequences in China. World J. Pediatr. WJP 2014, 10, 7–9. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.J.; Wang, Z.W.; Liu, L.; Wei, Y.X.; Han, X.; Zeng, J.; Liao, W.J. Identification of Cronobacter species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with an optimized analysis method. J. Microbiol. Methods 2017, 139, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Torlak, E.; Gokmen, M.; Aydemir, S. Efficacy of disinfectants against Cronobacter biofilm on plastic surfaces. Qual. Assur. Saf. Crops Foods 2015, 7, 819–823. [Google Scholar] [CrossRef]
- Bayoumi, M.A.; Kamal, R.M.; Abd El Aal, S.F.; Awad, E.I. Assessment of a regulatory sanitization process in Egyptian dairy plants in regard to the adherence of some food-borne pathogens and their biofilms. Int. J. Food Microbiol. 2012, 158, 225–231. [Google Scholar] [CrossRef]
- Osaili, T.M.; Shaker, R.R.; Olaimat, A.N.; Al-Nabulsi, A.A.; Al-Holy, M.A.; Forsythe, S.J. Detergent and sanitizer stresses decrease the thermal resistance of Enterobacter sakazakii in infant milk formula. J. Food Sci. 2008, 73, M154–M157. [Google Scholar] [CrossRef]
- Ye, Y.W.; Zhang, M.F.; Jiao, R.; Ling, N.; Zhang, X.Y.; Tong, L.W.; Zeng, H.Y.; Zhang, J.M.; Wu, Q.P. Inactivation of &ITCronobacter malonaticus&IT cells and inhibition of its biofilm formation exposed to hydrogen peroxide stress. J. Dairy Sci. 2018, 101, 66–74. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Wang, J.; Zhan, Y.; Wang, Z.; Fang, Y.; Wang, X. Characterization of a gene cluster containing four genes relevant to biosynthesis of inner core of lipopolysaccharide in Cronobacter sakazakii. Biotechnol. Appl. Biochem. 2021, 69, 1080–1093. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.W.; Ling, N.; Jiao, R.; Wu, Q.P.; Han, Y.J.; Gao, J.N. Effects of Ca2+ and Mg2+ on the Biofilm Formation of Cronobacter sakazakii Strains from Powdered Infant Formula. J. Food Saf. 2015, 35, 416–421. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Shi, L.; Chen, X.; Chen, C.; Hong, Z.; Cao, Y.; Zhao, L. Survival strategy of Cronobacter sakazakii against ampicillin pressure: Induction of the viable but nonculturable state. Int. J. Food Microbiol. 2020, 334, 108819. [Google Scholar] [CrossRef]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely Used Benzalkonium Chloride Disinfectants Can Promote Antibiotic Resistance. Appl. Environ. Microbiol. 2018, 84, e01201–e01218. [Google Scholar] [CrossRef]
- Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Šostar Turk, S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021, 9, 2550. [Google Scholar] [CrossRef]
- Tandukar, M.; Oh, S.; Tezel, U.; Konstantinidis, K.T.; Pavlostathis, S.G. Long-term exposure to benzalkonium chloride disinfectants results in change of microbial community structure and increased antimicrobial resistance. Environ. Sci. Technol. 2013, 47, 9730–9738. [Google Scholar] [CrossRef]
- Hartmann, I.; Carranza, P.; Lehner, A.; Stephan, R.; Eberl, L.; Riedel, K. Genes involved in Cronobacter sakazakii biofilm formation. Appl. Environ. Microbiol. 2010, 76, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Ling, N.; Forsythe, S.; Wu, Q.; Ding, Y.; Zhang, J.; Zeng, H. Insights into Cronobacter sakazakii Biofilm Formation and Control Strategies in the Food Industry. Engineering 2020, 6, 393–405. [Google Scholar] [CrossRef]
- Bae, Y.M.; Baek, S.Y.; Lee, S.Y. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Int. J. Food Microbiol. 2012, 153, 465–473. [Google Scholar] [CrossRef]
- Strydom, A.; Cawthorn, D.M.; Cameron, M.; Witthuhn, R.C. Species of Cronobacter—A review of recent advances in the genus and their significance in infant formula milk. Int. Dairy J. 2012, 27, 3–12. [Google Scholar] [CrossRef]
- Gupta, T.B.; Mowat, E.; Brightwell, G.; Flint, S.H. Biofilm formation and genetic characterization of New Zealand Cronobacter isolates. J. Food Saf. 2018, 38, 13. [Google Scholar] [CrossRef]
- Iversen, C.; Lane, M.; Forsythe, S.J. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 2004, 38, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Coloma-Rivero, R.F.; Gómez, L.; Alvarez, F.; Saitz, W.; del Canto, F.; Céspedes, S.; Vidal, R.; Oñate, A.A. The Role of the Flagellar Protein FlgJ in the Virulence of Brucella abortus. Front. Cell. Infect. Microbiol. 2020, 10, 178. [Google Scholar] [CrossRef]
- Svensson, S.L.; Pryjma, M.; Gaynor, E.C. Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS ONE 2014, 9, e106063. [Google Scholar] [CrossRef]
- Breeuwer, P.; Lardeau, A.; Peterz, M.; Joosten, H.M. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 2003, 95, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Osaili, T.M.; Shaker, R.R.; Al-Haddaq, M.S.; Al-Nabulsi, A.A.; Holley, R.A. Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula. J. Appl. Microbiol. 2009, 107, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Fei, P.; Jiang, Y.J.; Feng, J.; Forsythe, S.J.; Li, R.; Zhou, Y.H.; Man, C.X. Antibiotic and Desiccation Resistance of Cronobacter sakazakii and C. malonaticus Isolates from Powdered Infant Formula and Processing Environments. Front. Microbiol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, R.; Bansal, S.; Azmi, W.; Goel, G. Increased thermal tolerance in Cronobacter sakazakii strains in reconstituted milk powder due to cross protection by physiological stresses. J. Food Saf. 2020, 40, 9. [Google Scholar] [CrossRef]
- Du, X.J.; Wang, X.Y.; Dong, X.; Li, P.; Wang, S. Characterization of the Desiccation Tolerance of Cronobacter sakazakii Strains. Front. Microbiol. 2018, 9, 2867. [Google Scholar] [CrossRef]
- Nazarowec-White, M.; Farber, J.M. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 1997, 24, 9–13. [Google Scholar] [CrossRef]
- Dalkilic-Kaya, G.; Heperkan, D.; Juneja, V.K.; Heperkan, H.A. Thermal resistance of Cronobacter sakazakii isolated from baby food ingredients of dairy origin in liquid medium. J. Food Process. Preserv. 2018, 42, 5. [Google Scholar] [CrossRef]
- Arroyo, C.; Cebrian, G.; Pagan, R.; Condon, S. Resistance of Enterobacter sakazakii to pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2010, 11, 314–321. [Google Scholar] [CrossRef]
- Dancer, G.I.; Mah, J.H.; Rhee, M.S.; Hwang, I.G.; Kang, D.H. Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses. J. Appl. Microbiol. 2009, 107, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Iversen, C.; Druggan, P.; Forsythe, S. A selective differential medium for Enterobacter sakazakii, a preliminary study. Int. J. Food Microbiol. 2004, 96, 133–139. [Google Scholar] [CrossRef]
- Adekunte, A.; Valdramidis, V.P.; Tiwari, B.K.; Slone, N.; Cullen, P.J.; Donnell, C.P.O.; Scannell, A. Resistance of Cronobacter sakazakii in reconstituted powdered infant formula during ultrasound at controlled temperatures: A quantitative approach on microbial responses. Int. J. Food Microbiol. 2010, 142, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Al-Holy, M.A.; Lin, M.; Abu-Ghoush, M.M.; Al-Qadiri, H.M.; Rasco, B.A. Thermal resistance, Survival and inactivation of Enterobacter sakazakii (Cronobacter spp.) in powdered and reconstituted infacnt formula. J. Food Saf. 2009, 29, 287–301. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Al-Holy, M.A.; Shaker, R.R.; Ayyash, M.M.; Olaimat, A.N.; Holley, R.A. Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int. J. Food Microbiol. 2009, 136, 221–226. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Elabedeen, N.A.Z.; Jaradat, Z.W.; Shaker, R.R.; Kheirallah, K.A.; Tarazi, Y.H.; Holley, R.A. Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Int. J. Food Microbiol. 2011, 146, 137–143. [Google Scholar] [CrossRef]
- Gajdosova, J.; Benedikovicova, K.; Kamodyova, N.; Tothova, L.; Kaclikova, E.; Stuchlik, S.; Turna, J.; Drahovska, H. Analysis of the DNA region mediating increased thermotolerance at 58 °C in Cronobacter sp. and other enterobacterial strains. Antonie Van Leeuwenhoek 2011, 100, 279–289. [Google Scholar] [CrossRef]
- Nguyen, S.V.; Harhay, G.P.; Bono, J.L.; Smith, T.P.; Harhay, D.M. Genome Sequence of the Thermotolerant Foodborne Pathogen Salmonella enterica Serovar Senftenberg ATCC 43845 and Phylogenetic Analysis of Loci Encoding Increased Protein Quality Control Mechanisms. mSystems 2017, 2, e00190-16. [Google Scholar] [CrossRef]
- Williams, T.L.; Monday, S.R.; Edelson-Mammel, S.; Buchanan, R.; Musser, S.M. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 2005, 5, 4161–4169. [Google Scholar] [CrossRef] [PubMed]
- Edelson-Mammel, S.G.; Porteous, M.K.; Buchanan, R.L. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Prot. 2005, 68, 1900–1902. [Google Scholar] [CrossRef]
- Al-Nabulsi, A.A.; Osaili, T.M.; Mahmoud, K.Z.; Ayyash, M.M.; Olaimat, A.N.; Shaker, R.R.; Holley, R.A. Modeling the combined effect of NaCl and pH against Cronobacter spp. using response surface methodology. J. Food Saf. 2017, 37, 6. [Google Scholar] [CrossRef]
- Kim, H.; Beuchat, L.R. Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Prot. 2005, 68, 2541–2552. [Google Scholar] [CrossRef] [PubMed]
- Beuchat, L.R.; Kim, H.; Gurtler, J.B.; Lin, L.C.; Ryu, J.H.; Richards, G.M. Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int. J. Food Microbiol. 2009, 136, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Torović, L.; Gusman, V.; Kvrgić, S. Biogenic amine and microbiological profile of Serbian dry fermented sausages of artisanal and industrial origin and associated health risk. Food Addit. Contam. Part B Surveill. 2020, 13, 64–71. [Google Scholar] [CrossRef]
- Lin, L.C.; Beuchat, L.R. Survival of Enterobacter sakazakii in infant cereal as affected by composition, water activity, and temperature. Food Microbiol. 2007, 24, 767–777. [Google Scholar] [CrossRef]
- Lou, X.Q.; Liu, T.; Zhang, W.; Yu, H.; Wang, H.Q.; Song, S.J.; Chen, Q.; Fang, Z.G. The occurrence and distribution characteristics of Cronobacter in diverse cereal kernels, flour, and flour-based products. Food Microbiol. 2019, 84, 6. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.Q.; Si, G.J.; Yu, H.; Qi, J.J.; Liu, T.; Fang, Z.G. Possible reservoir and routes of transmission of Cronobacter (Enterobacter sakazakii) via wheat flour. Food Control 2014, 43, 258–262. [Google Scholar] [CrossRef]
- Bao, X.; Yang, L.; Chen, L.; Li, B.; Li, L.; Li, Y.; Xu, Z. Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science. Microb. Pathog. 2017, 109, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Havalová, H.; Ondrovičová, G.; Keresztesová, B.; Bauer, J.A.; Pevala, V.; Kutejová, E.; Kunová, N. Mitochondrial HSP70 Chaperone System—The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int. J. Mol. Sci. 2021, 22, 8077. [Google Scholar] [CrossRef]
- Aly, M.A.; Reimhult, E.; Kneifel, W.; Domig, K.J. Characterization of Biofilm Formation by Cronobacter spp. Isolates of Different Food Origin under Model Conditions. J. Food Prot. 2019, 82, 65–77. [Google Scholar] [CrossRef]
- Suppiger, A.; Eshwar, A.K.; Stephan, R.; Kaever, V.; Eberl, L.; Lehner, A. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci. Rep. 2016, 6, 8. [Google Scholar] [CrossRef]
- Demirci, U.; Tekiner, I.H.; Cakmak, B.; Ozpinar, H. Occurrence and molecular characterization of different virulence-associated genes of Cronobacter sakazakii isolates from some foods and dust samples. Cienc. Rural 2018, 48, 9. [Google Scholar] [CrossRef]
- Du, X.J.; Han, R.; Li, P.; Wang, S. Comparative proteomic analysis of Cronobacter sakazakii isolates with different virulences. J. Proteom. 2015, 128, 344–351. [Google Scholar] [CrossRef]
- Mange, J.P.; Stephan, R.; Borel, N.; Wild, P.; Kim, K.S.; Pospischil, A.; Lehner, A. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol. 2006, 6, 58. [Google Scholar] [CrossRef]
- Amalaradjou, M.A.; Kim, K.S.; Venkitanarayanan, K. Sub-inhibitory concentrations of trans-cinnamaldehyde attenuate virulence in Cronobacter sakazakii in vitro. Int. J. Mol. Sci. 2014, 15, 8639–8655. [Google Scholar] [CrossRef]
- MacLean, L.L.; Vinogradov, E.; Pagotto, F.; Farber, J.M.; Perry, M.B. Characterization of the O-antigen in the lipopolysaccharide of Cronobacter (Enterobacter) malonaticus 3267. Biochem. Cell Biol. 2009, 87, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Holý, O.; Parra Flores, J.; Lepuschitz, S.; Alarcón-Lavín, P.; Cruz Córdova, A.; Xicohtencatl-Cortes, J.; Mancilla-Rojano, J.; Ruppitsch, W.; Forsythe, S. Molecular Characterization of Cronobacter sakazakii Strains Isolated from Powdered Milk. Foods 2020, 10, 20. [Google Scholar] [CrossRef]
- Parra-Flores, J.; Aguirre, J.; Juneja, V.; Jackson, E.E.; Cruz-Cordova, A.; Silva-Sanchez, J.; Forsythe, S. Virulence and Antibiotic Resistance Profiles of Cronobacter sakazakii and Enterobacter spp. Involved in the Diarrheic Hemorrhagic Outbreak in Mexico. Front. Microbiol. 2018, 9, 2206. [Google Scholar] [CrossRef] [PubMed]
- Kothary, M.H.; McCardell, B.A.; Frazar, C.D.; Deer, D.; Tall, B.D. Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Appl. Environ. Microbiol. 2007, 73, 4142–4151. [Google Scholar] [CrossRef]
- Negrete, F.; Jang, H.; Gangiredla, J.; Woo, J.; Lee, Y.; Patel, I.R.; Chase, H.R.; Finkelstein, S.; Wang, C.Z.; Srikumar, S.; et al. Genome-wide survey of efflux pump-coding genes associated with Cronobacter survival, osmotic adaptation, and persistence. Curr. Opin. Food Sci. 2019, 30, 32–42. [Google Scholar] [CrossRef]
- Mohan Nair, M.K.; Venkitanarayanan, K.; Silbart, L.K.; Kim, K.S. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells. Foodborne Pathog. Dis. 2009, 6, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, S.J.; Dickins, B.; Jolley, K.A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genom. 2014, 15, 1121. [Google Scholar] [CrossRef]
- Severi, E.; Hood, D.W.; Thomas, G.H. Sialic acid utilization by bacterial pathogens. Microbiology 2007, 153, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Friedemann, M. Enterobacter sakazakii in powdered infant formula. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2008, 51, 664–674. [Google Scholar] [CrossRef]
- Jaradat, Z.W.; Al Mousa, W.; Elbetieha, A.; Al Nabulsi, A.; Tall, B.D. Cronobacter spp.—Opportunistic food-borne pathogens. A review of their virulence and environmental-adaptive traits. J. Med. Microbiol. 2014, 63, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Grand, M.; Liniger, M.; Iversen, C. Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 2009, 136, 189–192. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low-Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- FDA (CFSAN). FDA Investigation of Cronobacter Infections: Powdered Infant Formula; FDA: Silver Spring, MD, USA, 2022. [Google Scholar]
- Government of Canada. Cronobacter. Available online: https://www.canada.ca/en/public-health/services/food-poisoning/cronobacter.html (accessed on 18 April 2023).
- Forsythe, S.J. Updates on the Cronobacter Genus. In Annual Review of Food Science and Technology; Doyle, M.P., Klaenhammer, T.R., Eds.; Annual Reviews: Palo Alto, CA, USA, 2018; Volume 9, pp. 23–44. [Google Scholar]
- Lehner, A.; Tall, B.; Fanning, S.; Srikumar, S. Cronobacter spp.Opportunistic Foodborne Pathogens: An Update on Evolution, Osmotic Adaptation and Pathogenesis. Curr. Clin. Microbiol. Rep. 2018, 5, 97–105. [Google Scholar] [CrossRef]
- Srikumar, S.; Cao, Y.; Yan, Q.; Van Hoorde, K.; Nguyen, S.; Cooney, S.; Gopinath, G.R.; Tall, B.D.; Sivasankaran, S.K.; Lehner, A.; et al. RNA Sequencing-Based Transcriptional Overview of Xerotolerance in Cronobacter sakazakii SP291. Appl Environ. Microbiol. 2019, 85, e01993-18. [Google Scholar] [CrossRef]
- Hurrell, E.; Kucerova, E.; Loughlin, M.; Caubilla-Barron, J.; Forsythe, S.J. Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae. Int. J. Food Microbiol. 2009, 136, 227–231. [Google Scholar] [CrossRef]
- Forsythe, S.J. Enterobacter sakazakii and other bacteria in powdered infant milk formula. Matern. Child Nutr. 2005, 1, 44–50. [Google Scholar] [CrossRef]
- Osaili, T.M.; Shaker, R.R.; Ayyash, M.M.; Al-Nabulsi, A.A.; Forsythe, S.J. Survival and growth of Cronobacter species (Enterobacter sakazakii) in wheat-based infant follow-on formulas. Lett. Appl. Microbiol. 2009, 48, 408–412. [Google Scholar] [CrossRef]
- Muytjens, H.L.; Van der Ros-Van de Repe, J.; Van Druten, H. Enzymatic profiles of Enterobacter sakazakii and related species with special reference to the alpha-glucosidase reaction and reproducibility of the test system. J. Clin. Microbiol. 1984, 20, 684–686. [Google Scholar] [CrossRef]
- Muytjens, H.L.; Roelofs-Willemse, H.; Jaspar, G. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 1988, 26, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Rhee, M. A new cost-effective, selective and differential medium for the isolation of Cronobacter spp. J. Microbiol. Methods 2011, 85, 149–154. [Google Scholar] [CrossRef]
- ISO. Milk and Milk Products: Detection of Enterobacter sakazakii; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Chen, Y.; Lampel, K.; Hammack, T. Chapter 29: Cronobacter. In Bacteriological Analytical Manual; White Oak Campus, U.S. Food and Drug Administration: Silver Spring, MD, USA, 2016. [Google Scholar]
- Guillaume-Gentil, O.; Sonnard, V.; Kandhai, M.; Marugg, J.; Joosten, H. A simple and rapid cultural method for detection of Enterobacter sakazakii in environmental samples. J. Food Prot. 2005, 68, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, R.G.; Bew, J.; Alfonsina, F.; Blanco, C.; Bräunig, J.; Brookes, F.; Friedl, E.; Gooding, A.; Hahn, G.; Hudson, C.; et al. A medium for the presumptive detection of Enterobacter sakazakii in infant formula: Interlaboratory study. J. AOAC Int. 2004, 87, 604–613. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kang, D.-H. Fluorogenic selective and differential medium for isolation of Enterobacter sakazakii. Appl. Environ. Microbiol. 2004, 70, 5692–5694. [Google Scholar] [CrossRef]
- Druggan, P.; Iversen, C. Culture media for the isolation of Cronobacter spp. Int. J. Food Microbiol. 2009, 136, 169–178. [Google Scholar] [CrossRef]
- Restaino, L.; Frampton, E.; Lionberg, W.; Becker, R. A chromogenic plating medium for the isolation and identification of Enterobacter sakazakii from foods, food ingredients, and environmental sources. J. Food Prot. 2006, 69, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Lehner, A.; Tasara, T.; Stephan, R. 16S rRNA gene based analysis of Enterobacter sakazakii strains from different sources and development of a PCR assay for identification. BMC Microbiol. 2004, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Mohan Nair, M.K.; Venkitanarayanan, K.S. Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakii in infant formula. Appl. Environ. Microbiol. 2006, 72, 2539–2546. [Google Scholar] [CrossRef] [PubMed]
- Stoop, B.; Lehner, A.; Iversen, C.; Fanning, S.; Stephan, R. Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int. J. Food Microbiol. 2009, 136, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Brackett, R. Rapid, specific detection of Enterobacter sakazakii in infant formula using a real-time PCR assay. J. Food Prot. 2005, 68, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Mullane, N.R.; Murray, J.; Drudy, D.; Prentice, N.; Whyte, P.; Wall, P.G.; Parton, A.; Fanning, S. Detection of Enterobacter sakazakii in dried infant milk formula by cationic-magnetic-bead capture. Appl. Environ. Microbiol. 2006, 72, 6325–6330. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, C.; Xu, X.; Zhou, G. Real-time PCR with internal amplification control for the detection of Cronobacter spp. (Enterobacter sakazakii) in food samples. Food Control 2012, 25, 144–149. [Google Scholar] [CrossRef]
- Zimmermann, J.; Schmidt, H.; Loessner, M.J.; Weiss, A. Development of a rapid detection system for opportunistic pathogenic Cronobacter spp. in powdered milk products. Food Microbiol. 2014, 42, 19–25. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, Q.; Xu, X.; Yang, X.; Ye, Y.; Zhang, J. Development of an immobilization and detection method of Enterobacter sakazakii from powdered infant formula. Food Microbiol. 2008, 25, 648–652. [Google Scholar] [CrossRef]
- Ruan, J.; Li, M.; Liu, Y.-P.; Li, Y.-Q.; Li, Y.-X. Rapid and sensitive detection of Cronobacter spp. (previously Enterobacter sakazakii) in food by duplex PCR combined with capillary electrophoresis–laser-induced fluorescence detector. J. Chromatogr. B 2013, 921, 15–20. [Google Scholar] [CrossRef]
- Lv, X.; Wang, L.; Zhang, J.; He, X.; Shi, L.; Zhao, L. Quantitative detection of trace VBNC Cronobacter sakazakii by immunomagnetic separation in combination with PMAxx-ddPCR in dairy products. Food Microbiol. 2021, 99, 103831. [Google Scholar] [CrossRef]
- Song, X.; Kim, M. Development of an indirect non-competitive enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii in infant formula powder. Korean J. Food Nutr. 2013, 26, 936–944. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Y.; Shi, M.; Sheng, W.; Du, X.; Yuan, M.; Wang, S. Two novel analytical methods based on polyclonal and monoclonal antibodies for the rapid detection of Cronobacter spp.: Development and application in powdered infant formula. LWT-Food Sci. Technol. 2014, 56, 335–340. [Google Scholar] [CrossRef]
- Park, S.; Shukla, S.; Kim, Y.; Oh, S.; Hun Kim, S.; Kim, M. Development of sandwich enzyme-linked immunosorbent assay for the detection of Cronobacter muytjensii (formerly called Enterobacter sakazakii). Microbiol. Immunol. 2012, 56, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Shukla, S.; Oh, S.; Kim, Y.; Kim, M. Development of fluorescence-based liposome immunoassay for detection of Cronobacter muytjensii in pure culture. Curr. Microbiol. 2015, 70, 246–252. [Google Scholar] [CrossRef]
- Blažková, M.; Javůrková, B.; Fukal, L.; Rauch, P. Immunochromatographic strip test for detection of genus Cronobacter. Biosens. Bioelectron. 2011, 26, 2828–2834. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Ming, X.; Chen, X.; Gan, M.; Wang, B.; Xu, F.; Wei, H. Immunochromatographic strip for rapid detection of Cronobacter in powdered infant formula in combination with silica-coated magnetic nanoparticles separation and 16S rRNA probe. Biosens. Bioelectron. 2014, 61, 306–313. [Google Scholar] [CrossRef]
- Yulong, Z.; Xia, Z.; Hongwei, Z.; Wei, L.; Wenjie, Z.; Xitai, H. Rapid and sensitive detection of Enterobacter sakazakii by cross-priming amplification combined with immuno-blotting analysis. Mol. Cell. Probes 2010, 24, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.; Azevedo, N.; Iversen, C.; Fanning, S.; Keevil, C.; Vieira, M. Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl. Environ. Microbiol. 2009, 75, 2925–2930. [Google Scholar] [CrossRef]
- Pan, R.; Jiang, Y.; Sun, L.; Wang, R.; Zhuang, K.; Zhao, Y.; Wang, H.; Ali, M.A.; Xu, H.; Man, C. Gold nanoparticle-based enhanced lateral flow immunoassay for detection of Cronobacter sakazakii in powdered infant formula. J. Dairy Sci. 2018, 101, 3835–3843. [Google Scholar] [CrossRef]
- Hu, X.; Dou, W.; Fu, L.; Zhao, G. A disposable immunosensor for Enterobacter sakazakii based on an electrochemically reduced graphene oxide-modified electrode. Anal. Biochem. 2013, 434, 218–220. [Google Scholar] [CrossRef]
- Shukla, S.; Haldorai, Y.; Bajpai, V.K.; Rengaraj, A.; Hwang, S.K.; Song, X.; Kim, M.; Huh, Y.S.; Han, Y.-K. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of Cronobacter sakazakii in powdered infant formula. Biosens. Bioelectron. 2018, 109, 139–149. [Google Scholar] [CrossRef]
- Xu, F.; Li, P.; Ming, X.; Yang, D.; Xu, H.; Wu, X.; Shah, N.P.; Wei, H. Detection of Cronobacter species in powdered infant formula by probe-magnetic separation PCR. J. Dairy Sci. 2014, 97, 6067–6075. [Google Scholar] [CrossRef]
- Shukla, S.; Lee, G.; Song, X.; Park, J.H.; Cho, H.; Lee, E.J.; Kim, M. Detection of Cronobacter sakazakii in powdered infant formula using an immunoliposome-based immunomagnetic concentration and separation assay. Sci. Rep. 2016, 6, 34721. [Google Scholar] [CrossRef]
- Morlay, A.; Piat, F.; Mercey, T.; Roupioz, Y. Immunological detection of Cronobacter and Salmonella in powdered infant formula by plasmonic label-free assay. Lett. Appl. Microbiol. 2016, 62, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Aly, M.A.; Domig, K.J.; Kneifel, W.; Reimhult, E. Immunogold Nanoparticles for Rapid Plasmonic Detection of C. sakazakii. Sensors 2018, 18, 2028. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Zhao, G.; Dou, W. An ultrasensitive sandwich immunoassay with a glucometer readout for portable and quantitative detection of Cronobacter sakazakii. Anal. Methods 2017, 9, 6286–6292. [Google Scholar] [CrossRef]
- Gao, B.; Ma, T.; Feng, L.; Huang, X.; Chen, X.; Xiong, Y. Light scattering intensity as signal transducer to enhance the performance of immunoassay for Cronobacter detection in powdered infant formula. Sens. Actuators B Chem. 2021, 344, 130312. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, M.; Kim, B.C. Specific detection of Cronobacter sakazakii in powdered infant formula using ssDNA aptamer. Analyst 2021, 146, 3534–3542. [Google Scholar] [CrossRef]
- Liu, Z.M.; Yuan, Y.Y.; Wu, X.Y.; Ning, Q.Q.; Wu, S.J.; Fu, L.Q. A turn-off colorimetric DNAzyme-aptasensor for ultra-high sensitive detection of viable Cronobacter sakazakii. Sens. Actuators B-Chem. 2020, 322, 6. [Google Scholar] [CrossRef]
- Lv, X.; Gu, X.; Wang, L.; He, X.; He, C.; Zhang, J.; Zhao, L. Rapid and absolute quantification of VBNC Cronobacter sakazakii by PMAxx combined with single intact cell droplet digital PCR in infant foods. LWT 2021, 145, 111388. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, Y.; Xiao, M.; Chen, Y.; Lee, C.C.; Zhang, L.; Zhang, K.X.; Yang, S.; Gu, M. Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 2013, 34, 436–443. [Google Scholar] [CrossRef]
- Gao, S.; Sun, C.; Hong, H.; Gooneratne, R.; Mutukumira, A.; Wu, X. Rapid detection of viable Cronobacter sakazakii in powdered infant formula using improved propidium monoazide (PMAxx) and quantitative recombinase polymerase amplification (qRPA) assay. Food Control 2021, 124, 107899. [Google Scholar] [CrossRef]
- Gao, Y.; Ye, Y.W.; Xu, J.G.; Wu, Q.; Yao, B.B.; Chen, W. Rapid and easy quantitative identification of Cronobacter spp. in infant formula milk powder by isothermal strand-exchange-amplification based molecular capturing lateral flow strip. Food Control 2021, 126, 7. [Google Scholar] [CrossRef]
- Zhu, S.; Schnell, S.; Fischer, M. Rapid detection of Cronobacter spp. with a method combining impedance technology and rRNA based lateral flow assay. Int. J. Food Microbiol. 2012, 159, 54–58. [Google Scholar] [CrossRef] [PubMed]
- (FDA) U.S. Food and Drug Administration. GenomeTrakr Network. Available online: https://www.fda.gov/food/whole-genome-sequencing-wgs-program/genometrakr-network (accessed on 5 May 2022).
- Timme, R.E.; Sanchez Leon, M.; Allard, M.W. Utilizing the Public GenomeTrakr Database for Foodborne Pathogen Traceback. In Foodborne Bacterial Pathogens: Methods and Protocols; Bridier, A., Ed.; Springer: New York, NY, USA, 2019; pp. 201–212. [Google Scholar] [CrossRef]
Cronobacter Species | Bio-Groups |
---|---|
Cronobacter sakazakii sp. nov. | 2–4, 7, 8, 11 and 13 |
Cronobacter malonaticus sp. nov. | 5, 9 and 14 |
Cronobacter turicensis sp. nov. | 16 |
Cronobacter muytjensii sp. nov. | 15 |
Cronobacter condimenti sp. nov. | 1 |
Cronobacter universalis sp. nov. | Separate genomospecies |
Cronobacter dublinensis subsp. Dublinensis sp. nov. | 12 |
Cronobacter dublinensis subsp. lausannensis sp. nov. | 10 |
Cronobacter dublinensis subsp. lactaridi sp. nov. | 6 |
Cronobacter spp. (EU) | Cronobacter spp. (US) | Enterobacter spp. (EU) | Enterobacter spp. (US) | |
---|---|---|---|---|
Feed materials | 0 | 0 | 5 | 0 |
Pet food | 0 | 0 | 8 | 0 |
Compound feeds | 0 | 0 | 3 | 0 |
Cereals and bakery products | 1 | 0 | 1 | 0 |
Nuts, nut products and seeds | 0 | 0 | 1 | 0 |
Other food products/mixed | 1 | 0 | 0 | 0 |
Milk products, non-infant | 0 | 1 | 0 | 0 |
Detection Methods | Detection Time | Detection Limits | Comments | References |
---|---|---|---|---|
Culture-based methods | ||||
Non-selective enrichment | 7 days | Not specified | Additional tests required for confirmation | [160,161,162,163,164] |
Selective enrichment | 4–5 days | Not specified | Supplementation with NaCl and incubation at 45°C improves selectivity for some strains | [165] |
Differential enrichment | 48 h | 1 CFU in a 300 g sample | Used in conjunction with medium that incorporates a test for metabolism of ɑ-glucopyranoside | [78] |
Fluorogenic media | 24 h | Not specified | MUɑGlc is less specific for Cronobacter spp. than XɑGlc | [166,167] |
Chromogenic media | 24 h | Not specified | Breakdown of XɑGlc forms blue–green colonies | [116,168] |
Dual chromogenic media | 24 h | Not specified | Contains two chromogenic substrates to enhance sensitivity | [169] |
PCR-based methods | ||||
Conventional | 24 h | 1000 CFU/mL | Detection limits increase following enrichment | [170,171,172] |
Real time | 24 h | 10 to 100 CFU/mL | Assays target the MMS operon (rpsU, dnaG, rpoD) or ompA gene | [173,174,175,176] |
Duplex | 24–30 h | 3 to 16 CFU/mL | Sensitivity increases when combined with immobilisation techniques or capillary electrophoresis-laser-induced fluorescence detection | [177,178] |
Droplet digital | 3 h | 23 CFU/mL | May detect VBNC cells when combined with Propidium Monoazide | [179] |
Immunological-based methods | ||||
ELIZA, INC-ELIZA and sandwich ELIZA, | 10–36 h | 1 cell per 25 g PIF to 6.3 × 104 CFU/mL | Uses polyclonal and/or monoclonal antibodies specific for their target cell | [180,181,182] |
Fluorescence-based liposome immunoassay | 13 h | 6.3 × 104 CFU/mL | Liposomes tagged with antibodies specific for target cell | [183] |
Immunochromatographic strip test | 1–16 h | 10 cells per 10 g–106 CFU/mL | PCR amplicon is labelled with digoxigenin on one side and biotin on the other side, which enables detection | [184,185] |
Immuno-blotting analysis combined with cross priming amplification | 60–70 min | 88 CFU/ mL–3.2 CFU/100 g PIF | 16S-23S rDNA internal transcribed space (ITS) is amplified and analysed via BioHelix Express strip (BESt) | [186] |
Biosensor-based methods | ||||
Fluorescence in situ hybridisation (FISH) | 12 h | 1 CFU per 10 g PIF | Uses a peptide nucleic acid (PNA) to improve hybridisation | [187] |
Gold nanoparticle-enhanced lateral flow immunoassay | 3 h | 103 CFU/mL | Gold nanoparticles conjugate to capture antibodies at the detection zone | [188] |
Electrochemical immunosensing assays | 15 min—not specified | 2 × 101 CFU/mL–9.1 × 101 CFU/mL | Uses graphene oxide/gold composite nanoparticles conjugated with anti-C. sakazakii antibodies | [189,190] |
Immunomagnetic-resistance sensor | 4–8 h and 30 min | 2 cells per 10 g PIF–103 CFU/mL | Immunomagnetic particle-bound bacteria are separated from a mixed suspension using a magnetic force and concentrated into a purified culture | [191,192] |
Surface plasmon resonance | 2–24 h | 10 CFU/mL–30 CFU in 25 g PIF | PEG-grafted gold nanoparticles conjugated with anti-C. sakazakii antibodies bind to bacteria and are detected with plasmon extinction spectroscopy | [193,194] |
Personal glucose meter (PGM) | 90 min | 4.2 × 101 CFU/mL | PGM combined with antibody modified silica-coated magnetic nanoparticles and antibody and glucose oxidase-coated silica nanoparticles | [195] |
Light scattering immunoassay | Not specified | 51 CFU/mL | The scattering light intensity of silver-coated gold nanoparticles is used as a signal output for detection | [196] |
Aptamers technology | 3 h–2 days | 33.3 CFU/mL–2.4 × 103 CFU/mL | Uses ssDNA aptamers that bind to C. sakazakii with high affinity | [197,198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, Z.E.; Hunt, K.; Koolman, L.; Butler, F.; Fanning, S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023, 11, 1379. https://doi.org/10.3390/microorganisms11061379
Mousavi ZE, Hunt K, Koolman L, Butler F, Fanning S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms. 2023; 11(6):1379. https://doi.org/10.3390/microorganisms11061379
Chicago/Turabian StyleMousavi, Zeinab Ebrahimzadeh, Kevin Hunt, Leonard Koolman, Francis Butler, and Séamus Fanning. 2023. "Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods" Microorganisms 11, no. 6: 1379. https://doi.org/10.3390/microorganisms11061379
APA StyleMousavi, Z. E., Hunt, K., Koolman, L., Butler, F., & Fanning, S. (2023). Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms, 11(6), 1379. https://doi.org/10.3390/microorganisms11061379