Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review
Abstract
:1. Introduction
2. Phytochemical Constituents of Pistacia lentiscus
Essential Oil | ||||
Plant Material | Origin | Main Components | Test Assays | Ref. |
Leaves | Sardinia (Italy) | α-pinene (14.8–22.6%), terpinen-4-ol (14.2–28.3%), β-myrcene (1.0–18.3%) and other minor fractions. | GC-MS | [17] |
Mastic gum | Greece | α-pinene (65–86%) and β-myrcene (3%) | GC-MS | [27] |
Leaves | Eastern Morocco | Taforalt and Saidia areas: limonene, α-pinene, α-terpineol, and β-caryophyllene. Laayoune and Jerada areas: myrcene, and β-caryophyllene. | GC-MS | [29] |
Dried leaves | δ-cadinene (17.04%), α-amorphene (10.32%), δ-germacrene (9.01%) and other minor fractions. | GC-MS | ||
Leaves | Sardinia (Italy) | α-pinene, α-thujene, camphene, sabinene, β-pinene, myrcene, α-phellandrene, α-terpinene, para-cymene, β-phellandrene, trans-ocemene, γ-terpene, terpinolene, 2-nonanone, linalool, isopentyl isovalerate, terpin-4-ol, α-terpiniol, and others. | GC-MS | [34] |
Leaves | Sardinia (Italy) | Germacrene D (19.9%), β-caryophyllene (6.6%), α-pinene (6.3%) and other minor fractions. | GC-MS | [35] |
Leaves | Sardinia (Italy) | α-pinene (16.9%), terpinen-4-ol (16.5%), sabinene (7.8%) and other minor fractions. | GC-MS | [36] |
Leaves | Turkey | Terpinen-4-ol (29.9%), α-terpineol, (11.6%), limonene (10.6%) and other minor fractions. | GC-MS | [40] |
Leaves | Morocco | Myrcene (39.2%), limonene (10.3%), β-gurjunene (7.8) and other minor fractions. | GC-FID; GC-MS | [41] |
Leaves | Greece | α-pinene (9.4–24.9%), terpinen-4-ol (6.8–10.6%), limonene (9.0–17.8%) and other minor fractions. | GC-MS | [42] |
Leaves | Spain | β-myrcene (19%), α-terpineol + terpinen-4-ol (15%) and other minor fractions. | GC-MS | [43] |
Unripe fruit | β-myrcene (54%), α-pinene (22%). | GC-MS | ||
Ripe fruit | β-myrcene (19%), α-pinene (11%), δ-3-carene. | GC-MS | ||
Leaves | Egypt | δ-3-carene (65%), sesquiterpene alcohols (4%). | GC-MS | [47] |
Mastic gum | Greece | α-pinene (41–67%), limonene, β-linalool an perillene | GC-MS | [48] |
Mastic Gum | Turkey | α-pinene (56.2–70%) myrcene (2.5–20.1%), and β-pinene (2.5–3.1%) | GC-FID, GC-MS, Chiral GC | [49] |
Leaves | Greece | Myrcene (20.6%), germacrene D (13.3%), E-caryophyllene (8.3%) and other minor fractions. | GC-MS | [65] |
Leaves and twigs | Sardinia (Italy) | Terpinen-4-ol (25.2%), α-phellandrene (11.9%), β-phellandrene (10.2%) and other minor fractions. | GC-FID, GC-MS | [66] |
Female flowers | α-limonene (28.7%), germacrene-D (23.7%), elemol (6.7%) and other minor fractions. | GC-MS | ||
Leaves of male plants at flowering | α-limonene (18.8%), germacrene-D (13.1%), β-caryophyllene (8.8%) and other minor fractions. | GC-MS | ||
Leaves of female plants at flowering | Germacrene-D (20.7%), δ-cadinene (15.6%), β-caryophyllene (12.1%) and other minor fractions. | GC-MS | ||
Ripe fruits | β-myrcene (75.6%), α-pinene (12.6%), α-limonene (3.2%) and other minor fractions. | GC-MS | ||
Extracts | ||||
Plant material | Origin | Main components | Test Assays | Ref. |
Leaves/metanol-water | Algeria | Total phenolic acids 429.58 ± 3.26 (mg CatE/g E), total flavonoids 139.38 ± 3.11 (mg RutE/g E), total tannin 142.56 ± 2.60 (mg TAE/g E). | UPLC-DAD | [32] |
Aereal parts/metanol water | Greece | Total phenolic acids (mg gallic acid/g plant) 483 ± 2.7 (winter season), 588 ± 32.7 (Spring season), 581(a) ± 14.0 (Summer season) | Folin-Ciocalteu | [42] |
Leaves/ethyl acetate and methanol | Italy | 3,5-O-digalloyl quinic acid (26.8 ± 0.15 mg/g DW), 3,4,5-O-trigalloyl quinic acid (10.3 ± 2.45 mg/g DW), 5-O-galloyl quinic acid (9.6 ± 2.45 mg/g DW) and other minor fractions. | HPLC-DAD, HPLC-MS, NMR | [59] |
Leaves/water ethanol | Croatia | Total Phenolic Content (mg/g) 108.14 ± 2.12 | Folin ciocalteu method | [60] |
Fruits/water ethanol | Total Phenolic Content (mg/g) 41.14 ± 0.76 | |||
Fruits/methanol-water | Tunisia | Gallic acid, Tyrosol, 4-hydroxyphenylacetic acid, Vanillic acid, p-coumaric acid, Ferulic acid, Trans-4-hydroxy-3-methoxycinnamic acid, o-coumaric acid, Oleuropein aglycon, Luteolin, Kaempferol, Naphtoresorcinol, Salycilic acid, Pinoresinol, Apigenin, Coumarin, Carnosic acid and Trans cinnamic acid. | HPLC-DAD | [54] |
Fruits/metanol-water | Total phenolic acids 205.79 ± 6.51 (mg CatE/g E), total flavonoids 6.28 ± 1.04 (mg RutE/g E), total tannin 216.74 ± 2.605.31 (mg TAE/g E). | |||
Leaves and stems/metanol water | Algeria | Total phenolic acids 114.95 ± 6.25 (mg GAE/1 g extract), total flavonoids 25.212 ± 2.13 (mg QE/g extract) | Folin-Ciocalteu, ACCM, TLC | [67] |
3. In-Vitro Data on Oral Planktonic Microorganisms
4. In-Vitro Data on Biofilm Experiments
5. Research Related to Dental Caries
6. Research Related to Periodontal Disease
7. Oral Halitosis
8. Candida Infection
9. Oral Virus Infection
10. Clinical Studies
11. Discussion
12. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aas, J.A.; Griffen, A.L.; Dardis, S.R.; Lee, A.M.; Olsen, I.; Dewhirst, F.E.; Leys, E.J.; Paster, B.J. Bacteria of dental caries in pri- mary and permanent teeth in children and young adults. J. Clin. Microbiol. 2008, 46, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Slots, J. Periodontitis: Facts, fallacies and the future. Periodontol. 2000 2017, 75, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Beighton, D.; Curtis, M.A.; Cury, J.A.; Dige, I.; Dommisch, H.; Ellwood, R.; Giacaman, R.A.; Herrera, D.; Herzberg, M.C.; et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J. Clin. Periodontol. 2017, 44, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Mealey, B.L.; Mariotti, A.; Chapple, I.L.C. Dental plaque-induced gingival conditions. J. Periodontol. 2018, 89, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.H.; Wang, H.L. Breaking the wave of peri-implantitis. Periodontol. 2000 2020, 84, 145–160. [Google Scholar] [CrossRef]
- Hampelska, K.; Jaworska, M.M.; Babalska, Z.Ł.; Karpiński, T.M. The Role of Oral Microbiota in Intra-Oral Halitosis. J. Clin. Med. 2020, 9, 2484. [Google Scholar] [CrossRef]
- Sterer, N.; Rosenberg, M. Streptococcus salivarius promotes mucin putrefaction and malodor production by Porphyromonas gingivalis. J. Dent. Res. 2006, 85, 910–914. [Google Scholar] [CrossRef]
- Tiso, M.; Schechter, A.N. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiologyical conditions. PLoS ONE 2015, 10, e0119712. [Google Scholar]
- Larsen, T.; Fiehn, N.E. Dental biofilm infections—An update. Apmis 2017, 125, 376–384. [Google Scholar] [CrossRef]
- Richardson, J.P.; Moyes, D.L.; Ho, J.; Naglik, J.R. Candida innate immunity at the mucosa. Semin. Cell Dev. Biol. 2019, 89, 58–70. [Google Scholar] [CrossRef]
- Kolokotronis, A.; Doumas, S. Herpes simplex virus infection, with particular reference to the progression and complications of primary herpetic gingivostomatitis. Clin. Microbiol. Infect. 2006, 12, 202–211. [Google Scholar] [CrossRef]
- Takenaka, S.; Ohsumi, T.; Noiri, Y. Evidence-based strategy for dental biofilms: Current evidence of mouthwashes on dental biofilm and gingivitis. Jpn. Dent. Sci. Rev. 2019, 55, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mummolo, S.; Severino, M.; Campanella, V.; Barlattani, A., Jr.; Quinzi, V.; Marchetti, E. Chlorhexidine gel used as antiseptic in periodontal pockets. J. Biol. Regul. Homeost. Agents 2019, 33, 83–88. [Google Scholar] [PubMed]
- Zanatta, F.B.; Antoniazzi, R.P.; Rösing, C.K. Staining and calculus formation after 0.12% chlorhexidine rinses in plaque-free and plaque covered surfaces: A randomized trial. J. Appl. Oral Sci. 2010, 8, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Khattri, S.; Kumbargere Nagraj, S.; Arora, A.; Eachempati, P.; Kusum, C.K.; Bhat, K.G.; Johnson, T.M.; Lodi, G. Adjunctive systemic antimicrobials for the non-surgical treatment of periodontitis. Cochrane Database Syst Rev. 2020, 11, CD012568. [Google Scholar]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014; ISBN 9789241564748.
- Barra, A.; Coroneo, V.; Dessì, S.; Cabras, P.; Angioni, A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem. 2007, 22, 7093–7098. [Google Scholar] [CrossRef]
- Milia, E.; Bullitta, S.M.; Mastandrea, G.; Szotáková, B.; Schoubben, A.; Langhansová, L.; Quartu, M.; Bortone, A.; Eick, S. Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection. Antibiotics 2021, 10, 425. [Google Scholar] [CrossRef]
- Camarda, I. Ricerche etnobotaniche nel comune di Dorgali (Sardegna centro-orientale). Boll. Della Soc. Sarda Sci. Nat. 1990, 27, 147–204. [Google Scholar]
- Loi, M.C.; Frailis, L.; Maxia, A. Le piante utilizzate nella medicina popolare nel territorio di Gesturi (Sardegna centro-meridionale). Atti Soc. Tosc. Sci. Nat. Mem. Ser. B 2002, 109, 167–176. [Google Scholar]
- Ballero, M.; Poli, F.; Sacchetti, G.; Loi, M.C. Ethnobotanical research in the territory of Fluminimaggiore (south-western Sardinia). Fitoterapia 2001, 72, 788–801. [Google Scholar] [CrossRef]
- Loi, M.C.; Poli, F.; Sacchetti, G.; Selenu, M.B.; Ballero, M. Ethnopharmacology of ogliastra (villagrande strisaili, sardinia, Italy). Fitoterapia 2004, 75, 277–295. [Google Scholar] [CrossRef] [PubMed]
- Sanna, C.; Ballero, M.; Maxia, A. Le piante medicinali utilizzate contro le patologie epidermiche in ogliastra (sardegna centro-orientale). Atti Soc. Tosc. Sci. Nat. Mem. Ser. B 2006, 113, 73–82. [Google Scholar]
- Leporatti, M.L.; Ghedira, K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J. Ethnobiol. Ethnomed. 2009, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, A. Erbe e Piante Medicinali in Sardegna, 3rd ed.; Delfino, C., Ed.; Ilisso: Sassari, Italy, 2018. [Google Scholar]
- Dimas, K.S.; Pantazis, P.; Ramanujam, R. Review: Chios mastic gum: A plant-produced resin exhibiting numerous diverse pharmaceutical and biomedical properties. Vivo 2012, 26, 777–785. [Google Scholar]
- Koutsoudaki, C.; Krsek, M.; Rodger, A. Chemical Composition and Antibacterial Activity of the Essential Oil and the Gum of Pistacia lentiscus Var. chia. J. Agric. Food Chem. 2005, 53, 7681–7685. [Google Scholar] [CrossRef] [PubMed]
- La Camera, E.; Bisignano, C.; Crisafi, G.; Smeriglio, A.; Denaro, M.; Trombetta, D.; Mandalari, G. Biochemical Characterization of Clinical Strains of Staphylococcus spp. and Their Sensitivity to Polyphenols-Rich Extracts from Pistachio (Pistacia vera L.). Pathogens 2018, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- Aouinti, F.; Zidane, H.; Tahri, M.; Wathelet, J.P. Ali El Bachiri1Chemical composition, mineral contents and antioxidant activity of fruits of Pistacia lentiscus L. from Eastern Morocco. J. Mater. Environ. Sci. 2014, 5, 199–206. [Google Scholar]
- Atmani, D.; Chaher, N.; Berboucha, M.; Ayouni, K.; Lounis, H.; Boudaoud, H.; Debbache, N.; Djebbar Atmani, D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112, 303–309. [Google Scholar] [CrossRef]
- Bullitta, S.; Piluzza, G.; Manunta, M.D.I. Cell-based and chemical assays of the ability to modulate the production of intracellular Reactive Oxygen Species of eleven Mediterranean plant species related to ethnobotanic traditions. Genet. Resour. Crop. Evol. 2013, 60, 403–412. [Google Scholar] [CrossRef]
- Remila, S.; Atmani-Kilani, D.; Delemasure, S.; Connat, J.L.; Azib, L.; Richard, T.; Atmani, D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. Med. 2015, 7, 274–286. [Google Scholar] [CrossRef]
- Khedir, S.B.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid-Based Complement. Altern. Med. 2016, 2016, 6108203. [Google Scholar]
- Maxia, A.; Sanna, C.; Frau, M.A.; Piras, A.; Karchuli, M.S.; Kasture, V. Anti-inflammatory activity of Pistacia lentiscus essential oil: Involvement of IL-6 and TNF-alpha. Nat. Prod. Commun. 2011, 6, 1543–1544. [Google Scholar] [CrossRef] [PubMed]
- Quartu, M.; Poddighe, L.; Melis, T.; Serra, M.P.; Boi, M.; Lisai, S.; Carta, G.; Murru, E.; Muredda, L.; Collu, M.; et al. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion. Lipids Health Dis. 2017, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Milia, E.; Usai, M.; Szotáková, B.; Elstnerová, M.; Králová, V.; D’hallewin, G.; Spissu, Y.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The Pharmaceutical Ability of Pistacia lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida sp. and Its Anti-Inflammatory Potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Demontis, C.; Mameli, A.; Tuveri, E.; Coni, P.; Pichiri, G.; Coghe, F.; Rosa, A.; Rossi, P.; D’hallewin, G. The Selective Interaction of Pistacia lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools. Front. Microbiol. 2017, 8, 2067. [Google Scholar] [CrossRef]
- Siano, F.; Cutignano, A.; Moccia, S.; Russo, G.L.; Volpe, M.G.; Picariello, G. Phytochemical Characterization and Effects on Cell Proliferation of Lentisk (Pistacia lentiscus) Berry Oil: A Revalued Source of Phenolics. Plant Foods Hum. Nutr. 2020, 75, 487–494. [Google Scholar] [CrossRef]
- Quartu, M.; Serra, M.P.; Boi, M.; Pillolla, G.; Melis, T.; Poddighe, L.; Del Fiacco, M.; Falconieri, D.; Carta, G.; Murru, E.; et al. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion. Lipids Health Dis. 2012, 11, 8. [Google Scholar] [CrossRef]
- Duru, M.E.; Cakir, A.; Kordali, S.; Zengin, H.; Harmandar, M.; Izumi, S.; Hirata, T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia 2003, 74, 170–176. [Google Scholar] [CrossRef]
- Zrira, S.; Elamarani, A.; Benjilali, B. Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco-a seasonal variation. Flavour Fragr. J. 2003, 18, 475–480. [Google Scholar] [CrossRef]
- Gardeli, C.; Papageorgiou, V.; Mallouchos, A.; Theodosis, K.; Michael, K. Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Boelens, M.H.; Jemenez, R. Chemical composition of the essential oil from the gum and various parts of Pistacia lentiscus L. (Mastic Gum Tree). Flavour Fragr. J. 1991, 6, 271–275. [Google Scholar] [CrossRef]
- Russo, E.B.; Marcu, J. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar] [CrossRef]
- Catalani, S.; Palma, F.; Battistelli, S.; Benedetti, S. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PLoS ONE 2017, 12, e0172138. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, E.C.D.; Baldasso, G.M.; Bicca, M.A.; Paes, R.S.; Capasso, R.; Dutra, R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020, 25, 1567. [Google Scholar] [CrossRef]
- De Pooter, H.L.; Schamp, N.M.; Aboutabl, E.A.; Tohamy, S.F.; Doss, S.L. Essential oil of the leaves of three Pistacia species grown in Egypt. Flavour Fragr. J. 1991, 6, 229–232. [Google Scholar] [CrossRef]
- Rigling, M.; Fraatz, M.A.; Trögel, S.; Sun, J.; Zorn, H.; Zhang, Y. Aroma Investigation of Chios Mastic Gum (Pistacia lentiscus Variety Chia) Using Headspace Gas Chromatography Combined with Olfactory Detection and Chiral Analysis. J. Agric. Food Chem. 2019, 67, 13420–13429. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus Var. Chia from Turkey. Molecules 2020, 25, 2136. [Google Scholar] [CrossRef]
- Paraschos, S.; Mitakou, S.; Skaltsounis, A.L. Chios gum mastic: A review of its biological activities. Curr. Med. Chem. 2012, 19, 2292–2302. [Google Scholar] [CrossRef]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Salehi Surmaghi, M.H.; Shams-Ardekani, M.R.; Rahimi, R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A review of their traditional uses, phytochemistry, and pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef]
- Vogelman, T.C. Plant tissue optics. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 231–251. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef] [PubMed]
- Mezni, F.; Slama, A.; Ksouri, R.; Hamdaoui, G.; Khouja, M.L.; Khaldi, A. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chem. 2018, 257, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Chen, W.; Yi, K.; Wu, Z.; Si, Y.; Han, W.; Zhao, Y. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol. 2010, 137, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jiang, F.; Liu, P.; Chen, W.; Yi, K. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds. Drug Discov. Today 2012, 17, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Quirantes-Piné, R.; Amessis-Ouchemoukh, N.; Madani, K.; Segura-Carretero, A.; Fernández-Gutierrez, A. A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. J. Pharm. Biomed. Anal. 2013, 77, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Pinelli, P.; Galardi, C.; Mulinacci, N.; Tattini, M. Identification and Quantification of Galloyl Derivatives, Flavonoid Glycosides and Anthocyanins in Leaves of Pistacia lentiscus L. Phytochem. Anal. 2002, 13, 79–86. [Google Scholar] [CrossRef]
- Garofulić, E.I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of Polyphenolic Profile and Antioxidant Activity of Pistacia lentiscus L. Leaves and Fruit Extract Obtained by Optimized Microwave-Assisted Extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- Souilah, N.; Amina, B.; Hamdi, B.; Miara, M.D.; Daoud, N.; Mustafa, A.M.; Yilmaz, M.A.; Öztürk, M.; Caprioli, G.; Maggi, F. Ethnobotanical investigation of Pistacia lentiscus L. grown in El Kala (Algeria), and phytochemical study and antioxidant activity of its essential oil and extracts. Nat. Prod. Res. 2023, 37, 1583–1588. [Google Scholar] [CrossRef]
- Huber, B.; Eberl, L.; Feucht, W.; Polster, J. Influence of polyphenols on bacterial biofilm formation and quorum-sensing. Z. Naturforsch. C J. Biosci. 2003, 58, 879–884. [Google Scholar] [CrossRef]
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure-Activity Relationship) Models. Front. Microbiol. 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.S.; Villa, F.; Pinto, A.; Cappitelli, F. Correlation between Perturbation of Redox Homeostasis and Antibiofilm Capacity of Phytochemicals at Non-Lethal Concentrations. Antioxidants 2022, 11, 2451. [Google Scholar] [CrossRef] [PubMed]
- Magiatis, P.; Melliou, E.; Skaltsounis, A.L.; Chinou, I.B.; Mitaku, S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Plant Med. 1999, 65, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Marengo, A.; Piras, A.; Falconieri, D.; Porcedda, S.; Caboni, P.; Cortis, P.; Foddis, C.; Loi, C.; Goncalves, M.J.; Salgueiro, L.; et al. Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Nat. Prod. Res. 2018, 32, 2766–2774. [Google Scholar] [CrossRef]
- Missoun, F.; Bouabedelli, F.; Benhamimed, E.; Baghdad, A.; Djebli, N. Phytochemical study and antibacterial activity of different extracts of Pistacia lentiscus L collected from Dahra region west of Algeria. J. Fundam. Appl. Sci. 2017, 9, 669–684. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nagasawa, R.; Senpuku, H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J. Infect. Chemother. 2017, 23, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Iauk, L.; Ragusa, S.; Rapisarda, A.; Franco, S.; Nicolosi, V.M. In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report. J. Chemother. 1996, 8, 207–209. [Google Scholar] [CrossRef]
- Turchetti, B.; Pinelli, P.; Buzzini, P.; Romani, A.; Heimler, D.; Franconi, F.; Martini, A. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother. Res. 2005, 19, 44–49. [Google Scholar] [CrossRef]
- Mezni, F.; Aouadhi, C.; Khouja, M.L.; Khaldi, A.; Maaroufi, A. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract. Nat. Prod. Res. 2015, 29, 565–570. [Google Scholar] [CrossRef]
- Bakli, S.; Harzallah, D.; Zerroug, A.; Sadrati, N.; Bouguerra, A.; Gaamoune, S.; Naili, O. Antimicrobial and Antioxidant Activities of Flavonoids Extracted from Pistacia lentiscus L., Leaves. J. Drug Deliv. Therap. 2020, 10, 82–89. [Google Scholar] [CrossRef]
- Marsh, P.D.; Head, D.A.; Devine, D.A. Ecological approaches to oral biofilms: Control without killing. Caries Res. 2015, 49, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Pinna, R.; Usai, P.; Filigheddu, E.; Garcia-Godoy, F.; Milia, E. The role of adhesive materials and oral biofilm in the failure of adhesive resin restorations. Am. J. Dent. 2017, 30, 285–292. [Google Scholar]
- Elgubbi, H.; Alfageih, L.; Zorab, A.; Elmeheshi, F. Pistacia lentiscus tree and its role in riddance of some environmental polluters. EC Nutr. 2017, 10, 8–14. [Google Scholar]
- Aksoy, A.; Duran, N.; Koksal, F. In vitro and in vivo antimicrobial effects of mastic chewing gum against Streptococcus mutans and mutans streptococci. Arch. Oral Biol. 2006, 51, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Cecere, M.; Argyropoulou, A.; Hellwig, E.; Skaltsounis, A.L.; Wittmer, A.; Tchorz, J.P.; Al-Ahmad, A. Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement. Altern. Med. 2019, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Koychev, S.; Dommisch, H.; Chen, H.; Pischon, N. Antimicrobial Effects of Mastic Extract Against Oral and Periodontal Pathogens. J. Periodontol. 2017, 88, 511–517. [Google Scholar] [CrossRef]
- Sterer, N. Antimicrobial effect of mastic gum methanolic extract against Porphyromonas gingivalis. J. Med. Food. 2006, 9, 290–292. [Google Scholar] [CrossRef]
- Nabila, B.; Fawzia, A.B.; Tatjana, K.P. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008, 2, 022–028. [Google Scholar]
- Mansour-Djaalab, H.; Kahlouche-Riachi, F.; Djerrou, Z.; Serakta-Delmi, M.; Hamimed, S.; Trifa, W.; Djaalab, I.; Pacha, Y.H. In vitro evaluation of antifungal effects of Lawsonia inermis, Pistacia lentiscus and Juglans regia. Int. J. Med. Aromat. Plants 2012, 2, 263–268. [Google Scholar]
- Alhadi, E.A.; Hamdi, O.A.A.; Ayoub, S.M.H.; Yagi, S. In vitro antioxidant and antimicrobial activities of Pistacia lentiscus, Phyllanthus anderssonii and Cinnamomum verum crude extracts and fractions. J. Med. Plants Res. 2018, 12, 186–193. [Google Scholar]
- Salhi, A.; Bellaouchi, R.; El Barkany, S.; Rokni, Y.; Bouyanzer, A.; Asehraou, A.; Amhamdi, H.; Hammouti, B. Total phenoliccontent, antioxidant and antimicrobial activities of extracts from Pistacia lentiscus leaves. Casp. J. Environ. Sci. 2019, 17, 189–198. [Google Scholar]
- Aksoy, A.; Duran, N.; Toroglu, S.; Koksal, F. Short-term effect of mastic gum on salivary concentrations of cariogenic bacteria in orthodontic patients. Angle Orthod. 2007, 77, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Preethi, N.; Chikkanarasaiah, N.; Bethur, S.; Umapathy, T. The effect of Mastic Chewing Gums on Salivary Streptococcus Mutans Count. Int. J. Prev. Clin. Dent. Res 2015, 2, 9–15. [Google Scholar]
- Sterer, N.; Nuas, S.; Mizrahi, B.; Goldenberg, C.; Weiss, E.I.; Domb, A.J.; Davidi, M.P. Oral malodor reduction by a palatal mucoadhesive tablet containing herbal formulation. J. Dent. 2008, 36, 535–539. [Google Scholar] [CrossRef]
- Biria, M.; Mohtavipour, S.; Eslami, G.; Akbarzadeh Baghban, A. Comparison of effects of a herbal t toothpaste with crest complete toothpaste on Streptococcus mutans and Lactobacillus of saliva and plaque index: A randomized clinical trial. JIDA 2017, 29, 29–35. [Google Scholar] [CrossRef]
- Pinna, R.; Filigheddu, E.; Juliano, C.; Palmieri, A.; Manconi, M.; D’hallewin, G.; Petretto, G.; Maioli, M.; Caddeo, C.; Manca, M.L.; et al. Antimicrobial Effect of Thymus capitatus and Citrus limon var. pompia as Raw Extracts and Nanovesicles. Pharmaceutics 2019, 11, 234. [Google Scholar] [CrossRef]
- Stähli, A.; Schröter, H.; Bullitta, S.; Serralutzu, F.; Dore, A.; Nietzsche, S.; Milia, E.; Sculean, A.; Eick, S. In Vitro Activity of Propolis on Oral Microorganisms and Biofilms. Antibiotics 2021, 10, 1045. [Google Scholar] [CrossRef]
- Pinna, R.; Usai, M.; Szotáková, B.; Marchetti, M.; Juliano, C.; Eick, S.; Hromčík, F.; Usai, P.; Spano, G.; Bortone, A.; et al. Pistacia lentiscus L. Essential Oil—A Potential New Antimicrobial in Oral Healthcare. In Proceedings of the 2018 IADR/PER General Session, London, UK, 25–28 July 2018. [Google Scholar]
- Karygianni, L.; Cecere, M.; Skaltsounis, A.L.; Argyropoulou, A.; Hellwig, E.; Aligiannis, N.; Wittmer, A.; Al-Ahmad, A. High-level antimicrobial efficacy of representativ Mediterranean natural plant extracts against oral microorganisms. Biomed. Res. Int. 2014, 2014, 839019. [Google Scholar] [CrossRef]
- Karygianni, L.; Al-Ahmad, A.; Argyropoulou, A.; Hellwig, E.; Anderson, A.C.; Skaltsounis, A.L. Natural Antimicrobials and Oral Microorganisms: A Systematic Review on Herbal Interventions for the Eradication of Multispecies Oral Biofilms. Front. Microbiol. 2016, 6, 1529. [Google Scholar] [CrossRef]
- Takahashi, K.; Fukazawa, M.; Motohia, H.; Ochiai, K.; Nishikawa, H.; Miyata, T. A pilot study on antiplaque effects of mastic chewing gum in the oral cavity. J. Periodontol. 2003, 74, 501–505. [Google Scholar] [CrossRef]
- Carrol, D.H.; Chassagne, F.; Dettweiler, M.; Quave, C.L. Antibacterial activity of plant species used for oral health against Porphyromonas gingivalis. PLoS ONE 2020, 15, e0239316. [Google Scholar] [CrossRef] [PubMed]
- De Geest, S.; Laleman, I.; Teughels, W.; Dekeyser, C.; Quirynen, M. Periodontal diseases as a source of halitosis: A review of the evidence and treatment approaches for dentists and dental hygienists. Periodontol. 2000 2016, 71, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, T.M. Role of Oral Microbiota in CancerDevelopment. Microorganisms 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Paraschos, S.; Magiatis, P.; Gousia, P.; Economou, V.; Sakkas, H.; Papadopoulou, C.; Skaltsounis, A.-L. Chemical investigation and antimicrobial properties of mastic water and its major constituents. Food Chem. 2011, 129, 907–911. [Google Scholar] [CrossRef]
- Raslin, A.; Rajkumar, J. Antimicrobial activity of a polyherbal formulation Ambrex. Int. J. Mater. Prod. Technol. 2017, 55, 286–295. [Google Scholar] [CrossRef]
- Ohshima, T.; Ikawa, S.; Kitano, K.; Maeda, N. A Proposal of Remedies for OralDiseases Caused by Candida: A Mini Review. Front. Microbiol. 2018, 9, 1522. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, G.; Li, Y.; Liu, Y.; Song, Y.; Zheng, W.; Zhang, N.; Hu, X.; Yan, S.; Jia, J. In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 3250–3260. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, D.; Yu, C.; Li, T.; Liu, J.; Sun, S. Potential antifungal targets against a Candida biofilm based on an enzyme in the arachidonic acid cascade—A review. Front. Microbiol. 2016, 7, 1925. [Google Scholar] [CrossRef]
- Suzuki, R.; Sakagami, H.; Amano, S.; Fukuchi, K.; Sunaga, K.; Kanamoto, T.; Terakubo, S.; Nakashima, H.; Shirataki, Y.; Tomomura, M.; et al. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices. Vivo 2017, 31, 591–598. [Google Scholar]
- Bouslama, L.; Benzekri, R.; Nsaibia, S.; Papetti, A.; Limam, F. Identification of an antiviral compound isolated from Pistacia lentiscus. Arch. Microbiol. 2020, 202, 2569–2578. [Google Scholar] [CrossRef]
- Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2020, 21, 1250. [Google Scholar] [CrossRef] [PubMed]
- Bunte, K.; Hensel, A.; Beikler, T. Polyphenols in the prevention and treatment of periodontal disease: A sys tematic review of in vivo, ex vivo and in vitro studies. Fitoterapia 2019, 132, 30–39. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Caleare, A.; Hensel, A.; Mello, J.C.; Pinha, A.B.; Panizzon, G.P.; Lechtenberg, M.; Petereit, F.; Nakamura, C.V. Flavan-3-ols and proanthocyanidins from Limonium brasiliense inhibit the adhesion of Porphyromonas gingivalis to epithelial host cells by interaction with ginpains. Fitoterapia 2017, 118, 87–93. [Google Scholar] [CrossRef] [PubMed]
Essential Oil | ||||||
---|---|---|---|---|---|---|
Origin | Plant Material | Bacteria/Fungi | Origin of Strain | Method | Antimicrobial Activity | Ref. |
Greece | Mastic Oil | Escherichia coli | Not given | ADD | Active | [27] |
Eastern Morocco | Aerial parts | Streptococcus spp. | Not given | ADD | Active | [29] |
E. coli | Not given | Active | ||||
Pseudomonas spp. | Not given | Active | ||||
Sardinia (Italy) | Leaves | Streptococcus gordonii | ATCC 10558 | MIC | Active | [36] |
Actinomyces naeslundii | ATCC 12104 | Active | ||||
Fusobacterium nucleatum | ATCC 25586 | Active | ||||
Porphyromonas gingivalis | ATCC 33277 | Active | ||||
P. gingivalis | Clinical (n = 2) | Active | ||||
Tannerella forsythia | ATCC 43300 | Active | ||||
T. forsythia | Clinical (n = 2) | Active | ||||
Candida albicans | Laboratory | Active | ||||
C. albicans | Clinical (n = 2) | Active | ||||
Candida glabrata | Laboratory | Active | ||||
C. glabrata | Clinical (n = 2) | Active | ||||
Sardinia (Italy) | Fruits | Streptococcus pyogenes | Clinical | ADD, MIC | Non active | [37] |
Streptococcus mutans | Collection | Non active | ||||
E. coli | ATCC 25922 | Low activity | ||||
C. albicans | Clinical | Non active | ||||
C. glabrata | Clinical | Non active | ||||
Greece | Resin, leaves, twigs | E. coli | ATCC25922 | ADD, MIC | Active | [65] |
C. albicans | Not given | Active | ||||
Tunisia | Fruits | E. coli | Not given | ADD, MIC, MBC | Non active | [71] |
C. albicans | Not given | Non active |
Extracts | ||||||
---|---|---|---|---|---|---|
Origin | Plant Material/ Solvent | Bacteria/Fungi | Origin of Strain | Method | Antimicrobial Activity | Ref. |
Greece | Mastic gum/ethanol | E. coli | Not given | ADD | Non active | [27] |
Lybia | Leaves and stems/water extract/ethyl acetate/ethanol | C. albicans | Laboratory | ADD | Active | [75] |
Sicily (Italy) | Aerial parts/ethanol and water | E. coli | ATCC 35218 | MIC, MBC, MFC | Active | [69] |
C. albicans | Clinical (n = 18) | Active | ||||
C. glabrata | Clinical (n = 11) | Active | ||||
Tuscany (Italy) | Leaves/ethyl acetate and methanol | C. albicans | Clinical | ADD, MIC, MFC | Non active | [70] |
C. glabrata | Clinical | Non active | ||||
Tunisia | Fruits/water methanol | E. coli | Not given | ADD, MIC, MBC | Active | [71] |
Pseudomonasaeruginosa | Not given | Active | ||||
C. albicans | Not given | Non active | ||||
Algeria | Leaves and stems/water methanol | E. coli | Not given | ADD, MIC | Non active | [67] |
Algeria | Leaves/ethanol and ethyl acetate | Enterococcus faecalis | ATCC 49452 | MIC, MBC, ADD | Low activity | [72] |
E. coli | ATCC 25922 | Low | ||||
P. aeruginosa | ATCC 27853 | Active | ||||
C. albicans | ATCC1024 | Active | ||||
Turkey | Mastic/chloroform; acetone/ petroleum ether/ethanol | S. mutans | ATCC27351 | ADD, MIC | Active | [76] |
Greece | Mastic/ethanol; methanol/dichloro-methane/ cyclohexane | S. mutans | DSM 20523 | MIC, MBC | Active | [77] |
Streptococcus sobrinus | DSM 20381 | Active | ||||
E. faecalis | ATCC 29212 | Active | ||||
E. coli | ATCC25922 | Active | ||||
P. gingivalis | W381 | Active | ||||
Prevotella intermedia | ATCC 25611 | Non active | ||||
F. nucleatum | ATCC 25586 | Active | ||||
C. albicans | Laboratory | Active | ||||
Germany | Mastic/ethanol | P. gingivalis | DSMZ 20709 | ADD | Active | [78] |
Aggregatibacter actino-mycetemcomitans | DSMZ No. 11123 | Active | ||||
P.intermedia | DSMZ No. 20706 | Active | ||||
F. nucleatum | DSMZ No. 20482 | Active | ||||
S. mutans | DSMZ No. 20523 | Active | ||||
Israel | Mastic/methanol | P. gingivalis | ATCC 53977 | ADD | Active | [79] |
Algeria | Leaves/ethanol | P. aeruginosa | 22212004 | ADD | Active | [80] |
E. coli | 5044172 | Active | ||||
C. albicans | 444 | Active | ||||
Algeria | Leaves/ethanol | C. albicans | Clinical | ADD, MIC | Active | [81] |
Sudan | Leaves and stem/water, ethanol, petroleum ether, ethyl acetate, n-butanol | E. coli | ATCC 25922 | ADD | Active | [82] |
P.aeruginosa | ATCC 27853 | Active | ||||
C. albicans | ATCC 7596 | Active | ||||
Morocco | Leaves/dichloromethane-ethylacetate ethanol-methanol-water | E. coli | Not given | ADD, MIC | Active | [83] |
Reference | Vector | Assessment | Sample Characteristics | Experimental Time | Result and Conclusions |
---|---|---|---|---|---|
[65] | Toothpaste based mastic vs. control | Salivary CFU of S. mutans and Lactobacillus, plaque index | 60 healthy subjects | 4 weeks | Any differences in the groups |
[72] | Mastic chewing gum vs. control | Salivary total CFU, plaque index, gingival index | 20 healthy young subjects | 10 min | Greater antibacterial and antiplaque effects |
[76] | Mastic gumvs control | Salivary S. mutans CFU and mutans Streptococci | 25 healthy young subjects | 7 days | Greater antibacterial effect to S. mutans and Mutans streptococci |
[84] | Mastic gum | Salivary CFU of S. mutans, lactobacilli, viable bacteria | 25 subjects with orthodontic fixed appliances | 15 min | Greater antibacterial effect against S. mutans and Mutans streptococci |
[85] | Mastic gum vs. control | Salivary CFU of S. mutans | 60 healthy subjects | 15 min | Significant anticariogenic effect |
[86] | Palatal tablets vs. control | Odor judge score, sulfide monitor | 56 healthy young subjects | 60–120 min | The tablets containing mastic gum was effective in malodour and VSCs level |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milia, E.P.; Sardellitti, L.; Eick, S. Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review. Microorganisms 2023, 11, 1378. https://doi.org/10.3390/microorganisms11061378
Milia EP, Sardellitti L, Eick S. Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review. Microorganisms. 2023; 11(6):1378. https://doi.org/10.3390/microorganisms11061378
Chicago/Turabian StyleMilia, Egle Patrizia, Luigi Sardellitti, and Sigrun Eick. 2023. "Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review" Microorganisms 11, no. 6: 1378. https://doi.org/10.3390/microorganisms11061378
APA StyleMilia, E. P., Sardellitti, L., & Eick, S. (2023). Antimicrobial Efficiency of Pistacia lentiscus L. Derivates against Oral Biofilm-Associated Diseases—A Narrative Review. Microorganisms, 11(6), 1378. https://doi.org/10.3390/microorganisms11061378