Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Olive Pomace Samples and Irradiation Experiments
2.2. Olive Pomace Natural Ingredients: Phenolic Extracts Preparation
2.3. Preparation of Minimally Processed Apples
2.4. Characterization of Natural Mesophilic Bacteria in Fresh-Cut Apples
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabelitz, T.; Hassenberg, K. Control of apple surface microflora for fresh-cut produce by post-harvest hot-water treatment. LWT-Food Sci. Technol. 2018, 98, 492–499. [Google Scholar] [CrossRef]
- Graça, A.; Santo, D.; Esteves, E.; Nunes, C.; Abadias, M. Evaluation of microbial quality and yeast diversity in fresh-cut apple. Food Microbiol. 2015, 51, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Farber, J.N.; Beuchat, L.R.; Parish, M.E.; Suslow, T.V.; Garrett, E.H.; Busta, F.F. Outbreaks Associated with Fresh Produce: Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Saf. 2003, 2, 78–141. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Freilich, S.; Bartuv, R.; Zhimo, V.Y.; Kumar, A.; Biasi, A.; Salim, S.; Feygenberg, O.; Burchard, E.; Dardick, C.; et al. Global analysis of the apple fruit microbiome: Are all apples the same? Environ. Microbiol. 2021, 23, 6038–6055. [Google Scholar] [CrossRef]
- Engin, A.B.; Bukan, N.; Kurukahvecioglu, O.; Memis, L.; Engin, A. Effect of butylated hydroxytoluene (E321) pretreatment versus l -arginine on liver injury after sub-lethal dose of endotoxin administration. Environ. Toxicol. Pharmacol. 2011, 32, 457–464. [Google Scholar] [CrossRef]
- Jeong, S.H.; Kim, B.Y.; Kang, H.G.; Ku, H.O.; Cho, J.H. Effects of butylated hydroxyanisole on the development and functions of reproductive system in rats. Toxicology 2005, 208, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.K.; Dwyer-Nield, L.D.; Hankin, J.A.; Murphy, R.C.; Malkinson, A.M. The lung tumor promoter, butylated hydroxytoluene (BHT), causes chronic inflammation in promotion-sensitive BALB/cByJ mice but not in promotion-resistant CXB4 mice. Toxicology 2001, 169, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Fukushima, S.; Tsuda, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. CRC Crit. Rev. Toxicol. 1985, 15, 109–150. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Prieto, M.A.; Bento, A.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Development of a natural preservative obtained from male chestnut flowers: Optimization of a heat-assisted extraction technique. Food Funct. 2019, 10, 1352–1363. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.P.; Ferreira, I.C.F.R. A comparative study between natural and synthetic antioxidants: Evaluation of their performance after incorporation into biscuits. Food Chem. 2017, 216, 342–346. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Carocho, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chem. 2016, 210, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Albuquerque, B.; Dias, M.I.; Pinela, J.; Calhelha, R.C.; Santos-Buelga, C.; Margaça, F.M.A.; Ferreira, I.C.F.R.; Cabo Verde, S.; Barros, L. Ultrasound-assisted extraction of hydroxytyrosol and tyrosol from olive pomace treated by gamma radiation: Process optimization and bioactivity assessment. Food Funct. 2023, 14, 3038–3050. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Dias, M.I.; Pinela, J.; Calhelha, R.C.; Barros, L.; Santos-Buelga, C.; Margaça, F.M.A.; Ferreira, I.C.F.R.; Cabo Verde, S. The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. Sci. Total Environ. 2020, 727, 138706. [Google Scholar] [CrossRef]
- Lin, S.; Chi, W.; Hu, J.; Pan, Q.; Zheng, B.; Zeng, S. Sensory and nutritional properties of chinese olive pomace based high fibre biscuit. Emirates J. Food Agric. 2017, 29, 495–501. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; Del Nobile, M.A.; Conte, A. Fish burger enriched by olive oil industrial by-product. Food Sci. Nutr. 2017, 5, 837–844. [Google Scholar] [CrossRef]
- Durante, M.; Bleve, G.; Selvaggini, R.; Veneziani, G.; Servili, M.; Mita, G. Bioactive compounds and stability of a typical Italian bakery products “taralli” enriched with fermented olive paste. Molecules 2019, 24, 3258. [Google Scholar] [CrossRef]
- Cecchi, L.; Schuster, N.; Flynn, D.; Bechtel, R.; Bellumori, M.; Innocenti, M.; Mulinacci, N.; Guinard, J.X. Sensory Profiling and Consumer Acceptance of Pasta, Bread, and Granola Bar Fortified with Dried Olive Pomace (Pâté): A Byproduct from Virgin Olive Oil Production. J. Food Sci. 2019, 84, 2995–3008. [Google Scholar] [CrossRef]
- Cedola, A.; Cardinali, A.; Del Nobile, M.A.; Conte, A. Enrichment of Bread with Olive Oil Industrial By-Product. J. Agric. Sci. Technol. B 2019, 9, 119–127. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Bonifácio-Lopes, T.; Morais, P.; Miranda, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Incorporation of olive pomace ingredients into yoghurts as a source of fibre and hydroxytyrosol: Antioxidant activity and stability throughout gastrointestinal digestion. J. Food Eng. 2021, 297, 110476. [Google Scholar] [CrossRef]
- Madureira, J.; Melgar, B.; Santos-Buelga, C.; Margaça, F.M.A.; Ferreira, I.C.F.R.; Barros, L.; Cabo Verde, S. Phenolic compounds from irradiated olive wastes: Optimization of the heat-assisted extraction using response surface methodology. Chemosensors 2021, 9, 231. [Google Scholar] [CrossRef]
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Stanley, J.T.; William, S.T. Bergey’s Manual of Determinative Bacteriology; Williams and Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Moreira, M.R.; Tomadoni, B.; Martín-Belloso, O.; Soliva-Fortuny, R. Preservation of fresh-cut apple quality attributes by pulsed light in combination with gellan gum-based prebiotic edible coatings. LWT-Food Sci. Technol. 2015, 64, 1130–1137. [Google Scholar] [CrossRef]
- Osuga, R.; Koide, S.; Sakurai, M.; Orikasa, T.; Uemura, M. Quality and microbial evaluation of fresh-cut apples during 10 days of supercooled storage. Food Control 2021, 126, 108014. [Google Scholar] [CrossRef]
- Instituto Nacional de Saúde Doutor Ricardo Jorge. Interpretação de Resultados de Ensaios Microbiológicos em Alimentos Prontos Para Consumo e em Superfícies do Ambiente de Preparação e Distribuição Alimentar: Valores Guia; INSA IP: Lisbon, Portugal, 2019; ISBN 9789898794529. [Google Scholar]
- Anderson, M.T.; Mitchell, L.A.; Zhao, L.; Mobley, H.L.T. Citrobacter freundii fitness during bloodstream infection. Sci. Rep. 2018, 8, 11792. [Google Scholar] [CrossRef]
- García, K.C.; Duran, O.C.; Pérez, T.A.; Jiménez, Á.V.; Pérez, E.M.; Martínez-Ávila, M.C.; Yánez, T.R.; Almanza-hurtado, A. A Rare Case of Meningitis Caused by Alcaligenes faecalis in an Immunocompetent Patient. Case Rep. Med. 2022, 2022, 3–5. [Google Scholar]
- Kahveci, A.; Asicioglu, E.; Tigen, E.; Ari, E.; Arikan, H.; Odabasi, Z.; Ozener, C. Unusual causes of peritonitis in a peritoneal dialysis patient: Alcaligenes faecalis and Pantoea agglomerans. Ann. Clin. Microbiol. Antimicrob. 2011, 10, 12. [Google Scholar] [CrossRef]
- Al-zakhari, R.; Suhail, M.; Ataallah, B.; Aljammali, S.; Grigos, A. Rare but Fatal Case of Cavitary Pneumonia Caused by Alcaligenes Faecalis. Cureus 2020, 12, e8934. [Google Scholar] [CrossRef]
- Huang, C. Extensively drug-resistant Alcaligenes faecalis infection. BMC Infect. Dis. 2020, 20, 833. [Google Scholar] [CrossRef]
- Hasan, J.; Nahar, L.; Rabbani, R. Bloodstream infection with pandrug-resistant Alcaligenes faecalis treated with double-dose of tigecycline. IDCases 2019, 18, e00600. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Kruse, R.L.; Lin, W.V.; Musher, D.M. Corynebacteria as a cause of pulmonary infection: A case series and literature review. Pneumonia 2018, 10, 10. [Google Scholar] [CrossRef]
- Pardo, S.M.M.; Patel, R.H.; Ramsakal, A.; Greene, J. Disseminated Corynebacterium jeikeium Infection in Cancer Patients Case Presentation. Cureus 2020, 12, e8764. [Google Scholar] [CrossRef]
- Kanuparthy, A.; Challa, T.; Meegada, S.; Siddamreddy, S.; Muppidi, V. Staphylococcus warneri: Skin Commensal and a Rare Cause of Urinary Tract Infection. Cureus 2020, 12, e8337. [Google Scholar] [CrossRef]
- Ivić, I.; Karanović, J.; Pavičić-Ivelja, M. Sepsis with multiple abscesses caused by staphylococcus warneri: A case report. Cent. Eur. J. Med. 2013, 8, 45–47. [Google Scholar] [CrossRef]
- Phukon, M.; Sahu, P.; Srinath, R.; Nithya, A.; Babu, S. Unusual Occurrence of Staphylococcus warneri as Endophyte in Fresh Fruits along with Usual Bacillus spp. J. Food Saf. 2013, 33, 102–106. [Google Scholar] [CrossRef]
- Quintieri, L.; Fanelli, F.; Caputo, L. Antibiotic Resistant Pseudomonas Spp. Spoilers in Fresh Dairy Products: An Underestimated Risk and the Control Strategies. Foods 2019, 8, 372. [Google Scholar] [CrossRef]
- Sequino, G.; Valentino, V.; Torrieri, E.; De Filippis, F. Specific Microbial Communities Are Selected in Minimally-Processed Fruit and Vegetables according to the Type of Product. Foods 2022, 11, 2164. [Google Scholar] [CrossRef]
- Panagopoulos, G.N.; Megaloikonomos, P.D.; Liontos, M.; Giannitsioti, E.; Drogari-Apiranthitou, M.; Mavrogenis, A.F.; Kontogeorgakos, V. Pseudomonas oryzihabitans Infected Total Hip Arthroplasty. J. Bone Jt. Infect. 2016, 1, 54–58. [Google Scholar] [CrossRef]
- Owusu, M.; Owusu-Dabo, E.; Acheampong, G.; Osei, I.; Amuasi, J.; Sarpong, N.; Annan, A.; Chiang, H.; Kuo, C.; Park, S.E.; et al. Pseudomonas oryzihabitans sepsis in a 1-year-old child with multiple skin rashes: A case report. J. Med. Case Rep. 2017, 11, 10–13. [Google Scholar] [CrossRef]
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2011, 112, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Kim, W.-S.; Paik, H.-D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas maltophilia: An Emerging Global Opportunistic Pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef] [PubMed]
- Kay, S.E.; Clark, R.A.; White, K.L.; Peel, M.M. Recurrent Achromobacter piechaudii Bacteremia in a Patient with Hematological Malignancy. J. Clin. Microbiol. 2001, 39, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.L.; Sohail, M.R.; Patel, R.; Wittich, C.M. Achromobacter piechaudii bloodstream infection in an immunocompetent host. Am. J. Case Rep. 2012, 13, 265–267. [Google Scholar] [CrossRef]
- Adang, R.; Schouten, H.; van Tiel, F.; Blijham, G. Pneumonia due to Micrococcus spp. in a patient with acute myeloid leukaemia. Leukemia 1992, 6, 224–226. [Google Scholar]
- Oudiz, R.J.; Widlitz, A.; Beckmann, X.J.; Camanga, D.; Alfie, J.; Brundage, B.H.; Barst, R.J. Micrococcus-Associated Central Venous Catheter Infection in Patients With Pulmonary Arterial Hypertension. Clin. Investig. 2004, 126, 90–94. [Google Scholar] [CrossRef]
- Erbasan, F. Brain abscess caused by Micrococcus luteus in a patient with systemic lupus erythematosus: Case-based review. Rheumatol. Int. 2018, 38, 2323–2328. [Google Scholar] [CrossRef]
- Ianniello, N.M.; Andrade, D.C.; Ivancic, S.; Eckardt, P.A.; Lemos Ramirez, J.C. Native valve infective endocarditis due to Micrococcus luteus in a non-Hodgkin’ s lymphoma patient. IDCases 2019, 18, e00657. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M. Pantoea agglomerans: A mysterious bacterium of evil and good. Part III. Deleterious effects: Infections of humans, animals and plants. Ann. Agric. Environ. Med. 2016, 23, 197–205. [Google Scholar] [CrossRef]
- Büyükcam, A.; Tuncer, Ö.; Gür, D.; Sancak, B.; Ceyhan, M.; Cengiz, A.B.; Kara, A. Clinical and microbiological characteristics of Pantoea agglomerans infection in children. J. Infect. Public Health 2018, 11, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Tsubouchi, H.; Matsumoto, N.; Yanagi, S.; Arimura, Y. Respiratory Medicine Case Reports Successful treatment of sepsis due to Pantoea agglomerans by polymyxin B-immobilized fi ber column direct hemoperfusion therapy in a small cell lung carcinoma patient. Respir. Med. Case Rep. 2016, 19, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.; Costa, M.I.; Quita, R.; Dias, C.; Gomes, J.; Cruz, H.; Sucena, M. Pantoea agglomerans as a cancer hallmark in immunocompromised patients. Rev. Patol. Respir. 2021, 24, 23–25. [Google Scholar]
- Torres, R.; Solsona, C.; Viñas, I.; Usall, J.; Plaza, P.; Teixidó, N. Optimization of packaging and storage conditions of a freeze-dried Pantoea agglomerans formulation for controlling postharvest diseases in fruit. J. Appl. Microbiol. 2014, 117, 173–184. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Factors influencing the microbial safety of fresh produce: A review. Food Microbiol. 2012, 32, 1–19. [Google Scholar] [CrossRef]
- Kim, B.R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Lee, J.H.; Kim, H.B.; Isaacson, R.E. Deciphering diversity indices for a better understanding of microbial communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef]
- Abadias, M.; Usall, J.; Anguera, M.; Solsona, C.; Viñas, I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 2008, 123, 121–129. [Google Scholar] [CrossRef]
- Adi, W.; Buko, A.; Kusstatscher, P.; Sinkkonen, A.; Laitinen, O.H.; Cernava, T.; Berg, G.; Virtanen, S.M.; Hy, H. Modulation of the food microbiome by apple fruit processing. Food Microbiol. 2022, 108, 104103. [Google Scholar] [CrossRef]
- Leishman, O.N.; Johnson, M.J.; Labuza, T.P.; Diez-Gonzalez, F. Survival of Bacillus anthracis spores in fruit juices and wine. J. Food Prot. 2010, 73, 1694–1697. [Google Scholar] [CrossRef]
- López-González, R.C.; Juárez-Campusano, Y.S.; Rodríguez-Chávez, J.L.; Delgado-Lamas, G.; Medrano, S.M.A.; Martínez-Peniche, R.Á.; Pacheco-Aguilar, J.R. Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum. Plant Pathol. J. 2021, 37, 24–35. [Google Scholar] [CrossRef]
- Öztopuz, Ö.; Pekin, G.; Park, R.D.; Eltem, R. Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards. Appl. Biochem. Biotechnol. 2018, 186, 692–711. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chen, T.H.; Butcher, A.M.; Trzoss, L.L.; Nam, S.J.; Shirakawa, K.T.; Zhou, W.; Oh, J.; Otto, M.; Fenical, W.; et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 2018, 4, eaao4502. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Q.; Meng, H.; Lv, H.; Liu, Y.; Liu, J.; Wang, H.; He, L.; Qin, J.; Wang, Y.; et al. Staphylococcus epidermidis Contributes to Healthy Maturation of the Nasal Microbiome by Stimulating Antimicrobial Peptide Production. Cell Host Microbe 2020, 27, 68–78.e5. [Google Scholar] [CrossRef] [PubMed]
Fresh-Cut Apples 1 | Simpson’s Index of Diversity (1-D) | Shannon Diversity Index (H) |
---|---|---|
T0 | 0.60 | 1.29 |
T5 | 0.71 | 1.56 |
T12 | 0.79 | 1.87 |
AA-PPO | 0.84 | 1.98 |
AA-PLA | 0.70 | 1.51 |
EXT-PPO | 0.60 | 1.18 |
EXT-PLA | 0.47 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madureira, J.; Gonçalves, S.; Santos-Buelga, C.; Margaça, F.M.A.; Ferreira, I.C.F.R.; Barros, L.; Cabo Verde, S. Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films. Microorganisms 2023, 11, 1157. https://doi.org/10.3390/microorganisms11051157
Madureira J, Gonçalves S, Santos-Buelga C, Margaça FMA, Ferreira ICFR, Barros L, Cabo Verde S. Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films. Microorganisms. 2023; 11(5):1157. https://doi.org/10.3390/microorganisms11051157
Chicago/Turabian StyleMadureira, Joana, Sara Gonçalves, Celestino Santos-Buelga, Fernanda M. A. Margaça, Isabel C. F. R. Ferreira, Lillian Barros, and Sandra Cabo Verde. 2023. "Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films" Microorganisms 11, no. 5: 1157. https://doi.org/10.3390/microorganisms11051157
APA StyleMadureira, J., Gonçalves, S., Santos-Buelga, C., Margaça, F. M. A., Ferreira, I. C. F. R., Barros, L., & Cabo Verde, S. (2023). Microbiota Assessment of Fresh-Cut Apples Packaged in Two Different Films. Microorganisms, 11(5), 1157. https://doi.org/10.3390/microorganisms11051157