Utility of Plant Growth-Promoting Rhizobacteria for Sustainable Production of Bermudagrass Forage
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. PGPR Strain Selection and Inoculate Production
2.3. Experimental Design, Treatments, and Field Evaluation
2.4. Forage Sampling and Laboratory Analysis
2.5. Above-Ground Insect Sampling
2.6. Soil Sampling and Mesofauna Sampling
2.7. Statistical Analysis
3. Results
3.1. Forage Yield
3.2. Forage Quality
3.3. Above-Ground Insect Populations
3.4. Soil Mesofauna Populations
3.5. Soil Microbial Respiration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asner, G.P.; Elmore, A.J.; Olander, L.P.; Martin, R.E.; Harris, T. Grazing Systems, Ecosystem Responses, and Global Change. Annu. Rev. Environ. Resour. 2004, 29, 261–299. [Google Scholar] [CrossRef]
- Lund, H.G. Accounting for the World’s Rangelands. Rangelands 2007, 29, 3–10. [Google Scholar] [CrossRef]
- Bigelow, D.P.; Borchers, A. Major Uses of Land in the United States, 2012. Econ. Inf. Bull. 2017, 178, 1–62. [Google Scholar]
- United States Department of Agriculture National Agricultural Statistics Service. National Agricultural Statistics Service Commodity Census. Available online: https://quickstats.nass.usda.gov (accessed on 6 March 2019).
- Ball, D.M.; Hoveland, C.S.; Lacefield, G.D. Southern Forages: Modern Concepts for Forage Crop Management, 5th ed.; The International Plant Nutrition Institute (IPNI): Peachtree Corners, GA, USA, 2015. [Google Scholar]
- Lynch, R.E. Effects of ‘Coastal’ Bermudagrass Fertilization Levels and Age of Regrowth on Fall Armyworm (Lepidoptera: Noctuidae): Larval Biology and Adult Fecundity. J. Econ. Entomol. 1984, 77, 948–953. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Newman, Y.C.; Macoon, B. Pasture Design and Grazing Management. In Forages the Science of Grassland Agriculture; Moore, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2020; Volume II, pp. 803–814. [Google Scholar] [CrossRef]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef]
- Anderson, K.R.; Moore, P.A., Jr.; Pilon, C.; Martin, J.W.; Pote, D.H.; Owens, P.R.; Ashworth, A.J.; Miller, D.M.; DeLaune, P.B. Long-Term Effects of Grazing Management and Buffer Strips on Phosphorus Runoff from Pastures Fertilized with Poultry Litter. J. Environ. Qual. 2020, 49, 85–96. [Google Scholar] [CrossRef]
- Kirkpatrick, B.; Kohler, K.; Byrne, M.; Fleming, L.E.; Scheller, K.; Reich, A.; Hitchcock, G.; Kirkpatrick, G.; Ullmann, S.; Hoagland, P. Human Responses to Florida Red Tides: Policy Awareness and Adherence to Local Fertilizer Ordinances. Sci. Total Environ. 2014, 493, 898–909. [Google Scholar] [CrossRef]
- Ruiz, S.A.; McKay Fletcher, D.M.; Boghi, A.; Williams, K.A.; Duncan, S.J.; Scotson, C.P.; Petroselli, C.; Dias, T.G.S.; Chadwick, D.R.; Jones, D.L.; et al. Image-Based Quantification of Soil Microbial Dead Zones Induced by Nitrogen Fertilization. Sci. Total Environ. 2020, 727, 138–197. [Google Scholar] [CrossRef]
- Lohm, U.; Lundkvist, H.; Persson, T.; Wiren, A. Effects of Nitrogen Fertilization on the Abundance of Enchytraeids and Microarthropods in Scots Pine Forests. Stud. For. Suec. 1977, 140, 1–24. [Google Scholar]
- Fortuna, A.M. The Soil Biota. Nat. Educ. Knowl. 2012, 3, 1–8. [Google Scholar]
- Neher, D.A.; Barbercheck, M.E. Soil Microarthropods and Soil Health: Intersection of Decomposition and Pest Suppression in Agroecosystems. Insects 2019, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Adesemoye, A.O.; Torbert, H.A.; Kloepper, J.W. Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers. Microb. Ecol. 2009, 58, 921–929. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, M.A.; Liebig, M.A. Forages and the Environment. In Forages the Science of Grassland Agriculture; Moore, K.J., Collins, M., Nelson, C.J., Redfearn, D.D., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2020; Volume II, pp. 249–259. [Google Scholar] [CrossRef]
- Baldi, A.; Lenzi, A.; Nannicini, M.; Pardini, A.; Tesi, R. Growth and Nutrient Content of Hybrid Bermudagrass Grown for Nursery Purposes at Different Nitrogen, Phosphorus, and Potassium Rates. Horttechnology 2013, 23, 347–355. [Google Scholar] [CrossRef]
- Coy, R.M.; Held, D.W.; Kloepper, J.W. Bacterial Inoculant Treatment of Bermudagrass Alters Ovipositional Behavior, Larval and Pupal Weights of the Fall Armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 2017, 46, 831–838. [Google Scholar]
- Groover, W.; Held, D.; Lawrence, K.; Carson, K. Plant Growth-Promoting Rhizobacteria: A Novel Management Strategy for Meloidogyne Incognita on Turfgrass. Pest Manag. Sci. 2020, 76, 3127–3138. [Google Scholar] [CrossRef]
- Coy, R.M.; Held, D.W.; Kloepper, J.W. Rhizobacterial Inoculants Increase Root and Shoot Growth in ‘Tifway’ Hybrid Bermudagrass. J. Environ. Hortic. 2014, 32, 149–154. [Google Scholar] [CrossRef]
- Coy, R.M.; Held, D.W.; Kloepper, J.W. Rhizobacterial Treatments of Tall Fescue and Bermudagrass Increases Tolerance to Damage from White Grubs. Pest Manag. Sci. 2019, 75, 3210–3217. [Google Scholar] [CrossRef]
- Fike, C.L. Nutritive Quality of Coastal Bermudagrass Treated with Plant Growth-Promoting Rhizobacteria. Master’s Thesis, Auburn University, Auburn, AL USA, 7 May 2017. [Google Scholar]
- Griffin, M.E.; Muntifering, R.B.; Mullenix, M.K.; Held, D.W.; Dillard, S.L. Evaluation of Plant Growth-Promoting Rhizobacteria on Stockpiled Bermudagrass. Crop Forage Turfgrass Manag. 2020, 6, e20028. [Google Scholar] [CrossRef]
- United States Department of Agriculture. NRCS Web Soil Survery. Natural Resource Conservation Service. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 16 November 2021).
- Dillard, S.L.; Griffin, M.E.; Mullenix, K.; Russell, D.; Kesheimer, K. Bermudagrass in Alabama. Extension Cooperative System. Available online: https://www.aces.edu/blog/topics/farming/bermudagrass-in-alabama (accessed on 15 October 2022).
- Kunkel, B.A.; Held, D.W.; Potter, D.A. Impact of Halofenozide, Imidacloprid, and Bendiocarb on Beneficial Invertebrates and Predatory Activity in Turfgrass. J. Econ. Entomol. 1999, 92, 922–930. [Google Scholar] [CrossRef]
- Macfadyen, A. Improved Funnel-Type Extractors for Soil Arthropods. J. Anim. Ecol. 1961, 30, 171–184. [Google Scholar] [CrossRef]
- Preparation, S. Procedure for Soil Respiration (CO2 Evolution from Rewetting a Dried Soil). 2019. Available online: https://soilfertility.osu.edu/sites/soilf/files/imce/Protocols/Respiration%20Protocol%20-%20OSU%20Soil%20Fertility%20Lab%20%28Oct%202019%29.pdf (accessed on 30 November 2022).
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Wang, Z.; Ji, L.; Hou, X.; Schellenberg, M.P. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management. PLoS ONE 2016, 11, e0151719. [Google Scholar]
- Manu, M.; Băncilă, R.I.; Mountford, O.J.; Maruşca, T.; Blaj, V.A.; Onete, M. Soil Mite (Acari: Mesostigmata) Communities and Their Relationships with Some Environmental Variables in Experimental Grasslands from Bucegi Mountains in Romania. Insects 2022, 13, 285. [Google Scholar] [CrossRef]
- Bayartogtokh, B. Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia. Erforschungen Biol. Resspublic Mongolei 2005, 2005, 59–70. [Google Scholar]
- Guðleifsson, B.E. Impact of Long Term Use of Fertilizer on Surface Invertebrates in Experimental Plots in a Permanent Hayfield in Northern-Iceland. Agric. Soc. Iceland 2002, 15, 37–49. [Google Scholar]
- King, K.L.; Hutchinson, K.J. Effects of Superphosphate and Stocking Intensity on Grassland Microarthropods. J. Appl. Ecol. 1980, 17, 581–591. [Google Scholar] [CrossRef]
Treatments | Mean ± SE No. Per Sample | |||
---|---|---|---|---|
CP | NDF | ADF | TDN | |
Site 1 | ||||
DH44 | 10.3 ± 0.24 N | 65.3 ± 0.72 N | 38.6 ± 0.42 N* | 49.6 ± 0.56 N |
DH44 ± N | 11.7 ± 0.44 N* | 64.3 ± 0.78 N | 37.8 ± 0.47 N* | 50.4 ± 0.83 N |
B20 | 10.9 ± 0.32 N | 64.2 ± 0.71 N | 38.4 ± 0.58 N | 50.9 ± 0.71 N |
B20 ± N | 12.4 ± 0.38 N* | 64.8 ± 0.69 N | 36.9 ± 0.44 * | 51.4 ± 0.48 |
Full Rate of N | 13.8 ± 0.46 * | 62.7 ± 0.66 * | 36.7 ± 0.49 * | 52.3 ± 0.61 |
Control | 10.7 ± 0.32 N | 65.5 ± 0.51 N | 39.8 ± 0.25 N | 50.7 ± 0.44 |
Site 2 | ||||
DH44 | 11.3 ± 0.34 N | 62.9 ± 1.1 N | 38.8 ± 0.46 N | 51 ± 0.79 N |
DH44 ± N | 13.1 ± 0.49 * | 61.7 ± 1.2 | 36.7 ± 0.58 * | 52.3 ± 0.75 |
B20 | 11.8 ± 0.35 N | 63.2 ± 0.73 N | 39.2 ± 0.47 N | 50 ± 0.70 N |
B20 ± N | 13.2 ± 0.55 * | 60.8 ± 1.3 | 37.2 ± 0.66 N* | 52.8 ± 0.88 |
Full Rate of N | 13.8 ± 0.56 * | 60.4 ± 1.4 | 36.1 ± 0.73 * | 53.1 ± 0.91 * |
Control | 11.5 ± 0.31 N | 62.5 ± 0.88 | 38.8 ± 0.44 N | 51 ± 0.71 N |
Treatments | Mean (±SEM) No. Per Sample | |||
---|---|---|---|---|
Year 1 | Year 2 | |||
Site 1 | Site 2 | Site 1 | Site 2 | |
DH44 | 84.75 ± 13.49 | 101.9 ± 20.16 | 92.58 ± 19.27 N | 128.2 ± 20 |
DH44 ± N | 132.3 ± 20.73 * | 100 ± 19.49 | 92.67 ± 21.21 N | 140.7 ± 21.09 * |
B20 | 95.42 ± 18.8 | 61.5 ± 16.65 | 79.83 ± 15.21 N | 123.8 ± 25.01 |
B20 ± N | 138.2 ± 41.12 * | 86.25 ± 17.07 | 54.17 ± 12.32 N | 165.8 ± 34.36 * |
Full Rate of N | 78.5 ± 12.26 | 78.5 ± 26.78 | 187.8 ± 34.49 * | 159.9 ± 45.01 * |
Control | 47.92 ± 14.15 | 65.58 ± 15.58 | 50.92 ± 9.61 N | 60.83 ± 15.3 N |
Treatments | Mean (±SEM) No. Per Sample | |||
---|---|---|---|---|
Year 1 | Year 2 | |||
Site 1 | Site 2 | Site 1 | Site 2 | |
DH44 | 69.67 ± 12.84 | 150.9 ± 40.2 N* | 63.42 ± 7.42 | 187.5 ± 65.3 * |
DH44 ± N | 93.83 ± 21.46 * | 63.42 ± 16.27 | 71.5 ± 12.96 | 150.7 ± 33.32 |
B20 | 73.75 ± 14.74 | 94.17 ± 35.02 | 47.17 ± 7.64 N | 108.9 ± 29.17 |
B20 ± N | 78.25 ± 21.18 | 103 ± 23.8 | 44 ± 6.84 N | 164.5 ± 47.47 |
Full Rate of N | 82.33 ± 20.41 | 81.67 ± 15.78 | 128.5 ± 53.23 * | 99.58 ± 30.26 * |
Control | 42.75 ± 9.64 | 58.42 ± 16.05 | 41.75 ± 7.58 N | 89.42 ± 24.4 N |
Treatments | Mean (±SEM) No. Per Sample | |||
---|---|---|---|---|
Year 1 | Year 2 | |||
Site 1 | Site 2 | Site 1 | Site 2 | |
DH44 | 11 ± 3.97 * | 19.92 ± 4.51 | 92.25 ± 37.01 N | 23.00 ± 4.89 |
DH44 ± N | 7 ± 2.16 * | 9.25 ± 2.36 * | 70.58 ± 24.04 | 11.08 ± 3.6 * |
B20 | 9.25 ± 2.86 * | 18.00 ± 6.53 | 41.25 ± 10.09 | 32.00 ± 11.9 N |
B20 ± N | 8.5 ± 4.31 * | 12.50 ± 2.59 * | 52.42 ± 17.61 | 23.33 ± 7.95 |
Full Rate of N | 4.67 ± 1.53 * | 9.17 ± 3.35 * | 37.67 ± 8.69 | 11.33 ± 2.47 * |
Control | 23.08 ± 3.7 N | 31.58 ± 10 N | 42.92 ± 12.53 | 39.42 ± 8.98 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullins, K.N.; Dillard, S.L.; Held, D.W.; Carroll, E.P. Utility of Plant Growth-Promoting Rhizobacteria for Sustainable Production of Bermudagrass Forage. Microorganisms 2023, 11, 863. https://doi.org/10.3390/microorganisms11040863
Sullins KN, Dillard SL, Held DW, Carroll EP. Utility of Plant Growth-Promoting Rhizobacteria for Sustainable Production of Bermudagrass Forage. Microorganisms. 2023; 11(4):863. https://doi.org/10.3390/microorganisms11040863
Chicago/Turabian StyleSullins, Kayla N., S. Leanne Dillard, David W. Held, and Elijah P. Carroll. 2023. "Utility of Plant Growth-Promoting Rhizobacteria for Sustainable Production of Bermudagrass Forage" Microorganisms 11, no. 4: 863. https://doi.org/10.3390/microorganisms11040863
APA StyleSullins, K. N., Dillard, S. L., Held, D. W., & Carroll, E. P. (2023). Utility of Plant Growth-Promoting Rhizobacteria for Sustainable Production of Bermudagrass Forage. Microorganisms, 11(4), 863. https://doi.org/10.3390/microorganisms11040863