Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Sample Collection
2.2. Bacteria Counting Methods
2.3. Identification of Coliforms by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS)
2.4. Continuous Flooding Simulation Using Beach Sand
2.5. Estimation of Factors for Bacterial Growth
3. Results and Discussion
3.1. Changes in the Fecal Indicator Bacterium Counts of Beaches
3.1.1. Supratidal and Intertidal Top Surface Sand
3.1.2. Supratidal and Intertidal 10 cm Sand
3.2. Fecal Indicator Bacteria in Seawater
3.3. Changes in the Composition of Coliforms Isolated from Supratidal Top Surface Sand
3.4. Bacterial Counts in Sand in a Continuous Flooding Simulation
3.5. Estimation of Factors for Bacterial Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marion, J.W.; Lee, J.; Lemeshow, S.; Buckley, T.J. Association of gastrointestinal illness and recreational water exposure at an inland U.S. beach. Water Res. 2010, 44, 4796–4804. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, V.F.V.; Rivera, I.N.G.; Lim, K.Y.; Jiang, S.C. Detection and risk assessment of diarrheagenic E. coli in recreational beaches of Brazil. Mar. Pollut. Bull. 2016, 109, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Staley, Z.R.; Robinson, C.; Edge, T.A. Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach, playground and sandbox settings in Toronto, Ontario. Sci. Total Environ. 2016, 541, 520–527. [Google Scholar] [CrossRef]
- Nana, P.A.; Ebonji Seth, R.; Ndjuissi Tamko, N.A.; Onambélé Ossomba, V.R.; Bricheux, G.; Metsopkeng, C.S.; Nola, M.; Sime-Ngando, T. Tidal effect on the dispersion of fecal pollution indicator bacteria and associated health risks along the Kribi beaches (southern Atlantic coast, Cameroon). Reg. Stud. Mar. Sci. 2023, 60, 102831. [Google Scholar] [CrossRef]
- Scott, T.M.; Rose, J.B.; Jenkins, T.M.; Farrah, S.R.; Lukasik, J. Microbial source tracking: Current methodology and future directions. Appl. Environ. Microbiol. 2002, 68, 5796–5803. [Google Scholar] [CrossRef]
- Meays, C.L.; Broersma, K.; Nordin, R.; Mazumder, A. Source tracking fecal bacteria in water: A critical review of current methods. J. Environ. Manag. 2004, 73, 71–79. [Google Scholar] [CrossRef]
- Heaney, C.D.; Exum, N.G.; Dufour, A.P.; Brenner, K.P.; Haugland, R.A.; Chern, E.; Schwab, K.J.; Love, D.C.; Serre, M.L.; Noble, R.; et al. Water quality, weather and environmental factors associated with fecal indicator organism density in beach sand at two recreational marine beaches. Sci. Total Environ. 2014, 497–498, 440–447. [Google Scholar] [CrossRef]
- Tiwari, A.; Oliver, D.M.; Bivins, A.; Sherchan, S.P.; Pitkänen, T. Bathing water quality monitoring practices in Europe and the United States. Int. J. Environ. Res. Public Health 2021, 18, 5513. [Google Scholar] [CrossRef]
- He, L.M.; Lu, J.; Shi, W. Variability of fecal indicator bacteria in flowing and ponded waters in southern California: Implications for bacterial TMDL development and implementation. Water Res. 2007, 41, 3132–3140. [Google Scholar] [CrossRef]
- Kelly, E.; Gidley, M.; Sinigalliano, C.; Kumar, N.; Solo-Gabriele, H.M. Impact of wastewater infrastructure improvements on beach water fecal indicator bacteria levels in Monroe County, Florida. Sci. Total Environ. 2021, 763, 143024. [Google Scholar] [CrossRef]
- Weissman, G.; Rumpler, J. Safe for Swimming? Water Quality at Our Beaches; Environment America Research and Policy Center: Washington, DC, USA, 2019; Available online: https://environmentamerica.org/wp-content/uploads/2022/08/WEB_AME_Safe-for-Swimming_Jul19_v080919.pdf (accessed on 3 February 2023).
- Official Journal of the European Union. Directive, 2006/7/EC of the European Parliament and of the Council. 2006. Available online: https://www.legislation.gov.uk/eudr/2006/7/contents?view=plain (accessed on 10 February 2023).
- European Environment Agency. European Bathing Water Quality in 2021. 2022. Available online: https://www.eea.europa.eu/publications/bathing-water-quality-in-2021 (accessed on 10 February 2023).
- Shrestha, A.; Kelty, C.A.; Sivaganesan, M.; Shanks, O.C.; Dorevitch, S. Fecal pollution source characterization at non-point source impacted beaches under dry and wet weather conditions. Water Res. 2020, 182, 116014. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Grant, S.B.; Surbeck, C.Q.; DiGiacomo, P.M.; Nezlin, N.P.; Jiang, S. Coastal water quality impact of stormwater runoff from an urban watershed in Southern California. Environ. Sci. Technol. 2005, 39, 5940–5953. [Google Scholar] [CrossRef] [PubMed]
- Brownell, M.J.; Harwood, V.J.; Kurz, R.C.; McQuaig, S.M.; Lukasik, J.; Scott, T.M. Confirmation of putative stormwater impact on water quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations. Water Res. 2007, 41, 3747–3757. [Google Scholar] [CrossRef]
- Reeves, R.L.; Grant, S.B.; Mrse, R.D.; Copil Oancea, C.M.; Sanders, B.F.; Boehm, A.B. Scaling and management of fecal indicator bacteria in runoff from a coastal urban watershed in Southern California. Environ. Sci. Technol. 2004, 38, 2637–2648. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.T.; Weisberg, S.B.; Leecaster, M.K.; McGee, C.D.; Dorsey, J.H.; Vainik, P.; Orozco-Borbón, V. Storm effects on regional beach water quality along the southern California shoreline. J. Water Health 2003, 1, 23–31. [Google Scholar] [CrossRef]
- Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N. Hand-mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois. J. Water Health 2009, 7, 623–629. [Google Scholar] [CrossRef]
- Heaney, C.D.; Sams, E.; Dufour, A.P.; Brenner, K.P.; Haugland, R.A.; Chern, E.; Wing, S.; Marshall, S.; Love, D.C.; Serre, M.; et al. Fecal indicators in sand, sand contact, and risk of enteric illness among beachgoers. Epidemiology 2012, 23, 95–106. [Google Scholar] [CrossRef]
- Heggie, T.W. Sand hazards on tourist beaches. Travel Med. Infect. Dis. 2013, 11, 123–125. [Google Scholar] [CrossRef]
- Heaney, C.D.; Sams, E.; Wing, S.; Marshall, S.; Brenner, K.; Dufour, A.P.; Wade, T.J. Contact with beach sand among beachgoers and risk of illness. Am. J. Epidemiol. 2009, 170, 164–172. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Method 1603: Escherichia coli (E. coli) in Water by Membrane Filtration Using Modified Membrane-Thermotolerant Escherichia coli Agar (Modified mTEC); United States Environmental Protection Agency: Washington, DC, USA, 2014. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/method_1603_2009.pdf (accessed on 3 February 2023).
- Suzuki, Y.; Niina, K.; Matsuwaki, T.; Nukazawa, K.; Iguchi, A. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2018, 53, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Calderon, J.S.; Verbyla, M.E.; Gil, M.; Pinongcos, F.; Kinoshita, A.M.; Mladenov, N. Persistence of Fecal Indicators and Microbial Source Tracking Markers in Water Flushed from Riverbank Soils. Water Air Soil Pollut. 2022, 233, 83. [Google Scholar] [CrossRef]
- Ramirez, D.; Giron, M. Enterobacter Infections; StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559296/ (accessed on 31 March 2023).
- Zayet, S.; Lang, S.; Garnier, P.; Pierron, A.; Plantin, J.; Toko, L.; Royer, P.Y.; Villemain, M.; Klopfenstein, T.; Gendrin, V. Leclercia adecarboxylata as emerging pathogen in human infections: Clinical features and antimicrobial susceptibility testing. Pathogens 2021, 10, 1399. [Google Scholar] [CrossRef] [PubMed]
- Samonis, G.; Karageorgopoulos, D.E.; Kofteridis, D.P.; Matthaiou, D.K.; Sidiropoulou, V.; Maraki, S.; Falagas, M.E. Citrobacter infections in a general hospital: Characteristics and outcomes. Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Hwang, M.; Chatterjee, P.; Jinadatha, C.; Navarathna, D.H. Rare Lelliottia nimipressuralis from a wound infection case report using whole genome sequencing-based bacterial identification. Diagn. Microbiol. Infect. Dis. 2021, 101, 115538. [Google Scholar] [CrossRef]
- Mani, S.; Nair, J. Pantoea infections in the Neonatal Intensive Care Unit. Cureus 2021, 13, e13103. [Google Scholar] [CrossRef]
- Podschun, R.; Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef]
- Piggot, A.M.; Klaus, J.S.; Johnson, S.; Phillips, M.C.; Solo-Gabriele, H.M. Relationship between enterococcal levels and sediment biofilms at recreational beaches in South Florida. Appl. Environ. Microbiol. 2012, 78, 5973–5982. [Google Scholar] [CrossRef]
- Jackson, C.R.; Churchill, P.F.; Roden, E.E. Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 2001, 82, 555–566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamai, S.; Shimamoto, H.; Nukazawa, K.; Suzuki, Y. Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season. Microorganisms 2023, 11, 1074. https://doi.org/10.3390/microorganisms11041074
Tamai S, Shimamoto H, Nukazawa K, Suzuki Y. Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season. Microorganisms. 2023; 11(4):1074. https://doi.org/10.3390/microorganisms11041074
Chicago/Turabian StyleTamai, Soichiro, Hiroshi Shimamoto, Kei Nukazawa, and Yoshihiro Suzuki. 2023. "Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season" Microorganisms 11, no. 4: 1074. https://doi.org/10.3390/microorganisms11041074
APA StyleTamai, S., Shimamoto, H., Nukazawa, K., & Suzuki, Y. (2023). Growth and Decay of Fecal Indicator Bacteria and Changes in the Coliform Composition on the Top Surface Sand of Coastal Beaches during the Rainy Season. Microorganisms, 11(4), 1074. https://doi.org/10.3390/microorganisms11041074