Late-Onset Sepsis Mortality among Preterm Infants: Beyond Time to First Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Definitions
- Late-onset sepsis: positive blood or cerebrospinal fluid culture (or cerebrospinal fluid positive polymerase chain reaction), in an infant (aged 3 to 90 days) with signs and symptoms of sepsis.
- Signs and symptoms of sepsis: fever, hypothermia or temperature instability, tachycardia, bradycardia or heart rate instability, new or more frequent apnoeas, capillary refill time >2 s, changes in skin colour, increased respiratory support, unstable clinical condition and apathy [23].
- Time of onset of late-onset sepsis: timing of first signs and symptoms of sepsis reported in electronic medical records.
- Time to first antibiotics: time interval between the onset of late-onset sepsis and the first administration of empirical antimicrobials.
- Sepsis-associated mortality: death occurring within 7 days from its onset or clearly related to complications due to late-onset sepsis [24].
- Active empirical antimicrobials: the pathogen was susceptible (in vitro) to at least one empirical antimicrobial (or each pathogen was susceptible to at least one antimicrobial in the case of polymicrobial infections).
- Inactive empirical antimicrobials: the pathogen was resistant to all empirical antimicrobials.
- Appropriate empirical antimicrobials: the empirical antimicrobial was active (in vitro) against the pathogen and (i) meningitis was ruled out (through a lumbar puncture) or (ii) the antimicrobial ideally penetrated at high levels the blood-brain barrier.
- Inappropriate empirical antimicrobials: (i) inactive empirical antimicrobials or (ii) active empirical antimicrobials ideally did not pass the blood-brain barrier at high levels (e.g., an aminoglycoside) and lumbar puncture findings were consistent with meningitis.
- Undetermined appropriateness of empirical antimicrobials: active empirical antimicrobials ideally did not pass the blood-brain barrier at high levels (e.g., an aminoglycoside) and meningitis was not ruled out (no lumbar puncture was performed).
2.3. Inclusion Criteria
2.4. Data Collection
2.5. Exclusion Criteria
2.6. Outcomes
2.7. Study Setting
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shane, A.L.; Sánchez, P.J.; Stoll, B.J. Neonatal Sepsis. Lancet 2017, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Schlapbach, L.J.; Aebischer, M.; Adams, M.; Natalucci, G.; Bonhoeffer, J.; Latzin, P.; Nelle, M.; Bucher, H.U.; Latal, B.; Swiss Neonatal Network and Follow-Up Group. Impact of Sepsis on Neurodevelopmental Outcome in a Swiss National Cohort of Extremely Premature Infants. Pediatrics 2011, 128, e348–e357. [Google Scholar] [CrossRef] [PubMed]
- Bizzarro, M.J.; Raskind, C.; Baltimore, R.S.; Gallagher, P.G. Seventy-Five Years of Neonatal Sepsis at Yale: 1928–2003. Pediatrics 2005, 116, 595–602. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.I.; Adams-Chapman, I.; Fanaroff, A.A.; Hintz, S.R.; Vohr, B.; Higgins, R.D.; National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental and Growth Impairment among Extremely Low-Birth-Weight Infants with Neonatal Infection. JAMA 2004, 292, 2357–2365. [Google Scholar] [CrossRef]
- Payne, N.R.; Carpenter, J.H.; Badger, G.J.; Horbar, J.D.; Rogowski, J. Marginal Increase in Cost and Excess Length of Stay Associated with Nosocomial Bloodstream Infections in Surviving Very Low Birth Weight Infants. Pediatrics 2004, 114, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.P.; Fort, P.; Clark, R.H.; Watt, K.; Benjamin, D.K.; Smith, P.B.; Manzoni, P.; Jacqz-Aigrain, E.; Kaguelidou, F.; Cohen-Wolkowiez, M. Early and Late Onset Sepsis in Very-Low-Birth-Weight Infants from a Large Group of Neonatal Intensive Care Units. Early Hum. Dev. 2012, 88 (Suppl. 2), S69–S74. [Google Scholar] [CrossRef] [PubMed]
- Tsafaras, G.P.; Ntontsi, P.; Xanthou, G. Advantages and Limitations of the Neonatal Immune System. Front. Pediatr. 2020, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.B.W.; Nizet, V.; Maldonado, Y.A.; Remington, J.S.; Klein, J.O. Remington and Klein’s Infectious Diseases of the Fetus and Newborn Infant; Elsevier Health Sciences: Amsterdam, The Netherlands, 2015; ISBN 978-0-323-24147-2. [Google Scholar]
- Polin, R.A.; Denson, S.; Brady, M.T.; Committee on Fetus and Newborn; Committee on Infectious Diseases. Epidemiology and Diagnosis of Health Care-Associated Infections in the NICU. Pediatrics 2012, 129, e1104–e1109. [Google Scholar] [CrossRef]
- Berardi, A.; Sforza, F.; Baroni, L.; Spada, C.; Ambretti, S.; Biasucci, G.; Bolognesi, S.; Capretti, M.; Carretto, E.; Ciccia, M.; et al. Epidemiology and Complications of Late-Onset Sepsis: An Italian Area-Based Study. PLoS ONE 2019, 14, e0225407. [Google Scholar] [CrossRef]
- Krebs, V.L.J.; Costa, G.A.M. Clinical Outcome of Neonatal Bacterial Meningitis According to Birth Weight. Arq. Neuropsiquiatr. 2007, 65, 1149–1153. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Crit. Care Med. 2017, 45, 486–552. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.L.; Fitzgerald, J.C.; Balamuth, F.; Alpern, E.R.; Lavelle, J.; Chilutti, M.; Grundmeier, R.; Nadkarni, V.M.; Thomas, N.J. Delayed Antimicrobial Therapy Increases Mortality and Organ Dysfunction Duration in Pediatric Sepsis. Crit. Care Med. 2014, 42, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Evans, L.E.; Rhodes, A. The Surviving Sepsis Campaign Bundle: 2018 Update. Intensive Care Med. 2018, 44, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Sankar, J.; Garg, M.; Ghimire, J.J.; Sankar, M.J.; Lodha, R.; Kabra, S.K. Delayed Administration of Antibiotics Beyond the First Hour of Recognition Is Associated with Increased Mortality Rates in Children with Sepsis/Severe Sepsis and Septic Shock. J. Pediatr. 2021, 233, 183–190.e3. [Google Scholar] [CrossRef]
- Baczynski, M.; Kharrat, A.; Zhu, F.; Ye, X.Y.; Shah, P.S.; Weisz, D.E.; Jain, A. Bloodstream Infections in Preterm Neonates and Mortality-Associated Risk Factors. J. Pediatr. 2021, 237, 206–212.e1. [Google Scholar] [CrossRef]
- Schmatz, M.; Srinivasan, L.; Grundmeier, R.W.; Elci, O.U.; Weiss, S.L.; Masino, A.J.; Tremoglie, M.; Ostapenko, S.; Harris, M.C. Surviving Sepsis in a Referral Neonatal Intensive Care Unit: Association between Time to Antibiotic Administration and In-Hospital Outcomes. J. Pediatr. 2020, 217, 59–65.e1. [Google Scholar] [CrossRef]
- Al-Matary, A.; Al Sulaiman, M.; Al-Otaiby, S.; Qaraqei, M.; Al-Matary, M. Association between the Timing of Antibiotics Administration and Outcome of Neonatal Sepsis. J. Infect. Public Health 2022, 15, 643–647. [Google Scholar] [CrossRef]
- Weinberger, J.; Rhee, C.; Klompas, M. A Critical Analysis of the Literature on Time-to-Antibiotics in Suspected Sepsis. J. Infect. Dis. 2020, 222, S110–S118. [Google Scholar] [CrossRef]
- Bedetti, L.; Lugli, L.; Marrozzini, L.; Baraldi, A.; Leone, F.; Baroni, L.; Lucaccioni, L.; Rossi, C.; Roversi, M.F.; D’Amico, R.; et al. Safety and Success of Lumbar Puncture in Young Infants: A Prospective Observational Study. Front. Pediatr. 2021, 9, 692652. [Google Scholar] [CrossRef]
- Stoll, B.J.; Puopolo, K.M.; Hansen, N.I.; Sánchez, P.J.; Bell, E.F.; Carlo, W.A.; Cotten, C.M.; D’Angio, C.T.; Kazzi, S.N.J.; Poindexter, B.B.; et al. Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia Coli, and the Need for Novel Prevention Strategies. JAMA Pediatr. 2020, 174, e200593. [Google Scholar] [CrossRef]
- Bedetti, L.; Marrozzini, L.; Baraldi, A.; Spezia, E.; Iughetti, L.; Lucaccioni, L.; Berardi, A. Pitfalls in the Diagnosis of Meningitis in Neonates and Young Infants: The Role of Lumbar Puncture. J. Matern.-Fetal Neonatal Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2019, 32, 4029–4035. [Google Scholar] [CrossRef] [PubMed]
- Leistner, R.; Piening, B.; Gastmeier, P.; Geffers, C.; Schwab, F. Nosocomial Infections in Very Low Birthweight Infants in Germany: Current Data from the National Surveillance System NEO-KISS. Klin. Padiatr. 2013, 225, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Bizzarro, M.J.; Shabanova, V.; Baltimore, R.S.; Dembry, L.-M.; Ehrenkranz, R.A.; Gallagher, P.G. Neonatal Sepsis 2004–2013: The Rise and Fall of Coagulase-Negative Staphylococci. J. Pediatr. 2015, 166, 1193–1199. [Google Scholar] [CrossRef]
- Jean-Baptiste, N.; Benjamin, D.K.; Cohen-Wolkowiez, M.; Fowler, V.G.; Laughon, M.; Clark, R.H.; Smith, P.B. Coagulase-Negative Staphylococcal Infections in the Neonatal Intensive Care Unit. Infect. Control Hosp. Epidemiol. 2011, 32, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-Negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Zonnenberg, I.A.; van Dijk-Lokkart, E.M.; van den Dungen, F.A.M.; Vermeulen, R.J.; van Weissenbruch, M.M. Neurodevelopmental Outcome at 2 Years of Age in Preterm Infants with Late-Onset Sepsis. Eur. J. Pediatr. 2019, 178, 673–680. [Google Scholar] [CrossRef]
- Cantey, J.B.; Anderson, K.R.; Kalagiri, R.R.; Mallett, L.H. Morbidity and Mortality of Coagulase-Negative Staphylococcal Sepsis in Very-Low-Birth-Weight Infants. World J. Pediatr. WJP 2018, 14, 269–273. [Google Scholar] [CrossRef]
- Isaacs, D.; Australasian Study Group For Neonatal Infections. A Ten Year, Multicentre Study of Coagulase Negative Staphylococcal Infections in Australasian Neonatal Units. Arch. Dis. Child. Fetal Neonatal Ed. 2003, 88, F89–F93. [Google Scholar] [CrossRef]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and Evolution of Subependymal and Intraventricular Hemorrhage: A Study of Infants with Birth Weights Less than 1500 Gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Berardi, A.; Zinani, I.; Rossi, C.; Spaggiari, E.; D’Amico, V.; Toni, G.; Bedetti, L.; Lucaccioni, L.; Iughetti, L.; Lugli, L. Antibiotic Use in Very Low Birth Weight Neonates After an Antimicrobial Stewardship Program. Antibiot. Basel Switz. 2021, 10, 411. [Google Scholar] [CrossRef]
- Hamdy, R.F.; DeBiasi, R.L. Every Minute Counts: The Urgency of Identifying Infants with Sepsis. J. Pediatr. 2020, 217, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Karlowicz, M.G.; Buescher, E.S.; Surka, A.E. Fulminant Late-Onset Sepsis in a Neonatal Intensive Care Unit, 1988–1997, and the Impact of Avoiding Empiric Vancomycin Therapy. Pediatrics 2000, 106, 1387–1390. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of Hypotension before Initiation of Effective Antimicrobial Therapy Is the Critical Determinant of Survival in Human Septic Shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Okike, I.O.; Johnson, A.P.; Henderson, K.L.; Blackburn, R.M.; Muller-Pebody, B.; Ladhani, S.N.; Anthony, M.; Ninis, N.; Heath, P.T.; neoMen Study Group. Incidence, Etiology, and Outcome of Bacterial Meningitis in Infants Aged <90 Days in the United Kingdom and Republic of Ireland: Prospective, Enhanced, National Population-Based Surveillance. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59, e150–e157. [Google Scholar] [CrossRef]
- Gordon, S.M.; Srinivasan, L.; Harris, M.C. Neonatal Meningitis: Overcoming Challenges in Diagnosis, Prognosis, and Treatment with Omics. Front. Pediatr. 2017, 5, 139. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. To Tap or Not to Tap: High Likelihood of Meningitis without Sepsis among Very Low Birth Weight Infants. Pediatrics 2004, 113, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Harris, M.C. Neonatal Bacterial Meningitis. Semin. Neonatol. SN 2001, 6, 157–172. [Google Scholar] [CrossRef]
- National Collaborating Centre for Women’s and Children’s Health (UK). Bacterial Meningitis and Meningococcal Septicaemia: Management of Bacterial Meningitis and Meningococcal Septicaemia in Children and Young People Younger than 16 Years in Primary and Secondary Care; National Institute for Health and Clinical Excellence Guidance; RCOG Press: London, UK, 2010. [Google Scholar]
- Baud, O.; Aujard, Y. Chapter 114—Neonatal Bacterial Meningitis. In Handbook of Clinical Neurology; Pediatric Neurology Part II; Dulac, O., Lassonde, M., Sarnat, H.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 112, pp. 1109–1113. [Google Scholar]
- Kent, A.; Kortsalioudaki, C.; Monahan, I.M.; Bielicki, J.; Planche, T.D.; Heath, P.T.; Sharland, M.; Neonatal Gram Negative MIC Group. Neonatal Gram-Negative Infections, Antibiotic Susceptibility and Clinical Outcome: An Observational Study. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F507–F512. [Google Scholar] [CrossRef]
- Zhou, Q.; Ong, M.; Lan, M.; Ye, X.Y.; Ting, J.Y.; Shah, P.S.; Lee, S.K.; Canadian Neonatal Network (CNN) Investigators. Decreasing Trend in Incidence of Late Onset Culture Positive Bloodstream Infections but Not Late Onset Meningitis in Preterm Infants <33 Weeks Gestation in Canadian Neonatal Intensive Care Unit. Neonatology 2022, 119, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Baczynski, M.; Kharrat, A.; Zhu, F.; Ye, X.Y.; Shah, P.S.; Weisz, D.E.; Jain, A. Factors Associated with Antibiotic Administration Delay among Preterm Infants with Late-Onset Bloodstream Infection. J. Hosp. Infect. 2022, 120, 31–35. [Google Scholar] [CrossRef]
Variables | All Episodes (n = 83) | Non-Fatal Episodes (n = 66) | Fatal Episodes (n = 17) | p |
---|---|---|---|---|
Male sex | 42 (50.6) | 32 (48.5) | 10 (58.8) | 0.59 |
Gestatational age, weeks | 26.0 (25.0–27.0) | 27.0 (25.0–28.0) | 25.0 (24.0–26.0) | 0.019 |
Birth weight, g | 780.0 (654.0–993.8) | 800.0 (697.0–1050.0) | 690.0 (624.8–895.5) | 0.050 |
Age at sepsis onset, days | 18.0 (10.3–32.8) | 22.0 (10.0–33.0) | 14.0 (10.5–21.8) | 0.281 |
Body weight at sepsis onset, days | 1056.0 (766.8–1301.8) | 1100.0 (885.0–1342.0) | 760.0 (594.8–1078.3) | 0.003 |
Gram-negative pathogen | 50 (60.2) | 36 (54.5) | 14 (82.4) | 0.051 |
Time to first antibiotics, hours | 2 (0–6) | 3 (0.5–10) | 1 (0–2) | 0.035 |
In vitro active empirical antimicrobials * | 59 (71.1) | 50 (75.8) | 9 (52.9) | 0.121 |
Appropriate empirical antimicrobials § | 43 (51.8) | 39 (59.1) | 4 (23.5) | 0.019 |
Appropriate empirical antimicrobials (cases with undetermined appropriateness excluded) ¶ | 43/70 (61.4) | 39/58 (67.0) | 4/12 (33.3) | 0.048 |
Univariable Models | Multivariable Model | |||
---|---|---|---|---|
OR (95% CI) | p | aOR (95% CI) | p | |
Time to first antibiotics | 0.85 (0.7–1.02) | 0.087 | 0.90 (0.71–1.15) | 0.408 |
Time to volume administration | 0.92 (0.83–1.02) | 0.129 | 0.89 (0.76–1.04) | 0.130 |
Appropriate empirical antimicrobials | Reference | Reference | ||
Inappropriate empirical antimicrobials | 4.11 (1.1–15.36) | 0.036 | 10.25 (1.37–76.75) | 0.023 |
Undetermined appropriateness of empirical antimicrobials | 6.09 (1.33–27.83) | 0.020 | 4.12 (0.42–40.68) | 0.226 |
Gram-positive pathogen | Reference | Reference | ||
Gram-negative pathogen | 3.89 (1.02–14.82) | 0.047 | 9.85 (1.55–83.97) | 0.036 |
VIF | df | ||
---|---|---|---|
Time to first antibiotics | 1.033 | 1 | 1.017 |
Time to volume administration | 1.348 | 1 | 1.161 |
Inappropriate empirical antimicrobials | 1.665 | 2 | 1.136 |
Gram-negative pathogen | 1.747 | 1 | 1.322 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miselli, F.; Crestani, S.; Maugeri, M.; Passini, E.; Spaggiari, V.; Deonette, E.; Ćosić, B.; Rossi, K.; Roversi, M.F.; Bedetti, L.; et al. Late-Onset Sepsis Mortality among Preterm Infants: Beyond Time to First Antibiotics. Microorganisms 2023, 11, 396. https://doi.org/10.3390/microorganisms11020396
Miselli F, Crestani S, Maugeri M, Passini E, Spaggiari V, Deonette E, Ćosić B, Rossi K, Roversi MF, Bedetti L, et al. Late-Onset Sepsis Mortality among Preterm Infants: Beyond Time to First Antibiotics. Microorganisms. 2023; 11(2):396. https://doi.org/10.3390/microorganisms11020396
Chicago/Turabian StyleMiselli, Francesca, Sara Crestani, Melissa Maugeri, Erica Passini, Valentina Spaggiari, Elisa Deonette, Branislava Ćosić, Katia Rossi, Maria Federica Roversi, Luca Bedetti, and et al. 2023. "Late-Onset Sepsis Mortality among Preterm Infants: Beyond Time to First Antibiotics" Microorganisms 11, no. 2: 396. https://doi.org/10.3390/microorganisms11020396