The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Steak Tartare
2.2. Strains of STEC Used for the Artificial Contamination of Steak Tartare
2.3. Artificial Contamination of Steak Tartare with STEC
2.4. Treatment of Contaminated Steak Tartare with HPP and in a Water Bath at 55 °C
2.5. Microbial Enumeration
2.6. CIELab Color Measurement
2.7. Statistical Analysis
3. Results
3.1. Microbiological Analysis of Samples of Steak Tartare
3.2. The Effect of Treatment of Steak Tartare on Color Parameters
4. Discussion
4.1. The Effect of HPP on the Survival of STEC
4.2. The Survival of STEC in a Water Bath at 55 °C
4.3. The Effect of Treatment of Steak Tartare on the Color of the Product
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Jonge, R. Predictable and unpredictable survival of foodborne pathogens during nonisothermal heating. Int. J. Food Microbiol. 2019, 291, 151–160. [Google Scholar] [CrossRef]
- Ježek, F.; Kameník, J.; Macharáčková, B.; Bogdanovičová, K.; Bednář, J. Cooking of meat: Effect on texture, cooking loss and microbiological quality—A review. Acta Vet. Brno 2019, 88, 487–496. [Google Scholar] [CrossRef]
- Lahou, E.; Wang, V.; De Boeck, E.; Verguldt, E.; Geeraerd, A.; Devlieghere, F.; Uyttendaelle, M. Effectiveness of inactivation of foodborne pathogens during simulated home pan frying of steak, hamburger or meat strips. Int. J. Food Microbiol. 2015, 206, 118–129. [Google Scholar] [CrossRef]
- Delhalle, L.; Korsak, N.; Taminiau, B.; Nezer, C.; Burteau, S.; Delcenserie, V.; Poullet, J.B.; Daube, G. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis. J. Food Protect. 2016, 79, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Tirloni, E.; Bernardi, C.; Stella, S. Shelf life and growth potential of Listeria monocytogenes in steak tartare. LWT Food Sci. Technol. 2020, 118, e108807. [Google Scholar] [CrossRef]
- Hluchanova, L.; Korena, K.; Juricova, H. Vacuum-Packed Steak Tartare: Prevalence of Listeria monocytogenes and Evaluation of Efficacy of Listex™ P100. Foods 2022, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Braeye, T.; Denayer, S.; De Rauw, K.; Forier, A.; Verluyten, J.; Fourie, L.; Dierick, K.; Botteldoorn, N.; Quoilin, S.; Cosse, P.; et al. Lessons learned from a textbook outbreak: EHEC-O157:H7 infections associated with the consumption of raw meat products, June 2012, Limburg, Belgium. Arch. Public Health 2014, 72, 44. [Google Scholar] [CrossRef]
- Greenland, K.; de Jager, C.; Heuvelink, A.; van der Zwaluw, K.; Heck, M.; Notermans, D.; van Pelt, W.; Friesema, I. Nationwide outbreak of STEC O157 infection in the Netherlands, December 2008-January 2009: Continuous risk of consuming raw beef products. Euro Surveiilance 2009, 14, 19129. [Google Scholar] [CrossRef]
- Essendoubi, S.; Stashko, N.; So, I.; Gensler, G.; Rolheiser, D.; Mainali, C. Prevalence of Shiga toxin-producing Escherichia coli (STEC) O157:H7, Six non-O157 STECs, and Salmonella on beef carcasses in Provincially Licensed Abattoirs in Alberta, Canada. Food Control. 2019, 105, 226–232. [Google Scholar] [CrossRef]
- Dong, P.; Zhu, L.; Mao, Y.; Liang, R.; Niu, L.; Zhang, Y.; Luo, X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control. 2015, 54, 39–46. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Arthur, T.M.; Bosilevac, J.M.; Brichta-Harhay, D.M.; Kalchayanand, N.; Shackelford, S.D.; Wheeler, T.L. Interventions to reduce/eliminate Escherichia coli O157:H7 in ground beef. Meat Sci. 2007, 77, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiao, T.; Nychas, G.-J.E.; Zhang, Y.; Zhu, L.; Luo, X. Occurrence and characterization of Shiga toxin-producing Escherichia coli (STEC) isolated from Chinese beef processing plants. Meat Sci. 2020, 168, e108188. [Google Scholar] [CrossRef] [PubMed]
- de Assis, D.C.S.; da Silva, T.M.L.; Brito, R.F.; da Silva, L.C.G.; Lima, W.G.; Brito, J.C.M. Shiga toxin-producing Escherichia coli (STEC) in bovine meat and meat products over the last 15 years in Brazil: A systematic Review and meta-analysis. Meat Sci. 2021, 173, e108394. [Google Scholar] [CrossRef] [PubMed]
- Torso, L.M.; Voorhees, R.E.; Forest, S.A.; Gordon, A.Z.; Silvestri, S.A.; Kissler, B.; Schlackman, J.; Sandt, C.H.; Toma, P.; Bachert, J.; et al. Escherichia coli O157:H7 Outbreak Associated with Restaurant Beef Grinding. J. Food Protect. 2015, 78, 1272–1279. [Google Scholar] [CrossRef]
- Attenborough, M.; Matthews, K.R. Food safety through the meat supply chain. J. Appl. Microbiol. 2000, 88, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.; McKay, A.M.; Connolly, M.; Linton, M. Effect of high pressure on the microbiological quality of cooked chicken during storage at normal and abuse refrigeration temperatures. Food Microbiol. 2010, 27, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Sheen, S.; Cassidy, J.; Scullen, B.; Sommers, C. Inactivation of a diverse set of shiga toxin-producing Escherichia coli in ground beef by high pressure processing. Food Microbiol. 2015, 52, 84–87. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brügemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Bernié, I.M.; Mussio, P.; Jorcin, S.; Rajchman, M.; López-Pedemonte, T. Application of high hydrostatic pressure for the reduction of STEC on raw ground beef patties and its impact on physicochemical properties: pH and color. LWT 2021, 151, e112126. [Google Scholar] [CrossRef]
- Fagan, P.K.; Hornitzky, M.A.; Bettelheim, K.A.; Djordjevic, S.P. Detection of Shiga-Like toxin (stx1 and stx2), Intimin (eaeA), and Enterohemorrhagic Escherichia coli (EHEC) Hemolysin (EHEC hlyA) Genes in Animal feces by Multiplex PCR. Appl. Environ. Microb. 1999, 65, 868–872. [Google Scholar] [CrossRef] [Green Version]
- Feiner, G. Meat Products Handbook. Practical Science and Technology, 1st ed.; Woodhead Publishing Limited: Boca Raton, FL, USA, 2006; 648p. [Google Scholar]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013; 9p.
- Gareis, M.; Kabisch, J.; Pichner, R.; Hechelmann, H. Absterbekinetik von Salmonella spp. in Minisalamis (Behaviour and survival of Salmonella spp. in minisalami). Fleischwirtsch. 2010, 90, 98–106. [Google Scholar]
- Black, E.P.; Hirneisen, K.A.; Hoover, D.G.; Kniel, K.E. Fate of Escherichia coli O157:H7 in ground beef following high-pressure processing and freezing. J. Appl. Microbiol. 2010, 108, 1352–1360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Scheinberg, J.A.; Senevirathne, R.; Cutter, C.N. The efficacy of short and repeated high-pressure processing treatments on the reduction of non-O157:H7 Shiga-toxin producing Escherichia coli in ground beef patties. Meat Sci. 2015, 102, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, 5967. [Google Scholar]
- Zhou, Y.; Karwe, M.V.; Matthews, K.R. Differences in inactivation of Escherichia coli O157:H7 strains in ground beef following repeated high pressure processing treatments and cold storage. Food Microbiol. 2016, 58, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Porto-Fett, A.C.S.; Jackson-Davis, A.; Kassama, L.S.; Daniel, M.; Oliver, M.; Jung, Y.; Luchansky, J.B. Inactivation of Shiga Toxin-Producing Escherichia coli in Refrigerated and Frozen Meatballs Using High Pressure Processing. Microorganisms 2020, 8, 360. [Google Scholar] [CrossRef]
- Hsu, H.; Sheen, S.; Sites, J.; Cassidy, J.; Scullen, B.; Sommers, C. Effect of High Pressure Processing on the survival of Shiga Toxin-Producing Escherichia coli (Big Six vs. O157:H7) in ground beef. Food Microbiol. 2015, 48, 1–7. [Google Scholar] [CrossRef]
- Álvarez-Ordóñez, A.; Alvseike, O.; Omer, M.K.; Heir, E.; Axelsson, L.; Holck, A.; Prieto, M. Heterogeneity in resistance to food-related stresses and biofilm formation ability among verocytotoxigenic Escherichia coli strains. Int. J. Food Microbiol. 2013, 161, 220–230. [Google Scholar] [CrossRef]
- Gayán, E.; Cambré, A.; Michiels, C.W.; Aertsen, A. RpoS-independent evolution reveals the importance of attenuated cAMP/CRP regulation in high hydrostatic pressure resistence acquisition in E. coli. Sci. Rep. 2017, 7, e8600. [Google Scholar] [CrossRef]
- Gayán, E.; Rutten, N.; Van Impe, J.; Michiels, C.W.; Aertsen, A. Identification of novel genes involved in high hydrostatic pressure resistance of Escherichia coli. Food Microbiol. 2019, 78, 171–178. [Google Scholar] [CrossRef]
- Diez, A.M.; Björkroth, J.; Jaime, I.; Rovira, J. Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides. Int. J. Food Microbiol. 2009, 131, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Vercammen, A.; Vanoirbeek, K.G.A.; Lurquin, I.; Steen, L.; Goemaere, O.; Szczepaniak, S.; Paelinck, H.; Hendrickx, M.E.G.; Michiels, C.W. Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives. Innov. Food Sci. Emerg. 2011, 12, 407–415. [Google Scholar] [CrossRef]
- Barbosa, A.D.; Alexandre, B.; Tondo, E.C.; Malheiros, P.S. Microbial survival in gourmet hamburger thermally processed by different degrees od doneness. Int. J. Gastron. Food Sci. 2022, 28, 100501. [Google Scholar] [CrossRef]
- Ferigolo, L.P.; Elias, S.O.; da Silva, D.C.; Lopes, S.M.; Geimba, M.P.; Tondo, E.C. Escherichia coli inactivation on tenderloin beef medallions processed by sous vide treatment. Int. J. Gastron. Food Sci. 2021, 25, e100366. [Google Scholar] [CrossRef]
- Kameník, J.; Saláková, A.; Hulánková, R.; Bořilová, G. The effect of high pressure on the microbiological quality and other characteristics of cooked sausages packed in a modified atmosphere or vacuum. Food Control. 2015, 57, 232–237. [Google Scholar] [CrossRef]
- Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value added meat products. Meat Sci. 2012, 92, 280–289. [Google Scholar] [CrossRef]
- del Olmo, A.; Calzada, J.; Nuñez, M. Effect of high pressure processing and modified atmosphere packaging on the safety and quality of sliced ready-to-eat „lacón“, a cured-cooked pork meat product. Innov. Food Sci. Emerg. 2014, 23, 25–32. [Google Scholar] [CrossRef]
Treatment Mode (n = 5) | TVC (log CFU/g) | |
---|---|---|
STEC Inoculum 3 log CFU/g | STEC Inoculum 6 log CFU/g | |
before STEC inoculation | 7.08 ± 0.02 a | |
after inoculation before HPP | 7.07 ± 0.12 a | 7.29 ± 0.02 b |
400 MPa/5 min (48 h after HPP) | 6.61 ± 0.04 c | 6.64 ± 0.03 c |
400 MPa/5 min (168 h after HPP) | 6.55 ± 0.03 d | 6.66 ± 0.04 c |
600 MPa/5 min (48 h after HPP) | 5.67 ± 0.04 e | 5.59 ± 0.06 e |
600 MPa/5 min (168 h after HPP) | 5.62 ± 0.04 e | 5.66 ± 0.07 e |
Treatment Mode (n = 5) | STEC Concentration (log CFU/g) | |
---|---|---|
STEC Inoculum 3 log CFU/g | STEC Inoculum 6 log CFU/g | |
after inoculation before HPP | 3.80 ± 0.06 a | 6.39 ± 0.14 a |
400 MPa/5 min (48 h after HPP) | 2.18 ± 0.29 b | 4.67 ± 0.06 b |
400 MPa/5 min (168 h after HPP) | 1.90 ± 0.28 b | 4.59 ± 0.19 b |
600 MPa/5 min (48 h after HPP) | ND | ND |
600 MPa/5 min (168 h after HPP) | ND | ND |
Treatment Mode (n = 2) | STEC Concentration (log CFU/g) | |
---|---|---|
STEC Inoculum 3 log CFU/g | STEC Inoculum 6 log CFU/g | |
after STEC inoculation | 3.80 ± 0.06 | 6.39 ± 0.14 |
55 °C/1 h | ND | ND |
55 °C/3 h | ND | ND |
55 °C/6 h | ND | ND |
Determination of STEC after enrichment * | ||
55 °C/1 h | 2/2 | 2/2 |
55 °C/3 h | 0/2 | 2/2 |
55 °C/6 h | 0/2 | 0/2 |
Parameters of Sample | CIELab Parameters | |||||
---|---|---|---|---|---|---|
L* | a* | b* | ||||
untreated sample | 45.78 | 10.34 | 13.35 | |||
HPP | 400 MPa | 600 MPa | 400 MPa | 600 MPa | 400 MPa | 600 MPa |
3 log/48 h | 51.97 | 53.23 | 15.73 | 14.83 | 12.42 | 11.88 |
6 log/48 h | 50.90 | 52.68 | 18.19 | 16.37 | 13.90 | 12.69 |
3 log/168 h | 51.37 | 53.72 | 16.33 | 14.63 | 13.09 | 12.06 |
6 log/168 h | 50.96 | 51.88 | 14.53 | 10.96 | 12.89 | 12.09 |
p = 0.0002 | p = 0.003 | p = 0.003 | ||||
water bath | L* | a* | b* | |||
55 °C/1 h | 51.70 | 14.12 | 11.05 | |||
55 °C/3 h | 52.20 | 14.69 | 11.06 | |||
55 °C/6 h | 51.50 | 14.56 | 10.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kameník, J.; Dušková, M.; Dorotíková, K.; Hušáková, M.; Ježek, F. The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario? Microorganisms 2023, 11, 377. https://doi.org/10.3390/microorganisms11020377
Kameník J, Dušková M, Dorotíková K, Hušáková M, Ježek F. The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario? Microorganisms. 2023; 11(2):377. https://doi.org/10.3390/microorganisms11020377
Chicago/Turabian StyleKameník, Josef, Marta Dušková, Kateřina Dorotíková, Markéta Hušáková, and František Ježek. 2023. "The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario?" Microorganisms 11, no. 2: 377. https://doi.org/10.3390/microorganisms11020377
APA StyleKameník, J., Dušková, M., Dorotíková, K., Hušáková, M., & Ježek, F. (2023). The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario? Microorganisms, 11(2), 377. https://doi.org/10.3390/microorganisms11020377