Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Their Growth
2.2. Production and Purification of the Bacteriophage
2.3. Host Range Assessment
2.4. Adsorption Time and Receptor Saturation
2.5. Infection Cycle
2.6. Electron Microscopy
2.7. RNA Isolation
2.8. Codon Usage Analysis
2.9. Ultraperformance Liquid Chromatography–Mass Spectrometry (UPLC-MS) Analysis of tRNA Modifications
2.10. Statistical Analyses
3. Results
3.1. High MOI Is Required for Complete Infection of the Liquid S. glacialimarina Culture
3.2. Phage 1/4 Infection Causes Comprehensive Changes to Intra- and Extracellular Structures
3.3. Codon Usage Analysis Reveals Unexpected Mismatches between Phage 1/4 and Its Host
3.4. Phage 1/4 Infection Alters Host tRNA Modification Dynamics to Favor Virus Replication
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koonin, E.V.; Dolja, V.V.; Krupovic, M. The logic of virus evolution. Cell Host Microbe 2022, 30, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.; Mathews, M.B.; Mohr, I. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harb. Perspect. Biol. 2013, 5, a012351. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.S.; Sarin, L.P. Transfer RNA modification and infection—Implications for pathogenicity and host responses. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2018, 1861, 419–432. [Google Scholar] [CrossRef]
- Motorin, Y.; Helm, M. tRNA Stabilization by Modified Nucleotides. Biochemistry 2010, 49, 4934–4944. [Google Scholar] [CrossRef]
- Sylvers, L.A.; Rogers, K.C.; Shimizu, M.; Ohtsuka, E.; Söll, D. A 2-thiouridine derivative in tRNAGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 1993, 32, 3836–3841. [Google Scholar] [CrossRef]
- de Crecy-Lagard, V.; Jaroch, M. Functions of Bacterial tRNA Modifications: From Ubiquity to Diversity. Trends Microbiol. 2021, 29, 41–53. [Google Scholar]
- Graham, W.D.; Barley-Maloney, L.; Stark, C.J.; Kaur, A.; Stolarchuk, C.; Sproat, B.; Leszczynska, G.; Malkiewicz, A.; Safwat, N.; Mucha, P.; et al. Functional Recognition of the Modified Human tRNALys3UUU Anticodon Domain by HIV’s Nucleocapsid Protein and a Peptide Mimic. J. Mol. Biol. 2011, 410, 698–715. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.L.; Xiao, X.; Hall, C.K.; Agris, P.F. Amino Acid Signature Enables Proteins to Recognize Modified tRNA. Biochemistry 2014, 53, 1125–1133. [Google Scholar] [CrossRef]
- Chan, C.; Pham, P.; Dedon, P.C.; Begley, T.J. Lifestyle modifications: Coordinating the tRNA epitranscriptome with codon bias to adapt translation during stress responses. Genome Biol. 2018, 19, 228. [Google Scholar] [CrossRef]
- Plant, E.P.; Ye, Z. Bias at the third nucleotide of codon pairs in virus and host genomes. Sci. Rep. 2022, 12, 4522. [Google Scholar] [CrossRef]
- Carbone, A. Codon Bias is a Major Factor Explaining Phage Evolution in Translationally Biased Hosts. J. Mol. Evol. 2008, 66, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Fujimoto, H.; Nishimura, K.; Charoensuk, K.; Nagamitsu, H.; Raina, S.; Kosaka, T.; Oshima, T.; Ogasawara, N.; Yamada, M. Molecular Strategy for Survival at a Critical High Temperature in Eschierichia coli. PLoS ONE 2011, 6, e20063. [Google Scholar] [CrossRef]
- Endres, L.; Dedon, P.C.; Begley, T.J. Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses. RNA Biol. 2015, 12, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Jungfleisch, J.; Böttcher, R.; Talló-Parra, M.; Pérez-Vilaró, G.; Merits, A.; Novoa, E.M.; Díez, J. CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nat. Commun. 2022, 13, 4725. [Google Scholar] [CrossRef]
- Maynard, N.D.; Macklin, D.N.; Kirkegaard, K.; Covert, M.W. Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol. Syst. Biol. 2012, 8, 567. [Google Scholar] [CrossRef] [PubMed]
- Senčilo, A.; Luhtanen, A.-M.; Saarijärvi, M.; Bamford, D.H.; Roine, E. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions. Environ. Microbiol. 2015, 17, 3628–3641. [Google Scholar] [CrossRef]
- Qasim, M.S.; Lampi, M.; Heinonen, M.-M.K.; Garrido-Zabala, B.; Bamford, D.H.; Käkelä, R.; Roine, E.; Sarin, L.P. Cold-Active Shewanella glacialimarina TZS-4T nov. Features a Temperature-Dependent Fatty Acid Profile and Putative Sialic Acid Metabolism. Front. Microbiol. 2021, 12, 737641. [Google Scholar] [CrossRef]
- Luhtanen, A.-M.; Eronen-Rasimus, E.; Kaartokallio, H.; Rintala, J.-M.; Autio, R.; Roine, E. Isolation and characterization of phage–host systems from the Baltic Sea ice. Extremophiles 2014, 18, 121–130. [Google Scholar] [CrossRef]
- Adams, M. Bacteriophages; Interscience Publishers: New York, NY, USA, 1959. [Google Scholar]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Stothard, P.; Hiseni, P.; Wilson, R.C.; Storrø, O.; Johnsen, R.; Øien, T.; Rudi, K. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef]
- Sarin, L.P.; Kienast, S.D.; Leufken, J.; Ross, R.L.; Dziergowska, A.; Debiec, K.; Sochacka, E.; Limbach, P.A.; Fufezan, C.; Drexler, H.C.A.; et al. Nano LC-MS using capillary columns enables accurate quantification of modified ribonucleosides at low femtomol levels. RNA 2018, 24, 1403–1417. [Google Scholar] [CrossRef] [PubMed]
- Gregorova, P.; Sipari, N.H.; Sarin, L.P. Broad-range RNA modification analysis of complex biological samples using rapid C18-UPLC-MS. RNA Biol. 2021, 18, 1382–1389. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef]
- Boccaletto, P.; Stefaniak, F.; Ray, A.; Cappannini, A.; Mukherjee, S.; Purta, E.; Kurkowska, M.; Shirvanizadeh, N.; Destefanis, E.; Groza, P.; et al. MODOMICS: A database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022, 50, D231–D235. [Google Scholar] [CrossRef] [PubMed]
- ZoBell, C.E. Marine Microbiology, a Monograph on Hydrobacteriology; Chronica Botanica Company: Waltham, MA, USA, 1946. [Google Scholar]
- Demina, T.A.; Luhtanen, A.-M.; Roux, S.; Oksanen, H.M. Virus-Host Interactions and Genetic Diversity of Antarctic Sea Ice Bacteriophages. mBio 2022, 13, e0065122. [Google Scholar] [CrossRef]
- Dy, R.L.; Richter, C.; Salmond, G.P.; Fineran, P.C. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu. Rev. Virol. 2014, 1, 307–331. [Google Scholar] [CrossRef]
- Esteves, N.C.; Scharf, B.E. Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int. J. Mol. Sci. 2022, 23, 7084. [Google Scholar] [CrossRef]
- Mioduser, O.; Goz, E.; Tuller, T. Significant differences in terms of codon usage bias between bacteriophage early and late genes: A comparative genomics analysis. BMC Genom. 2017, 18, 866. [Google Scholar] [CrossRef]
- Lucks, J.B.; Nelson, D.R.; Kudla, G.R.; Plotkin, J.B. Genome Landscapes and Bacteriophage Codon Usage. PLoS Comput. Biol. 2008, 4, e1000001. [Google Scholar] [CrossRef]
- Sarin, L.P. Learning from the Invaders: What Viruses Teach Us about RNA-Based Regulation in Microbes. Microorganisms 2022, 10, 2106. [Google Scholar] [CrossRef]
- Oerum, S.; Dégut, C.; Barraud, P.; Tisné, C. m1A Post-Transcriptional Modification in tRNAs. Biomolecules 2017, 7, 20. [Google Scholar] [CrossRef] [PubMed]
- Kierzek, E.; Malgowska, M.; Lisowiec, J.; Turner, D.H.; Gdaniec, Z.; Kierzek, R. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 2014, 42, 3492–3501. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, U.; Bohleber, S.; Fradejas-Villar, N. The modified base isopentenyladenosine and its derivatives in tRNA. RNA Biol. 2017, 14, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Galvanin, A.; Vogt, L.-M.; Grober, A.; Freund, I.; Ayadi, L.; Bourguignon-Igel, V.; Bessler, L.; Jacob, D.; Eigenbrod, T.; Marchand, V.; et al. Bacterial tRNA 2′-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Res. 2020, 48, 12833–12844. [Google Scholar] [CrossRef]
- Satoh, A.; Takai, K.; Ouchi, R.; Yokoyama, S.; Takaku, H. Effects of anticodon 2′-O-methylations on tRNA codon recognition in an Escherichia coli cell-free translation. RNA 2000, 6, 680–686. [Google Scholar] [CrossRef]
- Schwarz, K.B. Oxidative stress during viral infection: A review. Free. Radic. Biol. Med. 1996, 21, 641–649. [Google Scholar] [CrossRef]
- Kimura, S.; Waldor, M.K. The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Proc. Natl. Acad. Sci. USA 2019, 116, 1394–1403. [Google Scholar] [CrossRef]
- Thiaville, P.C.; Iwata-Reuyl, D.; de Crécy-Lagard, V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t(6)A), a universal modification of tRNA. RNA Biol. 2014, 11, 1529–1539. [Google Scholar] [CrossRef]
- Meier, F.; Suter, B.; Grosjean, H.; Keith, G.; Kubli, E. Queuosine modification of the wobble base in tRNAHis influences ’in vivo’ decoding properties. EMBO J. 1985, 4, 823–827. [Google Scholar] [CrossRef]
- Yu, N.; Jora, M.; Solivio, B.; Thakur, P.; Acevedo-Rocha, C.G.; Randau, L.; de Crécy-Lagard, V.; Addepalli, B.; Limbach, P.A. tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. J. Bacteriol. 2019, 201, e00690-18. [Google Scholar] [CrossRef]
- Goz, E.; Mioduser, O.; Diament, A.; Tuller, T. Evidence of translation efficiency adaptation of the coding regions of the bacteriophage lambda. DNA Res. 2017, 24, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Björk, G.R.; Hagervall, T.G. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014, 6. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-I.; Miyauchi, K.; Matuszewski, M.; D’Almeida, G.S.; Rubio, M.A.T.; Alfonzo, J.D.; Inoue, K.; Sakaguchi, Y.; Suzuki, T.; Sochacka, E.; et al. Identification of 2-methylthio cyclic N6-threonylcarbamoyladenosine (ms2ct6A) as a novel RNA modification at position 37 of tRNAs. Nucleic Acids Res. 2016, 45, 2124–2136. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, D.V.; Garber, M.B. Overlapping genes in bacterial and phage genomes. Mol. Biol. 2000, 34, 485–495. [Google Scholar] [CrossRef]
- Baranov, P.V.; Fayet, O.; Hendrix, R.W.; Atkins, J.F. Recoding in bacteriophages and bacterial IS elements. Trends Genet. 2006, 22, 174–181. [Google Scholar] [CrossRef]
- Kulkarni, S.; Rubio, M.A.T.; Hegedűsová, E.; Ross, R.L.; A Limbach, P.; Alfonzo, J.D.; Paris, Z. Preferential import of queuosine-modified tRNAs into Trypanosoma brucei mitochondrion is critical for organellar protein synthesis. Nucleic Acids Res. 2021, 49, 8247–8260. [Google Scholar] [CrossRef]
Amino Acid | Host Genome | Virus Genome | Early Gene Set | Late Gene Set | Viral MCP Gene | Host Encodes | Virus Encodes |
---|---|---|---|---|---|---|---|
Alanine | GCA | GCT | GCA | GCT | GCT | 3 × GCA 2 × GCC | |
Cysteine | TGC | TGT | TGT | TGT | TGT | 1 × TGC | |
Phenylalanine | TTT | TTT | TTT | TTT | TTC | 2 × TCC | |
Isoleucine | ATT | ATT | ATT | ATA | ATC | 4 × ATC | |
Leucine | TTA | TTA | TTA | TTA/ CTA | CTA | 1 × TGG 3 × TTA 2 × CTA 1 × CTC | |
Lysine | AAA | AAA | AAA | AAG | AAA | 9 × AAA | |
Proline | CCA | CCT | CCA/ CCT | CCT | CCA | 3 × CCA 1 × CCC | |
Arginine | AGA | AGA | AGA | CGT | CGT | 1 × AGA 1 × CGG 4 × CGC | 1 × AGA |
Serine | AGC/TCA | AGT | AGT | TCT | TCA | 2 × AGC 2 × TCA 1 × TCC | |
Threonine | ACA/ ACT/ACC | ACA | ACA/ ACT | ACT | ACT | 2 × ACA 1 × ACC | |
Valine | GTT | GTA/ GTT | GTT | GTT | GTT | 6 × GTA 2 × GTC | |
Tyrosine | TAT | TAT | TAT | TAC | TAC | 4 × TAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lampi, M.; Gregorova, P.; Qasim, M.S.; Ahlblad, N.C.V.; Sarin, L.P. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms 2023, 11, 355. https://doi.org/10.3390/microorganisms11020355
Lampi M, Gregorova P, Qasim MS, Ahlblad NCV, Sarin LP. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms. 2023; 11(2):355. https://doi.org/10.3390/microorganisms11020355
Chicago/Turabian StyleLampi, Mirka, Pavlina Gregorova, M. Suleman Qasim, Niklas C. V. Ahlblad, and L. Peter Sarin. 2023. "Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications" Microorganisms 11, no. 2: 355. https://doi.org/10.3390/microorganisms11020355