An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture
Abstract
:1. Introduction
2. Principles of Immunology Relevant to Oral Vaccination
2.1. Innate Immunity
2.2. Adaptive Immunity
2.3. Mucosal Immunology
2.3.1. Organized Mucosal Lymphoid Tissues
2.3.2. Diffuse Mucosal Lymphoid Tissues
2.4. Intestinal Immunology
3. History and Present Status of Oral Vaccination
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Snieszko, S.; Piotrowska, W.; Kocylowski, B.; Marek, K. Bacteriological and Serological Studies on Carp Sepsis Bacteria. In Memoirs of the Institute of Ichthyobiology and Pisciculture of the Experimental Pisciculture Station in Mydlnkiki of the Jagiellonian University in Krakow; 1938; Volume 38. [Google Scholar]
- Duff, D.C.B. The Oral Immunization of Trout Against Bacterium Salmonicida. J. Immunol. 1942, 44, 87–94. [Google Scholar] [CrossRef]
- Egidius, E.; Wiik, R.; Andersen, K.; Hoff, K.A.; Hjeltnes, B. Vibrio salmonicida Sp. Nov., a New Fish Pathogen. Int. J. Syst. Bacteriol. 1986, 36, 518–520. [Google Scholar] [CrossRef]
- Gudding, R.; Van Muiswinkel, W.B. A History of Fish Vaccination. Fish Shellfish Immunol. 2013, 35, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Bruce, T.J.; Jones, E.M.; Cain, K.D. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019, 7, 569. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, P.S.; Cain, K.D. Prospects and Challenges of Developing and Commercializing Immersion Vaccines for Aquaculture. Int. Biol. Rev. 2017, 1, 1–20. [Google Scholar] [CrossRef]
- Gudding, R.; Lillehaug, A.; Evensen, O.; Gudding, R. Fish Vaccination; Gudding, R., Lillehaug, A., Evensen, Ø., Eds.; Wiley: Chichester, UK, 2014. [Google Scholar] [CrossRef]
- Kileng, O.; Albuquerque, A.; Robertsen, B. Induction of Interferon System Genes in Atlantic Salmon by the Imidazoquinoline S-27609, a Ligand for Toll-like Receptor 7. Fish Shellfish Immunol. 2008, 24, 514–522. [Google Scholar] [CrossRef]
- Strandskog, G.; Skjæveland, I.; Ellingsen, T.; Jørgensen, J.B. Double-Stranded RNA- and CpG DNA-Induced Immune Responses in Atlantic Salmon: Comparison and Synergies. Vaccine 2008, 26, 4704–4715. [Google Scholar] [CrossRef]
- Chen, K.; Cerutti, A. Vaccination Strategies to Promote Mucosal Antibody Responses. Immunity 2010, 33, 479–491. [Google Scholar] [CrossRef]
- Watts, M.; Munday, B.; Burke, C. Immune Responses of Teleost Fish. Aust. Vet. J. 2001, 79, 570–574. [Google Scholar] [CrossRef]
- Bly, J.E.; Clem, L.W. Temperature and Teleost Immune Functions. Fish Shellfish Immunol. 1992, 2, 159–171. [Google Scholar] [CrossRef]
- Punt, J.; Owen, J.A.; Stranford, S.A.; Jones, P.P.; Kuby, J. Kuby Immunology, 8th ed.; W.H. Freeman/Macmillan Learning: New York, NY, USA, 2019. [Google Scholar]
- Secombes, C.J.; Ellis, A.E. The Immunology of Teleosts. In Fish Pathology; Wiley: Chichester, UK, 2012; pp. 144–166. [Google Scholar] [CrossRef]
- Salinas, I.; Zhang, Y.A.; Sunyer, J.O. Mucosal Immunoglobulins and B Cells of Teleost Fish. Dev. Comp. Immunol. 2011, 35, 1346–1365. [Google Scholar] [CrossRef]
- Nakanishi, T.; Shibasaki, Y.; Matsuura, Y. T Cells in Fish. Biology 2015, 4, 640–663. [Google Scholar] [CrossRef]
- Zwollo, P.; Cole, S.; Bromage, E.; Kaattari, S. B Cell Heterogeneity in the Teleost Kidney: Evidence for a Maturation Gradient from Anterior to Posterior Kidney. J. Immunol. 2005, 174, 6608–6616. [Google Scholar] [CrossRef]
- Ye, J.; Kaattari, I.M.; Ma, C.; Kaattari, S. The Teleost Humoral Immune Response. Fish Shellfish Immunol. 2013, 35, 1719–1728. [Google Scholar] [CrossRef]
- Mashoof, S.; Criscitiello, M. Fish Immunoglobulins. Biology 2016, 5, 45. [Google Scholar] [CrossRef]
- Flajnik, M.F.; Kasahara, M. Origin and Evolution of the Adaptive Immune System: Genetic Events and Selective Pressures. Nat. Rev. Genet. 2010, 11, 47–59. [Google Scholar] [CrossRef]
- Hamuro, K.; Suetake, H.; Saha, N.R.; Kikuchi, K.; Suzuki, Y. A Teleost Polymeric Ig Receptor Exhibiting Two Ig-Like Domains Transports Tetrameric IgM into the Skin. J. Immunol. 2007, 178, 5682–5689. [Google Scholar] [CrossRef]
- Boshra, H.; Gelman, A.E.; Sunyer, J.O. Structural and Functional Characterization of Complement C4 and C1s-Like Molecules in Teleost Fish: Insights into the Evolution of Classical and Alternative Pathways. J. Immunol. 2004, 173, 349–359. [Google Scholar] [CrossRef]
- Adams, A. Progress, Challenges and Opportunities in Fish Vaccine Development. Fish Shellfish Immunol. 2019, 90, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.T.; Kayansamruaj, P.; Taengphu, S.; Senapin, S.; Costa, J.Z.; del-Pozo, J.; Thompson, K.D.; Rodkhum, C.; Dong, H.T. Efficacy of Heat-killed and Formalin-killed Vaccines against Tilapia tilapinevirus in Juvenile Nile Tilapia (Oreochromis niloticus). J. Fish. Dis. 2021, 44, 2097–2109. [Google Scholar] [CrossRef]
- Ma, J.; Bruce, T.J.; Sudheesh, P.S.; Knupp, C.; Loch, T.P.; Faisal, M.; Cain, K.D. Assessment of Cross-protection to Heterologous Strains of Flavobacterium Psychrophilum Following Vaccination with a Live-attenuated Coldwater Disease Immersion Vaccine. J. Fish. Dis. 2019, 42, 75–84. [Google Scholar] [CrossRef]
- Wilson, M.; Bengtén, E.; Miller, N.W.; Clem, L.W.; Du Pasquier, L.; Warr, G.W. A Novel Chimeric Ig Heavy Chain from a Teleost Fish Shares Similarities to IgD. Proc. Natl. Acad. Sci. USA 1997, 94, 4593–4597. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Salinas, I.; Li, J.; Parra, D.; Bjork, S.; Xu, Z.; LaPatra, S.E.; Bartholomew, J.; Sunyer, J.O. IgT, a Primitive Immunoglobulin Class Specialized in Mucosal Immunity. Nat. Immunol. 2010, 11, 827–835. [Google Scholar] [CrossRef]
- Hordvik, I. Identification of a Novel Immunoglobulin δ Transcript and Comparative Analysis of the Genes Encoding IgD in Atlantic Salmon and Atlantic Halibut. Mol. Immunol. 2002, 39, 85–91. [Google Scholar] [CrossRef]
- Srisapoome, P.; Ohira, T.; Hirono, I.; Aoki, T. Genes of the Constant Regions of Functional Immunoglobulin Heavy Chain of Japanese Flounder, Paralichthys Olivaceus. Immunogenetics 2004, 56, 292–300. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Huang, Z.; Dong, S.; Luo, Y.; Yu, W.; Yin, Y.; Li, H.; Liu, Y.; Zhou, X.; et al. Immunoglobulin (Ig) Heavy Chain Gene Locus and Immune Responses upon Parasitic, Bacterial and Fungal Infection in Loach, Misgurnus Anguillicaudatus. Fish Shellfish Immunol. 2019, 86, 1139–1150. [Google Scholar] [CrossRef]
- Ramirez-Gomez, F.; Greene, W.; Rego, K.; Hansen, J.D.; Costa, G.; Kataria, P.; Bromage, E.S. Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced through a Novel Splicing Mechanism. J. Immunol. 2012, 188, 1341–1349. [Google Scholar] [CrossRef]
- Salinas, I.; Fernández-Montero, Á.; Ding, Y.; Sunyer, J.O. Mucosal Immunoglobulins of Teleost Fish: A Decade of Advances. Dev. Comp. Immunol. 2021, 121, 104079. [Google Scholar] [CrossRef]
- Hansen, J.D.; Landis, E.D.; Phillips, R.B. Discovery of a Unique Ig Heavy-Chain Isotype (IgT) in Rainbow Trout: Implications for a Distinctive B Cell Developmental Pathway in Teleost Fish. Proc. Natl. Acad. Sci. USA 2005, 102, 6919–6924. [Google Scholar] [CrossRef]
- Danilova, N.; Bussmann, J.; Jekosch, K.; Steiner, L.A. The Immunoglobulin Heavy-Chain Locus in Zebrafish: Identification and Expression of a Previously Unknown Isotype, Immunoglobulin Z. Nat. Immunol. 2005, 6, 295–302. [Google Scholar] [CrossRef]
- Ballesteros, N.A.; Castro, R.; Abos, B.; Rodríguez Saint-Jean, S.S.; Pérez-Prieto, S.I.; Tafalla, C. The Pyloric Caeca Area Is a Major Site for IgM+ and IgT+ B Cell Recruitment in Response to Oral Vaccination in Rainbow Trout. PLoS ONE 2013, 8, e66118. [Google Scholar] [CrossRef] [PubMed]
- Raida, M.K.; Buchmann, K. Bath Vaccination of Rainbow Trout (Oncorhynchus Mykiss Walbaum) against Yersinia Ruckeri: Effects of Temperature on Protection and Gene Expression. Vaccine 2008, 26, 1050–1062. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.; Magadán, S. Immunoglobulins in Teleost. In Principles of Fish Immunology; Springer International Publishing: Cham, Switzerland, 2022; pp. 229–251. [Google Scholar] [CrossRef]
- Takizawa, F.; Dijkstra, J.M.; Kotterba, P.; Korytář, T.; Kock, H.; Köllner, B.; Jaureguiberry, B.; Nakanishi, T.; Fischer, U. The Expression of CD8α Discriminates Distinct T Cell Subsets in Teleost Fish. Dev. Comp. Immunol. 2011, 35, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, F.; Castro, R.; Randelli, E.; Lefranc, M.-P.; Six, A.; Kuhl, H.; Reinhardt, R.; Facchiano, A.; Boudinot, P.; Scapigliati, G. Diversity, Molecular Characterization and Expression of T Cell Receptor γ in a Teleost Fish, the Sea Bass (Dicentrarchus labrax, L.). PLoS ONE 2012, 7, e47957. [Google Scholar] [CrossRef]
- Wan, F.; Hu, C.; Ma, J.; Gao, K.; Xiang, L.; Shao, J. Characterization of Γδ T Cells from Zebrafish Provides Insights into Their Important Role in Adaptive Humoral Immunity. Front. Immunol. 2017, 7. [Google Scholar] [CrossRef]
- Tian, H.; Xing, J.; Tang, X.; Chi, H.; Sheng, X.; Zhan, W. Cluster of Differentiation Antigens: Essential Roles in the Identification of Teleost Fish T Lymphocytes. Mar. Life Sci. Technol. 2022, 4, 303–316. [Google Scholar] [CrossRef]
- Tajimi, S.; Kondo, M.; Nakanishi, T.; Nagasawa, T.; Nakao, M.; Somamoto, T. Generation of Virus-Specific CD8+ T Cells by Vaccination with Inactivated Virus in the Intestine of Ginbuna Crucian Carp. Dev. Comp. Immunol. 2019, 93, 37–44. [Google Scholar] [CrossRef]
- Adelmann, M.; Köllner, B.; Bergmann, S.M.; Fischer, U.; Lange, B.; Weitschies, W.; Enzmann, P.-J.; Fichtner, D. Development of an Oral Vaccine for Immunisation of Rainbow trout (Oncorhynchus mykiss) against Viral Haemorrhagic Septicaemia. Vaccine 2008, 26, 837–844. [Google Scholar] [CrossRef]
- Ballesteros, N.A.; Alonso, M.; Saint-Jean, S.R.; Perez-Prieto, S.I. An Oral DNA Vaccine against Infectious Haematopoietic Necrosis Virus (IHNV) Encapsulated in Alginate Microspheres Induces Dose-Dependent Immune Responses and Significant Protection in Rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2015, 45, 877–888. [Google Scholar] [CrossRef]
- Ballesteros, N.A.; Saint-Jean, S.S.R.; Encinas, P.A.; Perez-Prieto, S.I.; Coll, J.M. Oral Immunization of Rainbow Trout to Infectious Pancreatic Necrosis Virus (Ipnv) Induces Different Immune Gene Expression Profiles in Head Kidney and Pyloric Ceca. Fish Shellfish Immunol. 2012, 33, 174–185. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takizawa, F.; Furihata, M.; Soto-Lampe, V.; Dijkstra, J.M.; Fischer, U. Teleost Cytotoxic T Cells. Fish Shellfish Immunol. 2019, 95, 422–439. [Google Scholar] [CrossRef]
- Muñoz-Atienza, E.; Díaz-Rosales, P.; Tafalla, C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front. Immunol. 2021, 11, 622377. [Google Scholar] [CrossRef] [PubMed]
- Ashfaq, H.; Soliman, H.; Saleh, M.; El-Matbouli, M. CD4: A Vital Player in the Teleost Fish Immune System. Vet. Res. 2019, 50, 1. [Google Scholar] [CrossRef] [PubMed]
- Somamoto, T.; Kondo, M.; Nakanishi, T.; Nakao, M. Helper Function of CD4+ Lymphocytes in Antiviral Immunity in Ginbuna Crucian Carp, Carassius Auratus Langsdorfii. Dev. Comp. Immunol. 2014, 44, 111–115. [Google Scholar] [CrossRef]
- Bela-ong, D.B.; Thompson, K.D.; Kim, H.J.; Park, S.B.; Jung, T.S. CD4+ T Lymphocyte Responses to Viruses and Virus-Relevant Stimuli in Teleost Fish. Fish Shellfish Immunol. 2023, 142, 109007. [Google Scholar] [CrossRef] [PubMed]
- Buchmann, K.; Secombes, C.J. (Eds.) Principles of Fish Immunology; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Munang’andu, H.M.; Mutoloki, S.; Evensen, Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front. Immunol. 2015, 6, 427. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The Mucosal Immune System of Fish: The Evolution of Tolerating Commensals While Fighting Pathogens. Fish Shellfish Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef]
- Zhao, X.; Findly, R.C.; Dickerson, H.W. Cutaneous Antibody-Secreting Cells and B Cells in a Teleost Fish. Dev. Comp. Immunol. 2008, 32, 500–508. [Google Scholar] [CrossRef]
- Haugarvoll, E.; Bjerkås, I.; Nowak, B.F.; Hordvik, I.; Koppang, E.O. Identification and Characterization of a Novel Intraepithelial Lymphoid Tissue in the Gills of Atlantic Salmon. J. Anat. 2008, 213, 202–209. [Google Scholar] [CrossRef]
- Rességuier, J.; Dalum, A.S.; Du Pasquier, L.; Zhang, Y.; Koppang, E.O.; Boudinot, P.; Wiegertjes, G.F. Lymphoid Tissue in Teleost Gills: Variations on a Theme. Biology 2020, 9, 127. [Google Scholar] [CrossRef]
- Dalum, A.S.; Kraus, A.; Khan, S.; Davydova, E.; Rigaudeau, D.; Bjørgen, H.; López-Porras, A.; Griffiths, G.; Wiegertjes, G.F.; Koppang, E.O.; et al. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue. Front. Immunol. 2021, 12, 769901. [Google Scholar] [CrossRef] [PubMed]
- Løken, O.M.; Bjørgen, H.; Hordvik, I.; Koppang, E.O. A Teleost Structural Analogue to the Avian Bursa of Fabricius. J. Anat. 2020, 236, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Garcia, B.; Fen Dong, F.; Elisa Casadei, E.; Julien Resseguier, J.; Jie Ma, J.; Kenneth, D.; Cain, K.D.; Pedro, A.; Castrillo, P.A.; Zhen, X.Z.; et al. A Novel Organized Nasopharynx-Associated Lymphoid Tissue in Teleosts That Expresses Molecular Markers Characteristic of Mammalian Germinal Centers. J. Immunol. 2022, 209, 2215–2226. [Google Scholar] [CrossRef] [PubMed]
- Resseguier, J.; Nguyen-Chis, M.; Wohlmann, J.; Rigaudeau, D.; Salinas, I.; Oehlers, S.H.; Wiegertjes, G.F.; Johansen, F.E.; Qiao, S.W.; Koppang, E.O.; et al. Identification of a New Pharyngeal Mucosal Lymphoid Organ in Zebrafish and Other Teleosts: Tonsils in Fish? Sci. Adv. 2023. [Google Scholar] [CrossRef]
- Salinas, I. The Mucosal Immune System of Teleost Fish. Biology 2015, 4, 525–539. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Q.; Huang, Z.; Ding, L.; Xu, Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front. Immunol. 2020, 11, 567941. [Google Scholar] [CrossRef]
- Magadan, S.; Jouneau, L.; Boudinot, P.; Salinas, I. Nasal Vaccination Drives Modifications of Nasal and Systemic Antibody Repertoires in Rainbow Trout. J. Immunol. 2019, 203, 1480–1492. [Google Scholar] [CrossRef]
- Sepahi, A.; Tacchi, L.; Casadei, E.; Takizawa, F.; LaPatra, S.E.; Salinas, I. CK12a, a CCL19-like Chemokine That Orchestrates Both Nasal and Systemic Antiviral Immune Responses in Rainbow Trout. J. Immunol. 2017, 199, 3900–3913. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Kong, W.; Yin, Y.-X.; Dong, F.; Huang, Z.-Y.; Yin, G.-M.; Dong, S.; Salinas, I.; Zhang, Y.-A.; Xu, Z. Mucosal Immunoglobulins Protect the Olfactory Organ of Teleost Fish against Parasitic Infection. PLoS Pathog. 2018, 14, e1007251. [Google Scholar] [CrossRef]
- Das, P.K.; Salinas, I. Fish Nasal Immunity: From Mucosal Vaccines to Neuroimmunology. Fish Shellfish Immunol. 2020, 104, 165–171. [Google Scholar] [CrossRef]
- Xu, Z.; Parra, D.; Gómez, D.; Salinas, I.; Zhang, Y.-A.; von Gersdorff Jørgensen, L.; Heinecke, R.D.; Buchmann, K.; LaPatra, S.; Sunyer, J.O. Teleost Skin, an Ancient Mucosal Surface That Elicits Gut-like Immune Responses. Proc. Natl. Acad. Sci. USA 2013, 110, 13097–13102. [Google Scholar] [CrossRef] [PubMed]
- Maki, J.L.; Dickerson, H.W. Systemic and Cutaneous Mucus Antibody Responses of Channel Catfish Immunized against the Protozoan Parasite Ichthyophthirius Multifiliis. Clin. Vaccine Immunol. 2003, 10, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Yu, Y.; Dong, S.; Huang, Z.; Ding, L.; Cao, J.; Dong, F.; Zhang, X.; Liu, X.; Xu, H.; et al. Pharyngeal Immunity in Early Vertebrates Provides Functional and Evolutionary Insight into Mucosal Homeostasis. J. Immunol. 2019, 203, 3054–3067. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.T.; Yamamoto, F.Y.; Low, C.F.; Loh, J.Y.; Chong, C.M. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front. Immunol. 2021, 12, 773193. [Google Scholar] [CrossRef] [PubMed]
- Bøgwald, J.; Dalmo, R.A. Review on Immersion Vaccines for Fish: An Update 2019. Microorganisms 2019, 7, 627. [Google Scholar] [CrossRef] [PubMed]
- Somamoto, T.; Nakanishi, T. Mucosal Delivery of Fish Vaccines: Local and Systemic Immunity Following Mucosal Immunisations. Fish Shellfish Immunol. 2020, 99, 199–207. [Google Scholar] [CrossRef]
- Hart, S.; Wrathmell, A.B.; Harris, J.E.; Grayson, T.H. Gut Immunology in Fish: A Review. Dev. Comp. Immunol. 1988, 12, 453–480. [Google Scholar] [CrossRef]
- Rombout, J.H.W.M.; Abelli, L.; Picchietti, S.; Scapigliati, G.; Kiron, V. Teleost Intestinal Immunology. Fish Shellfish Immunol. 2011, 31, 616–626. [Google Scholar] [CrossRef]
- Hatten, F.; Fredriksen, Å.; Hordvik, I.; Endresen, C. Presence of IgM in Cutaneous Mucus, but Not in Gut Mucus of Atlantic Salmon, Salmo Salar. Serum IgM Is Rapidly Degraded When Added to Gut Mucus. Fish Shellfish Immunol. 2001, 11, 257–268. [Google Scholar] [CrossRef]
- Rombout, J.H.W.M.; Taverne-Thiele, A.J.; Villena, M.I. The Gut-Associated Lymphoid Tissue (GALT) of Carp (Cyprinus carpio L.): An Immunocytochemical Analysis. Dev. Comp. Immunol. 1993, 17, 55–66. [Google Scholar] [CrossRef]
- Tongsri, P.; Meng, K.; Liu, X.; Wu, Z.; Yin, G.; Wang, Q.; Liu, M.; Xu, Z. The Predominant Role of Mucosal Immunoglobulin IgT in the Gills of Rainbow trout (Oncorhynchus mykiss) after Infection with Flavobacterium Columnare. Fish Shellfish Immunol. 2020, 99, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Rombout, J.H.W.M.; Taverne, N.; van de Kamp, M.; Taverne-Thiele, A.J. Differences in Mucus and Serum Immunoglobulin of Carp (Cyprinus carpio L.). Dev. Comp. Immunol. 1993, 17, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wei, Z.; Chen, Y.; Xie, J.; Zhang, X.; He, T.; Chen, X. Development of Monoclonal Antibody against IgT of a Perciform Fish, Large Yellow Croaker (Larimichthys crocea) and Characterization of IgT+ B Cells. Dev. Comp. Immunol. 2021, 119, 104027. [Google Scholar] [CrossRef] [PubMed]
- Rombout, J.H.W.M.; Lamers, C.H.J.; Helfrich, M.H.; Dekker, A.; Taverne-Thiele, J.J. Uptake and Transport of Intact Macromolecules in the Intestinal Epithelium of Carp (Cyprinus carpio L.) and the Possible Immunological Implications. Cell Tissue Res. 1985, 239, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Abelli, L.; Picchietti, S.; Romano, N.; Mastrolia, L.; Scapigliati, G. Immunohistochemistry of Gut-Associated Lymphoid Tissue of the Sea Bass Dicentrarchus labrax (L.). Fish Shellfish Immunol. 1997, 7, 235–245. [Google Scholar] [CrossRef]
- Noaillac-Depeyre, J.; Gas, N. Absorption of Protein Macromolecules by the Enterocytes of the Carp (Cyprinus carpio L.). Z. Für Zellforsch. Und Mikrosk. Anat. 1973, 146, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Stroband, H.W.J.; Kroon, A.G. The Development of the Stomach in Clarias Lazera and the Intestinal Absorption of Protein Macromolecules. Cell Tissue Res. 1981, 215, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Stroband, H.W.J.; Debets, F.M.H. The Ultrastructure and Renewal of the Intestinal Epithelium of the Juvenile grasscarp, Ctenopharyngodon idella (Val.). Cell Tissue Res. 1978, 187, 181–200. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Vaseeharan, B.; Ramasamy, P.; Jeyachandran, S. Oral Vaccination for Sustainable Disease Prevention in Aquaculture—An Encapsulation Approach. Aquac. Int. 2023, 31, 867–891. [Google Scholar] [CrossRef]
- Mutoloki, S.; Munang’andu, H.M.; Evensen, Ø. Oral Vaccination of Fish—Antigen Preparations, Uptake, and Immune Induction. Front. Immunol. 2015, 6, 519. [Google Scholar] [CrossRef]
- Sotomayor-Gerding, D.; Troncoso, J.M.; Pino, A.; Almendras, F.; Diaz, M.R. Assessing the Immune Response of Atlantic Salmon (Salmo salar) after the Oral Intake of Alginate-Encapsulated Piscirickettsia Salmonis Antigens. Vaccines 2020, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Sun, F.; Liu, Q.; Wang, Q.; Zhang, Y.; Liu, X. An Oral Vaccine Based on Chitosan/Aluminum Adjuvant Induces Both Local and Systemic Immune Responses in Turbot (Scophthalmus maximus). Vaccine 2021, 39, 7477–7484. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Gursel, I.; Gursel, M.; McCormack, B. Liposomes as Immunological Adjuvants and Vaccine Carriers. J. Control. Release 1996, 41, 49–56. [Google Scholar] [CrossRef]
- Polk, A.E.; Amsden, B.; Scarratt, D.J.; Gonzal, A.; Okhamafe, A.O.; Goosen, M.F.A. Oral Delivery in Aquaculture: Controlled Release of Proteins from Chitosan-Alginate Microcapsules. Aquac. Eng. 1994, 13, 311–323. [Google Scholar] [CrossRef]
- Jia, S.; Zhou, K.; Pan, R.; Wei, J.; Liu, Z.; Xu, Y. Oral Immunization of Carps with Chitosan–Alginate Microcapsule Containing Probiotic Expressing Spring Viremia of Carp Virus (SVCV) G Protein Provides Effective Protection against SVCV Infection. Fish Shellfish Immunol. 2020, 105, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Halimi, M.; Alishahi, M.; Abbaspour, M.R.; Ghorbanpoor, M.; Tabandeh, M.R. Valuable Method for Production of Oral Vaccine by Using Alginate and Chitosan against Lactococcus Garvieae/Streptococcus Iniae in Rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2019, 90, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Angulo, C.; Tello-Olea, M.; Reyes-Becerril, M.; Monreal-Escalante, E.; Hernández-Adame, L.; Angulo, M.; Mazon-Suastegui, J.M. Developing Oral Nanovaccines for Fish: A Modern Trend to Fight Infectious Diseases. Rev. Aquac. 2021, 13, 1172–1192. [Google Scholar] [CrossRef]
- Gregory, A.E.; Titball, R.; Williamson, D. Vaccine Delivery Using Nanoparticles. Front. Cell Infect. Microbiol. 2013, 3, 13. [Google Scholar] [CrossRef]
- Shaalan, M.; Saleh, M.; El-Mahdy, M.; El-Matbouli, M. Recent Progress in Applications of Nanoparticles in Fish Medicine: A Review. Nanomedicine 2016, 12, 701–710. [Google Scholar] [CrossRef]
- Vinay, T.N.; Bhat, S.; Gon Choudhury, T.; Paria, A.; Jung, M.-H.; Shivani Kallappa, G.; Jung, S.-J. Recent Advances in Application of Nanoparticles in Fish Vaccine Delivery. Rev. Fish. Sci. Aquac. 2018, 26, 29–41. [Google Scholar] [CrossRef]
- Chien, M.-H.; Wu, S.-Y.; Lin, C.-H. Oral Immunization with Cell-Free Self-Assembly Virus-like Particles against Orange-Spotted Grouper Nervous Necrosis Virus in Grouper Larvae, Epinephelus Coioides. Vet. Immunol. Immunopathol. 2018, 197, 69–75. [Google Scholar] [CrossRef] [PubMed]
- AquaVacTM ERM Oral, Emulsion for Rainbow Trout. Available online: https://www.msd-animal-health-hub.co.uk/Products/AquaVac-ERMOral (accessed on 10 April 2022).
- Løkka, G.; Koppang, E.O. Antigen Sampling in the Fish Intestine. Dev. Comp. Immunol. 2016, 64, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Rombout, J.H.W.M.; Berg, A.A. Immunological Importance of the Second Gut Segment of Carp. I. Uptake and Processing of Antigens by Epithelial Cells and Macrophages. J. Fish. Biol. 1989, 35, 13–22. [Google Scholar] [CrossRef]
- Rombout, J.H.W.M.; Berg, A.A.; Berg, C.T.G.A.; Witte, P.; Egberts, E. Immunological Importance of the Second Gut Segment of Carp. III. Systemic and/or Mucosal Immune Responses after Immunization with Soluble or Particulate Antigen. J. Fish. Biol. 1989, 35, 179–186. [Google Scholar] [CrossRef]
- Mclean, E.; Ash, R. The Time-Course of Appearance and Net Accumulation of Horseradish Peroxidase (HRP) Presented Orally to Rainbow Trout Salmo Gairdneri (Richardson). Comp. Biochem. Physiol. A Physiol. 1987, 88, 507–510. [Google Scholar] [CrossRef] [PubMed]
- McLean, E.; Ash, R. The Time-Course of Appearance and Net Accumulation of Horseradish Peroxidase (HRP) Presented Orally to Juvenile Carp Cyprinus carpio (L.). Comp. Biochem. Physiol. A Physiol. 1986, 84, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Okamoto, N. Oral and Anal Immunisation with Alloantigen Induces Active Cell-Mediated Cytotoxic Responses in Carp. Fish Shellfish Immunol. 2007, 23, 237–241. [Google Scholar] [CrossRef]
- Marana, M.H.; Chettri, J.K.; Salten, M.B.; Bach-Olesen, N.E.; Kania, P.W.; Dalsgaard, I.; Buchmann, K. Primary Immunization Using Low Antigen Dosages and Immunological Tolerance in Rainbow Trout. Fish Shellfish Immunol. 2020, 105, 16–23. [Google Scholar] [CrossRef]
- Joosten, P.H.M.; Engelsma, M.Y.; van der Zee, M.D.; Rombout, J.H.W.M. Induction of Oral Tolerance in Carp (Cyprinus carpio L.) after Feeding Protein Antigens. Vet. Immunol. Immunopathol. 1997, 60, 187–196. [Google Scholar] [CrossRef]
- Davidson, G.A.; Ellis, A.E.; Secombes, C.J. A Preliminary Investigation into the Phenomenon of Oral Tolerance in Rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Fish Shellfish Immunol 1994, 4, 141–151. [Google Scholar] [CrossRef]
- Embregts, C.W.E.; Forlenza, M. Oral Vaccination of Fish: Lessons from Humans and Veterinary Species. Dev. Comp. Immunol. 2016, 64, 118–137. [Google Scholar] [CrossRef] [PubMed]
- Piganelli, J.D.; Zhang, J.A.; Christensen, J.M.; Kaattari, S.L. Enteric Coated Microspheres as an Oral Method for Antigen Delivery to Salmonids. Fish Shellfish Immunol. 1994, 4, 179–188. [Google Scholar] [CrossRef]
- Kikuchi, K. New Function of Zebrafish Regulatory T Cells in Organ Regeneration. Curr. Opin. Immunol. 2020, 63, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Quintana, F.J.; Iglesias, A.H.; Farez, M.F.; Caccamo, M.; Burns, E.J.; Kassam, N.; Oukka, M.; Weiner, H.L. Adaptive Autoimmunity and Foxp3-Based Immunoregulation in Zebrafish. PLoS ONE 2010, 5, e9478. [Google Scholar] [CrossRef] [PubMed]
- Blaufuss, P.C.; Bledsoe, J.W.; Gaylord, T.G.; Sealey, W.M.; Overturf, K.E.; Powell, M.S. Selection on a Plant-Based Diet Reveals Changes in Oral Tolerance, Microbiota and Growth in Rainbow trout (Oncorhynchus mykiss) When Fed a High Soy Diet. Aquaculture 2020, 525, 735287. [Google Scholar] [CrossRef]
- Chen, L.; Evensen, Ø.; Mutoloki, S. IPNV Antigen Uptake and Distribution in Atlantic Salmon Following Oral Administration. Viruses 2015, 7, 2507–2517. [Google Scholar] [CrossRef] [PubMed]
- Trout—Merck Animal Health. Available online: https://www.merck-animal-health.com/species/aquaculture/trout/ (accessed on 10 April 2022).
- Villumsen, K.R.; Neumann, L.; Ohtani, M.; Strøm, H.K.; Raida, M.K. Oral and Anal Vaccination Confers Full Protection against Enteric Redmouth Disease (ERM) in Rainbow Trout. PLoS ONE 2014, 9, e93845. [Google Scholar] [CrossRef]
- Plant, K.P.; LaPatra, S.E. Advances in Fish Vaccine Delivery. Dev. Comp. Immunol. 2011, 35, 1256–1262. [Google Scholar] [CrossRef]
- Wise, D.J.; Greenway, T.E.; Byars, T.S.; Griffin, M.J.; Khoo, L.H. Oral Vaccination of Channel Catfish against Enteric Septicemia of Catfish Using a Live Attenuated Edwardsiella Ictaluri Isolate. J. Aquat. Anim. Health 2015, 27, 135–143. [Google Scholar] [CrossRef]
- Siripornadulsil, S.; Dabrowski, K.; Sayre, R. Microalgal Vaccines. In Transgenic Microalgae as Green Cell Factories; Springer: New York, NY, USA, 2007; pp. 122–128. [Google Scholar] [CrossRef]
- Kwon, K.-C.; Lamb, A.; Fox, D.; Porphy Jegathese, S.J. An Evaluation of Microalgae as a Recombinant Protein Oral Delivery Platform for Fish Using Green Fluorescent Protein (GFP). Fish Shellfish Immunol. 2019, 87, 414–420. [Google Scholar] [CrossRef]
- Uyen, N.T.T.; Hamid, Z.A.A.; Tram, N.X.T.; Ahmad, N. Fabrication of Alginate Microspheres for Drug Delivery: A Review. Int. J. Biol. Macromol. 2020, 153, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Joosten, P.H.M.; Tiemersma, E.; Threels, A.; Caumartin-Dhieux, C.; Rombout, J.H.W.M. Oral Vaccination of Fish against Vibrio Anguillarum Using Alginate Microparticles. Fish Shellfish Immunol. 1997, 7, 471–485. [Google Scholar] [CrossRef]
- Rodrigues, A.P.; Hirsch, D.; Figueiredo, H.C.P.; Logato, P.V.R.; Moraes, Â.M. Production and Characterisation of Alginate Microparticles Incorporating Aeromonas Hydrophila Designed for Fish Oral Vaccination. Process Biochem. 2006, 41, 638–643. [Google Scholar] [CrossRef]
- Romalde, J.L.; Luzardo-Alvárez, A.; Ravelo, C.; Toranzo, A.E.; Blanco-Méndez, J. Oral Immunization Using Alginate Microparticles as a Useful Strategy for Booster Vaccination against Fish Lactoccocosis. Aquaculture 2004, 236, 119–129. [Google Scholar] [CrossRef]
- Ahmadivand, S.; Soltani, M.; Behdani, M.; Evensen, Ø.; Alirahimi, E.; Hassanzadeh, R.; Soltani, E. Oral DNA Vaccines Based on CS-TPP Nanoparticles and Alginate Microparticles Confer High Protection against Infectious Pancreatic Necrosis Virus (IPNV) Infection in Trout. Dev. Comp. Immunol. 2017, 74, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Sun, X.; Chen, X. Formation and Oral Administration of Alginate Microspheres Loaded with PDNA Coding for Lymphocystis Disease Virus (LCDV) to Japanese Flounder. Fish Shellfish Immunol. 2008, 24, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Maurice, S.; Nussinovitch, A.; Jaffe, N.; Shoseyov, O.; Gertler, A. Oral Immunization of with Modified Recombinant A-Layer Proteins Entrapped in Alginate Beads. Vaccine 2004, 23, 450–459. [Google Scholar] [CrossRef]
- Giri, S.S.; Kim, S.G.; Kang, J.W.; Kim, S.W.; Kwon, J.; Lee, S.B.; Jung, W.J.; Park, S.C. Applications of Carbon Nanotubes and Polymeric Micro-/Nanoparticles in Fish Vaccine Delivery: Progress and Future Perspectives. Rev. Aquac. 2021, 13, 1844–1863. [Google Scholar] [CrossRef]
- Rivas-Aravena, A.; Fuentes, Y.; Cartagena, J.; Brito, T.; Poggio, V.; La Torre, J.; Mendoza, H.; Gonzalez-Nilo, F.; Sandino, A.M.; Spencer, E. Development of a Nanoparticle-Based Oral Vaccine for Atlantic Salmon against ISAV Using an Alphavirus Replicon as Adjuvant. Fish Shellfish Immunol. 2015, 45, 157–166. [Google Scholar] [CrossRef]
- Dubey, S.; Avadhani, K.; Mutalik, S.; Sivadasan, S.; Maiti, B.; Paul, J.; Girisha, S.; Venugopal, M.; Mutoloki, S.; Evensen, Ø.; et al. Aeromonas Hydrophila OmpW PLGA Nanoparticle Oral Vaccine Shows a Dose-Dependent Protective Immunity in Rohu (Labeo rohita). Vaccines 2016, 4, 21. [Google Scholar] [CrossRef]
- Li, L.; Lin, S.-L.; Deng, L.; Liu, Z.-G. Potential Use of Chitosan Nanoparticles for Oral Delivery of DNA Vaccine in Black Seabream Acanthopagrus Schlegelii Bleeker to Protect from Vibrio Parahaemolyticus. J. Fish. Dis. 2013, 36, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Kole, S.; Kumari, R.; Anand, D.; Kumar, S.; Sharma, R.; Tripathi, G.; Makesh, M.; Rajendran, K.V.; Bedekar, M.K. Nanoconjugation of Bicistronic DNA Vaccine against Edwardsiella Tarda Using Chitosan Nanoparticles: Evaluation of Its Protective Efficacy and Immune Modulatory Effects in Labeo Rohita Vaccinated by Different Delivery Routes. Vaccine 2018, 36, 2155–2165. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Kim, H.J.; Lan, N.T.; Han, H.-J.; Lee, D.-C.; Hwang, J.Y.; Kwon, M.-G.; Kang, B.K.; Han, S.Y.; Moon, H.; et al. Oral Vaccination through Voluntary Consumption of the Convict Grouper Epinephelus Septemfasciatus with Yeast Producing the Capsid Protein of Red-Spotted Grouper Nervous Necrosis Virus. Vet. Microbiol. 2017, 204, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. Front. Plant Sci. 2021, 12, 717952. [Google Scholar] [CrossRef]
- Embregts, C.W.E.; Reyes-Lopez, F.; Pall, A.C.; Stratmann, A.; Tort, L.; Lorenzen, N.; Engell-Sorensen, K.; Wiegertjes, G.F.; Forlenza, M.; Sunyer, J.O.; et al. Pichia Pastoris Yeast as a Vehicle for Oral Vaccination of Larval and Adult Teleosts. Fish Shellfish Immunol. 2019, 85, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-Z.; Xu, L.-M.; Liu, M.; Cao, Y.-S.; LaPatra, S.E.; Yin, J.-S.; Liu, H.-B.; Lu, T.-Y. Preliminary Study of an Oral Vaccine against Infectious Hematopoietic Necrosis Virus Using Improved Yeast Surface Display Technology. Mol. Immunol. 2017, 85, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.-R.; Mu, Q.-J.; Kong, W.-G.; Qin, D.-C.; Zhou, Y.; Wang, X.-Y.; Cheng, G.-F.; Luo, Y.-Z.; Ai, T.-S.; Xu, Z. Gut Mucosal Immune Responses and Protective Efficacy of Oral Yeast Cyprinid Herpesvirus 2 (CyHV-2) Vaccine in Carassius Auratus Gibelio. Front. Immunol. 2022, 13, 932722. [Google Scholar] [CrossRef]
- Han, B.; Xu, K.; Liu, Z.; Ge, W.; Shao, S.; Li, P.; Yan, N.; Li, X.; Zhang, Z. Oral Yeast-Based DNA Vaccine Confers Effective Protection from Aeromonas Hydrophila Infection on Carassius Auratus. Fish Shellfish Immunol. 2019, 84, 948–954. [Google Scholar] [CrossRef]
- Gonzalez-Silvera, D.; Guardiola, F.A.; Espinosa, C.; Chaves-Pozo, E.; Esteban, M.Á.; Cuesta, A. Recombinant Nodavirus Vaccine Produced in Bacteria and Administered without Purification Elicits Humoral Immunity and Protects European Sea Bass against Infection. Fish Shellfish Immunol. 2019, 88, 458–463. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Yuan, M.; Zhu, W.; Pei, C.; Zhao, X.; Kong, X. An Oral Vaccine against Spring Viremia of Carp Virus Induces Protective Immunity in Common carp (Cyprinus carpio L.). Aquaculture 2023, 566, 739167. [Google Scholar] [CrossRef]
- Shankar, K.M. Bacterial Biofilm for Oral Vaccination in Aquaculture. In Fish Immune System and Vaccines; Springer Nature Singapore: Singapore, 2022; pp. 159–165. [Google Scholar] [CrossRef]
- Su, F.-J.; Chen, M.-M. Protective Efficacy of Novel Oral Biofilm Vaccines against Photobacterium Damselae Subsp. Damselae Infection in Giant Grouper, Epinephelus Lanceolatus. Vaccines 2022, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Su, F.-J.; Chen, M.-M. Protective Efficacy of Novel Oral Biofilm Vaccines against Lactococcus Garvieae Infection in Mullet, Mugil Cephalus. Vaccines 2021, 9, 844. [Google Scholar] [CrossRef] [PubMed]
- Masoomi Dezfooli, S.; Gutierrez-Maddox, N.; Alfaro, A.; Seyfoddin, A. Encapsulation for Delivering Bioactives in Aquaculture. Rev. Aquac. 2019, 11, 631–660. [Google Scholar] [CrossRef]
- Bøgwald, J.; Dalmo, R.A. Protection of Teleost Fish against Infectious Diseases through Oral Administration of Vaccines: Update 2021. Int. J. Mol. Sci. 2021, 22, 10932. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.J.; Klontz, G.W. Oral Immunization of Rainbow trout (Salmo gairdneri) Against an Etiologic Agent of “Redmouth Disease.”. J. Fish. Res. Board. Can. 1965, 22, 713–719. [Google Scholar] [CrossRef]
- Chatakondi, N.; Peterson, B.C.; Greenway, T.E.; Byars, T.S.; Wise, D.J. Efficacy of a Live-attenuated Edwardsiella Ictaluri Oral Vaccine in Channel and Hybrid Catfish. J. World Aquac. Soc. 2018, 49, 686–691. [Google Scholar] [CrossRef]
- Li, L.P.; Wang, R.; Liang, W.W.; Huang, T.; Huang, Y.; Luo, F.G.; Lei, A.Y.; Chen, M.; Gan, X. Development of Live Attenuated Streptococcus Agalactiae Vaccine for Tilapia via Continuous Passage in Vitro. Fish Shellfish Immunol. 2015, 45, 955–963. [Google Scholar] [CrossRef]
- Ghosh, B.; Bridle, A.R.; Nowak, B.F.; Cain, K.D. Assessment of Immune Response and Protection against Bacterial Coldwater Disease Induced by a Live-Attenuated Vaccine Delivered Orally or Intraperitoneally to Rainbow Trout, Oncorhynchus Mykiss (Walbaum). Aquaculture 2015, 446, 242–249. [Google Scholar] [CrossRef]
- Enzmann, P.-J.; Fichtner, D.; Schütze, H.; Walliser, G. Development of Vaccines against VHS and IHN: Oral Application, Molecular Marker and Discrimination of Vaccinated Fish from Infected Populations. J. Appl. Ichthyol. 1998, 14, 179–183. [Google Scholar] [CrossRef]
Vaccination Route | Stimulated MALT | Advantages | Disadvantages | Reference | |
---|---|---|---|---|---|
Oral | gut | Ease of delivery, which significantly reduces costs and fish stress. Allows for vaccination at multiple production stages (e.g., tanks, net pens, ponds), which increases its flexibility as a viable tool for maintaining fish health. | Less efficacious than other routes due to several factors including but not limited to the following: antigenic degradation, oral tolerance, and uneven dosing among the population. | [70] | |
Immersion | gut | nasal | This can easily be used to vaccinate large numbers of fish and provide a high efficacy relative to other mucosal vaccines. Stimulates multiple mucosal tissues with the use of a single delivery platform, increasing the potential for a strong immune response and increased protection against disease. | Large volumes of vaccine are required, which significantly increases the cost of vaccination. Vaccination is limited to its use in smaller fish due to the amount of vaccine required; large fish would be more difficult to handle and require substantially more volume of vaccine for a farm-scale program. | [71] |
skin | gill | ||||
buccal | pharyngeal | ||||
Anal Intubation | gut | Bypasses destructive environment of the stomach, eliminating the need for encapsulation or other antigen protection. This results in a higher efficacy relative to oral delivery because the full dose is delivered to the site of antigen uptake without obstruction. | Time-consuming and induces similar stress in fish as injection vaccines, without a significant increase in protection. This is primarily a research tool to isolate and characterize the GALT response, with limited industry applicability. | [72] | |
Nasal | nasal | Requires less vaccine volume relative to immersion delivery and demonstrates a similar protection. This decreases the potential costs of implementing nasal vaccine programs on a farm-scale relative to immersion vaccines. | Time-consuming and labor-intensive. This is primarily a research tool to isolate and characterize the NALT response, with limited industry applicability at this time. | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, E.M.; Cain, K.D. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms 2023, 11, 2917. https://doi.org/10.3390/microorganisms11122917
Jones EM, Cain KD. An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms. 2023; 11(12):2917. https://doi.org/10.3390/microorganisms11122917
Chicago/Turabian StyleJones, Evan M., and Kenneth D. Cain. 2023. "An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture" Microorganisms 11, no. 12: 2917. https://doi.org/10.3390/microorganisms11122917
APA StyleJones, E. M., & Cain, K. D. (2023). An Introduction to Relevant Immunology Principles with Respect to Oral Vaccines in Aquaculture. Microorganisms, 11(12), 2917. https://doi.org/10.3390/microorganisms11122917