Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolation and Morphotypes
2.2. Ciborinia camelliae Mycelia Production and DNA Extraction
2.3. PCR Amplification
2.4. Gene Sequencing, Phylogenetic Analyses and UP-PCR Banding Profiles
3. Results
3.1. Gene Sequencing and Phylogenetic Analyses
3.2. Universally Primed-PCR Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taylor, C.H.; Long, P.G. Review of Literature on Camellia Flower Blight Caused by Ciborinia camelliae. N. Z. J. Crop. Hortic. Sci. 2000, 28, 123–138. [Google Scholar] [CrossRef]
- Saracchi, M.; Colombo, E.M.; Locati, D.; Valenti, I.; Corneo, A.; Cortesi, P.; Kunova, A.; Pasquali, M. Morphotypes of Ciborinia camelliae Kohn Infecting Camellias in Italy. J. Plant Pathol. 2022, 104, 761–768. [Google Scholar] [CrossRef]
- Hara K A Sclerotial Disease of Camellia (Camellia japonica). Dainppon Sanrin Kaiho 1919, 436, 29–31.
- Kohn, L.M.; Nagasawa, E. A Taxonomic Reassessment of Sclerotinia camelliae Synonym Ciborinia camelliae with Observations on Flower Blight of Camellia japonica in Japan. Nippon. Kingakukai Kaiho 1984, 25, 149–162. [Google Scholar]
- Colombo, E.M.; Locati, D.; Saracchi, M. Ciborinia camelliae: Descrizione Del Patogeno. Not. Soc. Ital. Della Camelia 2016, 51, 21–25. [Google Scholar]
- Van der Vlugt-Bergmans, C.J.B. Genetic Variation and Pathogenicity of Botrytis cinerea. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 1996. [Google Scholar]
- Milgroom, M.G. Population Biology of Plant Pathogens: Genetics, Ecology, and Evolution; APS Press: St. Paul, MN, USA, 2015; ISBN 9780890544525. [Google Scholar]
- Grünwald, N.J.; Everhart, S.E.; Knaus, B.J.; Kamvar, Z.N. Best Practices for Population Genetic Analyses. Phytopathology 2017, 107, 1000–1010. [Google Scholar] [CrossRef]
- Chaudhary, S.; Lal, M.; Sagar, S.; Tyagi, H.; Kumar, M.; Sharma, S.; Chakrabarti, S.K. Genetic Diversity Studies Based on Morpho-Pathological and Molecular Variability of the Sclerotinia sclerotiorum Population Infecting Potato (Solanum tuberosum L.). World J. Microbiol. Biotechnol. 2020, 36, 177. [Google Scholar] [CrossRef]
- Butler, R.; Arnold, G.; van Toor, R.F.; Ridgway, H.; Stewart, A. Investigating Genetic Differences between Populations of Ciborinia camelliae Collected from Different Locations. In Proceedings of the Australian Genstat Conference, Busselton, Australia, 28 November–2 December 2002; Volume 18. [Google Scholar]
- Van Toor, R.F.; Ridgway, H.J.; Butler, R.C.; VJaspers, M.; Stewart, A. Assessment of Genetic Diversity in Isolates of Ciborinia camelliae Kohn from New Zealand and the United States of America. Australas. Plant Pathol. 2005, 34, 319–325. [Google Scholar] [CrossRef]
- Taylor, C.H. Studies of Camellia Flower Blight (Ciborinia camelliae Kohn). Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2004. [Google Scholar]
- Matute, D.R.; Sepúlveda, V.E. Fungal Species Boundaries in the Genomics Era. Fungal Genet. Biol. 2019, 131, 103249. [Google Scholar] [CrossRef]
- Einax, E.; Voigt, K. Oligonucleotide Primers for the Universal Amplification of β-Tubulin Genes Facilitate Phylogenetic Analyses in the Regnum Fungi. Org. Divers. Evol. 2003, 3, 185–194. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Passos, D.A.C.; Felipe, M.S.S.; Jesuı́no, R.S.A.; Pereira, M.; de Almeida Soares, C.M. The Glyceraldehyde-3-Phosphate Dehydrogenase Homologue Is Differentially Regulated in Phases of Paracoccidioides brasiliensis: Molecular and Phylogenetic Analysis. Fungal Genet. Biol. 2004, 41, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Mirhendi, H.; Makimura, K.; de Hoog, G.S.; Rezaei-Matehkolaei, A.; Najafzadeh, M.J.; Umeda, Y.; Ahmadi, B. Translation Elongation Factor 1-α Gene as a Potential Taxonomic and Identification Marker in Dermatophytes. Med. Mycol. 2015, 53, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Bolchacova, E.; Voigt, K.; Crous, P.W.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, L.; Urbaniak, M.; Waśkiewicz, A.; Stępień, Ł.; Palmero, D. Fusarium proliferatum–Causal Agent of Garlic Bulb Rot in Spain: Genetic Variability and Mycotoxin Production. Food Microbiol. 2017, 67, 41–48. [Google Scholar] [CrossRef]
- González, D.; Cubeta, M.A.; Vilgalys, R. Phylogenetic Utility of Indels within Ribosomal DNA and β-Tubulin Sequences from Fungi in the Rhizoctonia solani Species Complex. Mol. Phylogenet. Evol. 2006, 40, 459–470. [Google Scholar] [CrossRef]
- Hansen, K.; LoBuglio, K.F.; Pfister, D.H. Evolutionary Relationships of the Cup-Fungus Genus Peziza and Pezizaceae Inferred from Multiple Nuclear Genes: RPB2, β-Tubulin, and LSU RDNA. Mol. Phylogenet. Evol. 2005, 36, 1–23. [Google Scholar] [CrossRef]
- Harrington, T.C.; Kazmi, M.R.; Al-Sadi, A.M.; Ismail, S.I. Intraspecific and Intragenomic Variability of ITS RDNA Sequences Reveals Taxonomic Problems in Ceratocystis fimbriata Sensu Stricto. Mycologia 2014, 106, 224–242. [Google Scholar] [CrossRef]
- Kulik, T.; Pszczółkowska, A.; Łojko, M. Multilocus Phylogenetics Show High Intraspecific Variability within Fusarium avenaceum. Int. J. Mol. Sci. 2011, 12, 5626–5640. [Google Scholar] [CrossRef]
- Rogério, F.; Massola Júnior, N.S.; Ciampi-Guillardi, M.; Barbieri, M.C.G.; Bragança, C.A.D.; Seixas, C.D.S.; Almeida, A.M.R. Phylogeny and Variability of Colletotrichum truncatum Associated with Soybean Anthracnose in Brazil. J. Appl. Microbiol. 2016, 122, 402–415. [Google Scholar] [CrossRef]
- Smith, M.E.; Douhan, G.W.; Rizzo, D.M. Intra-Specific and Intra-Sporocarp ITS Variation of Ectomycorrhizal Fungi as Assessed by RDNA Sequencing of Sporocarps and Pooled Ectomycorrhizal Roots from a Quercus Woodland. Mycorrhiza 2007, 18, 15–22. [Google Scholar] [CrossRef]
- Thon, M.; Royse, D. Partial Beta-Tubulin Gene Sequences for Evolutionary Studies in the Basidiomycotina. Mycologia 1999, 91, 468. [Google Scholar] [CrossRef]
- Vélez, J.M.; Morris, R.M.; Vilgalys, R.; Labbé, J.; Schadt, C.W. Phylogenetic Diversity of 200+ Isolates of the Ectomycorrhizal Fungus Cenococcum geophilum Associated with Populus trichocarpa Soils in the Pacific Northwest, USA and Comparison to Globally Distributed Representatives. PLoS ONE 2021, 16, e0231367. [Google Scholar] [CrossRef] [PubMed]
- Villa, N.O.; Kageyama, K.; Asano, T.; Suga, H. Phylogenetic Relationships of Pythium and Phytophthora Species Based on ITS RDNA, Cytochrome Oxidase II and β-Tubulin Gene Sequences. Mycologia 2006, 98, 410–422. [Google Scholar] [CrossRef]
- Msiska, Z.; Morton, J.B. Phylogenetic Analysis of the Glomeromycota by Partial β-Tubulin Gene Sequences. Mycorrhiza 2009, 19, 247–254. [Google Scholar] [CrossRef]
- Bulat, S.A.; Lubeck, M.; Mironenko, N.; Funkjensen, D.A.N.; Stephensen Lubeck, P. UP-PCR Analysis and ITS1 Ribotyping of Strains of Trichoderma and Gliocladium. Mycol. Res. 1998, 102, 933–943. [Google Scholar] [CrossRef]
- Lübeck, P.S.; Alekhina, I.A.; Lubeck, M.; Bulat, S.A. UP-PCR Genotyping and RDNA Analysis of Ascochyta Pisi Lib. J. Phytopathol. 1998, 146, 51–55. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. In: Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In PCR—Protocols and Applications—A Laboratory Manual; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. ISBN 0-12-372180-6. [Google Scholar]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR To Amplify Con-served Genes from Filamentous Ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A Fast Online Phylogenetic Tool for Maximum Likelihood Analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rohlf, F.J. NTSYSpc Numerical Taxonomy and Multivariate Analysis System User Guide; New York University: New York, NY, USA, 2000. [Google Scholar]
- Krzanowski, W.J. Principles of Multivariate Analysis A User’s Perspective. In Principles of Multivariate Analysis: A User’s Perspective; Oxford University Press: Oxford, UK, 1988; pp. 289–322. [Google Scholar]
- Valenti, I.; Saracchi, M.; Degradi, L.; Kunova, A.; Cortesi, P.; Pasquali, M. A Genome Resource for Ciborinia camelliae, the Causal Agent of Camellia Flower Blight. Mol. Plant-Microbe Interact. 2023, 36, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Kohn, L.M. Delimitation of the Economically Important Plant Pathogenic Sclerotinia Species. Phytopathol. Off. Organ Am. Phytopathol. Soc. 1979, 69, 881. [Google Scholar] [CrossRef]
- Valenti, I.; Degradi, L.; Kunova, A.; Cortesi, P.; Pasquali, M.; Saracchi, M. The First Mitochondrial Genome of Ciborinia camelliae and Its Position in the Sclerotiniaceae Family. Front. Fungal Biol. 2022, 2, 802511. [Google Scholar] [CrossRef] [PubMed]
- Saracchi, M.; Locati, D.; Colombo, E.M.; Pasquali, M. Updates on Ciborinia camelliae, the Causal Agent of Camellia Flower Blight. J. Plant Pathol. 2019, 101, 215–223. [Google Scholar] [CrossRef]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous Identification of Fungi: Where Do We Stand and How Accurate and Precise Is Fungal DNA Barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
- Van Toor, R.F.; Jaspers, M.V.; Stewart, A. Evaluation of Acibenzolar-S-Methyl for induction Resistance In Camellia Flowers to Ciborinia camelliae infection. Hortic. Pathol. 2001, 54, 209–212. [Google Scholar]
- Zummo, N.; Plakidas, A.G.; Rouge, B. Distances of spread of petal blight by windblown spores. Am. Camellia Yearbook 1960, 28, 40–43. [Google Scholar]
- Baxter, L.W.; Thomas, C.A. Control of Certain Camellia and Rose Problems, Especially Camellia flower Blight (with Lynx). Camellia J. 1995, 50, 24–25. [Google Scholar]
- Bond, R. Answers to Camellia Questions, Part 2. Camellia J. 1996, 51, 20–21. [Google Scholar]
- Carbone, M.J.; Gelabert, M.; Moreira, V.; Mondino, P.; Alaniz, S. Grapevine Nursery Propagation Material as Source of Fungal Trunk Disease Pathogens in Uruguay. Front. Fungal Biol. 2022, 3, 958466. [Google Scholar] [CrossRef]
- Pagán, I. Transmission through Seeds: The Unknown Life of Plant Viruses. PLoS Pathog. 2022, 18, e1010707. [Google Scholar] [CrossRef] [PubMed]
- Gilardi, G.; Pasquali, M.; Gullino, M.L. Seed Transmission of Fusarium oxysporum of Eruca vesicaria and Diplotaxis muralis. J. Plant Dis. Prot. 2004, 111, 345–350. [Google Scholar]
- Buchwaldt, L.; Garg, H.; Puri, K.D.; Durkin, J.; Adam, J.; Harrington, M.; Liabeuf, D.; Davies, A.; Hegedus, D.D.; Sharpe, A.G.; et al. Sources of Genomic Diversity in the Self-Fertile Plant Pathogen, Sclerotinia sclerotiorum, and Consequences for Resistance Breeding. PLoS ONE 2022, 17, e0262891. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Lin, Y.; Lyu, X.; Qu, Z.; Lu, Z.; Fu, Y.; Cheng, J.; Xie, J.; Chen, T.; Li, B.; et al. Fungal Strains with Identical Genomes Were Found at a Distance of 2000 Kilometers after 40 Years. J. Fungi 2022, 8, 1212. [Google Scholar] [CrossRef]
- Gladieux, P.; Feurtey, A.; Hood, M.E.; Snirc, A.; Clavel, J.; Dutech, C.; Roy, M.; Giraud, T. The population biology of fungal invasion. In Invasion Genetics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016; pp. 81–100. ISBN 9781119072799. [Google Scholar]
- Ali, S.; Gladieux, P.; Leconte, M.; Gautier, A.; Justesen, A.F.; Hovmøller, M.S.; Enjalbert, J.; de Vallavieille-Pope, C. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici. PLoS Pathog. 2014, 10, e1003903. [Google Scholar] [CrossRef]
Target Gene | Primer | Primer Sequence 5′→3′ | Annealing Temperature | Reference |
---|---|---|---|---|
ITS | ITS1 | TCCGTAGGTGAACCTGCGG | [32] | |
ITS | ITS4 | TCCTCCGCTTATTGATATGC | 55° | [32] |
β-TUB II | Bt2a | GGTAACCAAATCGGTGCTGCTTTC | [33] | |
β-TUB II | Bt2b | ACCCTCAGTGTAGTGACCCTTGGC | 55° | [33] |
EF1α | EF1a_cibo_16F | ACCGTGCCAATACCACCAAT | This study | |
EF1α | EF1a_cibo_1052R | GTGCGGAGGAATTGACAAGC | 59° | This study |
GPDH | GPDH_cibo_316F | CGTATCGTCTTCAGAAATGCT | This study | |
GPDH | GPDH_cibo_1392R | CCTTGGAGATGTAGTGGAGG | 57° | This study |
Primer | n° of Polymorphic Bands | Band Size (bp) |
---|---|---|
AA2M2 | 15 | 140–2000 |
AS15 | 25 | 290–3500 |
AS15inv | 34 | 400–3000 |
AS4 | 23 | 200–2050 |
L15 | 28 | 250–2490 |
L45 | 19 | 360–2650 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saracchi, M.; Valenti, I.; Cortesi, P.; Bulgari, D.; Kunova, A.; Pasquali, M. Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen. Microorganisms 2023, 11, 2727. https://doi.org/10.3390/microorganisms11112727
Saracchi M, Valenti I, Cortesi P, Bulgari D, Kunova A, Pasquali M. Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen. Microorganisms. 2023; 11(11):2727. https://doi.org/10.3390/microorganisms11112727
Chicago/Turabian StyleSaracchi, Marco, Irene Valenti, Paolo Cortesi, Daniela Bulgari, Andrea Kunova, and Matias Pasquali. 2023. "Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen" Microorganisms 11, no. 11: 2727. https://doi.org/10.3390/microorganisms11112727
APA StyleSaracchi, M., Valenti, I., Cortesi, P., Bulgari, D., Kunova, A., & Pasquali, M. (2023). Molecular Characterization of Ciborinia camelliae Kohn Shows Intraspecific Variability and Suggests Transcontinental Movement of the Pathogen. Microorganisms, 11(11), 2727. https://doi.org/10.3390/microorganisms11112727