Hypothetical Proteins of Mycoplasma synoviae Reannotation and Expression Changes Identified via RNA-Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. HPs’ Amino Acid Sequence Retrieval
2.2. HPs’ Physicochemical Properties and Subcellular Localization Predictions
2.3. Function Prediction of HPs
2.4. Accuracy Assessment of Tools
2.5. Prediction of HPs’ Association to Virulence
2.6. Prediction of HPs’ Antigenicity
2.7. Changes in HP Expression Values upon Exposure to Chicken Cells
2.7.1. The Source of the RNA-Seq Data
2.7.2. RNA-Seq Analyses of HPs
3. Results
3.1. Hypothetical Proteins Encoded by the M. synoviae ATCC-25204 Genome
3.2. Physicochemical Properties and Subcellular Localization of M. synoviae ATCC-25204 HPs
3.3. Putative Function of M. synoviae ATCC 25204 HPs
3.4. Accuracy Assessment of Functional Prediction Tools
3.5. Prediction of HP Genes’ Association to the Virulence of M. synoviae
3.6. Prediction of Antigenicity
3.7. Identification of Differentially Expressed HP Genes
3.8. GO and Pathway Enrichment Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Q.; Wei, X.; Chen, W.; Zhong, Q.; Yan, Z.; Zhou, Q.; Cao, Y.; Chen, F. Characterization and Evaluation of a Novel Conserved Membrane Antigen P35 of Mycoplasma synoviae. Front. Vet. Sci. 2022, 9, 836110. [Google Scholar] [CrossRef]
- Xu, B.; Liu, R.; Ding, M.; Zhang, J.; Sun, H.; Liu, C.; Lu, F.; Zhao, S.; Pan, Q.; Zhang, X. Interaction of Mycoplasma synoviae with chicken synovial sheath cells contributes to macrophage recruitment and inflammation. Poult. Sci. 2020, 99, 5366–5377. [Google Scholar] [CrossRef] [PubMed]
- Dušanić, D.; Benčina, D.; Narat, M.; Oven, I. Phenotypic characterization of Mycoplasma synoviae induced changes in the metabolic and sensitivity profile of in vitro infected chicken chondrocytes. Biomed. Res. Int. 2014, 2014, 613730. [Google Scholar] [CrossRef]
- Kang, T.; Zhou, M.; Yan, X.; Song, S.; Yuan, S.; Yang, H.; Ding, H.; Jiang, H.; Zhang, D.; Bai, Y.; et al. Biofilm formation and correlations with drug resistance in Mycoplasma synoviae. Vet. Microbiol. 2023, 283, 109777. [Google Scholar] [CrossRef] [PubMed]
- Berčič, R.L.; Cizelj, I.; Dušanić, D.; Narat, M.; Zorman-Rojs, O.; Dovč, P.; Benčina, D. Neuraminidase of Mycoplasma synoviae desialylates heavy chain of the chicken immunoglobulin G and glycoproteins of chicken tracheal mucus. Avian Pathol. 2011, 40, 299–308. [Google Scholar] [CrossRef]
- Hu, Z.; Li, H.; Zhao, Y.; Wang, G.; Shang, Y.; Chen, Y.; Wang, S.; Tian, M.; Qi, J.; Yu, S. NADH oxidase of Mycoplasma synoviae is a potential diagnostic antigen, plasminogen/fibronectin binding protein and a putative adhesin. BMC Vet. Res. 2022, 18, 455. [Google Scholar] [CrossRef] [PubMed]
- May, M.; Dunne, D.W.; Brown, D.R. A sialoreceptor binding motif in the Mycoplasma synoviae adhesin VlhA. PLoS ONE 2014, 9, e110360. [Google Scholar] [CrossRef]
- May, M.A.; Kutish, G.F.; Barbet, A.F.; Michaels, D.L.; Brown, D.R. Complete Genome Sequence of Mycoplasma synoviae Strain WVU 1853T. Genome Announc. 2015, 3, e00563-15. [Google Scholar] [CrossRef]
- Qi, J.; Wang, Y.; Li, H.; Shang, Y.; Gao, S.; Ding, C.; Liu, X.; Wang, S.; Li, T.; Tian, M.; et al. Mycoplasma synoviae dihydrolipoamide dehydrogenase is an immunogenic fibronectin/plasminogen binding protein and a putative adhesin. Vet. Microbiol. 2022, 265, 109328. [Google Scholar] [CrossRef]
- Bao, S.; Ding, X.; Yu, S.; Xing, X.; Ding, C. Characterization of pyruvate dehydrogenase complex E1 alpha and beta subunits of Mycoplasma synoviae. Microb. Pathog. 2021, 155, 104851. [Google Scholar] [CrossRef]
- Klose, S.M.; Omotainse, O.S.; Zare, S.; Vaz, P.K.; Armat, P.; Shil, P.; Wawegama, N.; Kanci Condello, A.; O’Rourke, D.; Disint, J.F.; et al. Virulence factors of Mycoplasma synoviae: Three genes influencing colonization, immunogenicity, and transmissibility. Front. Microbiol. 2022, 13, 1042212. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [CrossRef]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef]
- Bhasin, M.; Garg, A.; Raghava, G.P. PSLpred: Prediction of subcellular localization of bacterial proteins. Bioinformatics 2005, 21, 2522–2524. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, T.; Hecht, M.; Hamp, T.; Karl, T.; Yachdav, G.; Ahmed, N.; Altermann, U.; Angerer, P.; Ansorge, S.; Balasz, K.; et al. LocTree3 prediction of localization. Nucleic Acids Res. 2014, 42, W350–W355. [Google Scholar] [CrossRef] [PubMed]
- Tusnády, G.E.; Simon, I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001, 17, 849–850. [Google Scholar] [CrossRef]
- Krogh, A.; Larsson, B.; von Heijne, G.; Sonnhammer, E.L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 2001, 305, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Käll, L.; Krogh, A.; Sonnhammer, E.L. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 2007, 35, W429–W432. [Google Scholar] [CrossRef]
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef]
- Bendtsen, J.D.; Kiemer, L.; Fausbøll, A.; Brunak, S. Non-classical protein secretion in bacteria. BMC Microbiol. 2005, 5, 58. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, W200–W204. [Google Scholar] [CrossRef] [PubMed]
- Pearson, W.R.; Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 1988, 85, 2444–2448. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Gough, J.; Karplus, K.; Hughey, R.; Chothia, C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 2001, 313, 903–919. [Google Scholar] [CrossRef]
- Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH--a hierarchic classification of protein domain structures. Structure 1997, 5, 1093–1108. [Google Scholar] [CrossRef]
- Geer, L.Y.; Domrachev, M.; Lipman, D.J.; Bryant, S.H. CDART: Protein homology by domain architecture. Genome Res. 2002, 12, 1619–1623. [Google Scholar] [CrossRef]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef]
- Vlahovicek, K.; Kaján, L.; Agoston, V.; Pongor, S. The SBASE domain sequence resource, release 12: Prediction of protein domain-architecture using support vector machines. Nucleic Acids Res. 2005, 33, D223–D225. [Google Scholar] [CrossRef]
- Hunter, S.; Jones, P.; Mitchell, A.; Apweiler, R.; Attwood, T.K.; Bateman, A.; Bernard, T.; Binns, D.; Bork, P.; Burge, S.; et al. InterPro in 2011: New developments in the family and domain prediction database. Nucleic Acids Res. 2012, 40, D306–D312. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Santos, A.; von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384. [Google Scholar] [CrossRef] [PubMed]
- Shahbaaz, M.; Hassan, M.I.; Ahmad, F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS ONE 2013, 8, e84263. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Saha, S.; Raghava, G.P. BTXpred: Prediction of bacterial toxins. In Silico Biol. 2007, 7, 405–412. [Google Scholar]
- Chakraborty, A.; Ghosh, S.; Chowdhary, G.; Maulik, U.; Chakrabarti, S. DBETH: A Database of Bacterial Exotoxins for Human. Nucleic Acids Res. 2012, 40, D615–D620. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Si, D.; Sun, J.; Guo, L.; Yang, F.; Li, J.; He, S. Mycoplasma synoviae lipid-associated membrane proteins identification and expression changes when exposed to chicken cells. Front. Vet. Sci. 2023, 10. [Google Scholar] [CrossRef]
- Lobb, B.; Tremblay, B.J.; Moreno-Hagelsieb, G.; Doxey, A.C. An assessment of genome annotation coverage across the bacterial tree of life. Microb. Genom. 2020, 6, e000341. [Google Scholar] [CrossRef]
- Miravet-Verde, S.; Ferrar, T.; Espadas-García, G.; Mazzolini, R.; Gharrab, A.; Sabido, E.; Serrano, L.; Lluch-Senar, M. Unraveling the hidden universe of small proteins in bacterial genomes. Mol. Syst. Biol. 2019, 15, e8290. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Koonin, E.V. ‘Conserved hypothetical’ proteins: Prioritization of targets for experimental study. Nucleic Acids Res. 2004, 32, 5452–5463. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Martin, A. Bacterial virulence in the moonlight: Multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 2011, 79, 3476–3491. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Zhang, D. Principle and potential applications of the non-classical protein secretory pathway in bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 953–965. [Google Scholar] [CrossRef]
- Shimizu, T. Pathogenic factors of mycoplasma. Nihon Saikingaku Zasshi 2015, 70, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Jarocki, V.M.; Raymond, B.B.A.; Tacchi, J.L.; Padula, M.P.; Djordjevic, S.P. Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y. Sci. Rep. 2019, 9, 14585. [Google Scholar] [CrossRef] [PubMed]
- Yagi, T. Bacterial NADH-quinone oxidoreductases. J. Bioenerg. Biomembr. 1991, 23, 211–225. [Google Scholar] [CrossRef]
- Baidin, V.; Owens, T.W.; Lazarus, M.B.; Kahne, D. Simple Secondary Amines Inhibit Growth of Gram-Negative Bacteria through Highly Selective Binding to Phenylalanyl-tRNA Synthetase. J. Am. Chem. Soc. 2021, 143, 623–627. [Google Scholar] [CrossRef]
- Hong, M.; Gleason, Y.; Wyckoff, E.E.; Payne, S.M. Identification of two Shigella flexneri chromosomal loci involved in intercellular spreading. Infect. Immun. 1998, 66, 4700–4710. [Google Scholar] [CrossRef]
- Badaluddin, N.A.; Kitakawa, M. Escherichia coli inner membrane protein YciB interacts with ZipA that is important for cell division. Genes Cells 2015, 20, 956–965. [Google Scholar] [CrossRef]
- Li, G.; Badaluddin, N.A.; Kitakawa, M. Characterization of inner membrane protein YciB in Escherichia coli: YciB interacts with cell elongation and division proteins. Microbiol. Immunol. 2015, 59, 700–704. [Google Scholar] [CrossRef]
- Mychack, A.; Amrutha, R.N.; Chung, C.; Cardenas Arevalo, K.; Reddy, M.; Janakiraman, A. A synergistic role for two predicted inner membrane proteins of Escherichia coli in cell envelope integrity. Mol. Microbiol. 2019, 111, 317–337. [Google Scholar] [CrossRef]
- Mychack, A.; Janakiraman, A. Defects in The First Step of Lipoprotein Maturation Underlie The Synthetic Lethality of Escherichia coli Lacking The Inner Membrane Proteins YciB And DcrB. J. Bacteriol. 2021, 203, e00640-20. [Google Scholar] [CrossRef]
- Zuo, L.L.; Wu, Y.M.; You, X.X. Mycoplasma lipoproteins and Toll-like receptors. J. Zhejiang Univ. Sci. B 2009, 10, 67–76. [Google Scholar] [CrossRef]
- Khiari, A.B.; Guériri, I.; Mohammed, R.B.; Mardassi, B.B. Characterization of a variant vlhA gene of Mycoplasma synoviae, strain WVU 1853, with a highly divergent haemagglutinin region. BMC Microbiol. 2010, 10, 6. [Google Scholar] [CrossRef]
- May, M.; Brown, D.R. Diversity of expressed vlhA adhesin sequences and intermediate hemagglutination phenotypes in Mycoplasma synoviae. J. Bacteriol. 2011, 193, 2116–2121. [Google Scholar] [CrossRef] [PubMed]
- Bercic, R.L.; Slavec, B.; Lavric, M.; Narat, M.; Bidovec, A.; Dovc, P.; Bencina, D. Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Vet. Microbiol. 2008, 127, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Salonen, L.M.; Ellermann, M.; Diederich, F. Aromatic rings in chemical and biological recognition: Energetics and structures. Angew. Chem. Int. Ed. Engl. 2011, 50, 4808–4842. [Google Scholar] [CrossRef]
- Ye, J.; Chu, A.J.; Harper, R.; Chan, S.T.; Shek, T.L.; Zhang, Y.; Ip, M.; Sambir, M.; Artsimovitch, I.; Zuo, Z.; et al. Discovery of Antibacterials That Inhibit Bacterial RNA Polymerase Interactions with Sigma Factors. J. Med. Chem. 2020, 63, 7695–7720. [Google Scholar] [CrossRef] [PubMed]
Name | URL | Reference |
---|---|---|
ExPASy-ProtParam | https://web.expasy.org/protparam/, accessed on 3 September 2022 | [12] |
PSORTb | https://www.psort.org/psortb/, accessed on 5 September 2022 | [13] |
PSLPred | http://crdd.osdd.net/raghava/pslpred/, accessed on 6 September 2022 | [14] |
LOCTree3 | https://rostlab.org/services/loctree3/, accessed on 7 September 2022 | [15] |
HMMTOP | http://www.enzim.hu/hmmtop/, accessed on 8 September 2022 | [16] |
TMHMM | http://www.cbs.dtu.dk/services/TMHMM/, accessed on 9 September 2022 | [17] |
Phobius | https://phobius.sbc.su.se/, accessed on 13 September 2022 | [18] |
SignalP | http://www.cbs.dtu.dk/services/SignalP-3.0/, accessed on 15 September 2022 | [19] |
SecretomeP | http://www.cbs.dtu.dk/services/SecretomeP/, accessed on 15 September 2022 | [20] |
Name | URL | Reference |
---|---|---|
BLAST2GO | https://www.blast2go.com/, accessed on 25 September 2022 | [21] |
HMMER | https://www.ebi.ac.uk/Tools/hmmer/, accessed on 29 September 2022 | [22] |
FASTA | https://fasta.bioch.virginia.edu/fasta_www2/fasta_www.cgi, accessed on 29 September 2022 | [23] |
Pfam | https://pfam.xfam.org/, accessed on 5 October 2022 | [24] |
SUPERFAMILY | http://www.supfam.org/SUPERFAMILY/, accessed on 6 October 2022 | [25] |
CATH | https://www.cathdb.info/, accessed on 11 October 2022 | [26] |
CDART | https://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi, accessed on 15 October 2022 | [27] |
SMART | https://smart.embl-heidelberg.de/, accessed on 17 October 2022 | [28] |
SBASE | http://pongor.itk.ppke.hu/protein/sbase. html#/sbase_blast, accessed on 19 October 2022 | [29] |
InterPro | https://www.ebi.ac.uk/interpro/, accessed on 11 October 2022 | [30] |
STRING | https://string-db.org/, accessed on 23 October 2022 | [31] |
STITCH | http://stitch.embl.de/, accessed on 29 October 2022 | [32] |
NCBI Gene ID | Putative Function |
---|---|
Transferases | |
VY93_RS00970 | DNA polymerase; luciferase; phosphatidate Cytidylyltransferase |
VY93_RS02560 | Protein kinase |
VY93_RS01570 | Protein kinase |
VY93_RS03110 | Riboflavin kinase |
VY93_RS00830 | Sensor kinase |
VY93_RS00850 | Phosphotransferase; hemagglutinin |
VY93_RS01710 | Glutathione S-transferase |
VY93_RS02970 | Mycoplasma MFS transporter; histidine kinase A |
VY93_RS00115 | Transferase (glycosyl, DHHC palmitoyl); histidine kinase |
VY93_RS01810 | Membrane-bound O-acyl transferase |
VY93_RS02170 | tRNA/rRNA methyltransferase |
VY93_RS02255 | Protein kinase |
VY93_RS03860 | RNA-binding S4 domain-containing protein; protein kinase |
VY93_RS00470 | Protein kinase |
VY93_RS01555 | ATP-dependent protease; BTB protein DNA polymerase |
VY93_RS00275 | DNA polymerase III |
VY93_RS01930 | ParB-like nuclease; DNA-directed RNA polymerase |
VY93_RS00350 | RNA polymerase |
VY93_RS00400 | DNA polymerase III |
VY93_RS02300 | Methyltransferase type 12 |
VY93_RS03705 | DNA methylase; S-adenosyl-L-methionine-dependent methyltransferase; typeIII restriction-modification system StyLTI enzyme |
Synthetase | |
VY93_RS03395 | Phenylalanyl-tRNA synthetase |
VY93_RS03120 | tRNA pseudouridine synthase B |
VY93_RS01715 | Copper-transporting ATPase |
VY93_RS00840 | ATP synthase |
VY93_RS01815 | Phox homology (PX) domain protein; cysteinyl-tRNA synthetase |
VY93_RS04225 | DNA ligase |
VY93_RS02000 | Mur ligase |
VY93_RS03720 | ATPase |
VY93_RS04185 | ATPase |
VY93_RS00770 | IVS-encoded protein-like superfamily; AAA ATPase |
Hydrolases | |
VY93_RS01095 | Primase-polymerase; phosphohydrolase |
VY93_RS02860 | P-loop containing nucleoside triphosphate hydrolases |
VY93_RS02175 | Phosphomevalonate kinase; P-loop containing nucleoside triphosphate hydrolase |
VY93_RS03870 | Clostridium epsilon toxin ETX; bacillus mosquitocidal toxin MTX2; deoxyribonuclease I |
VY93_RS03200 | Alkaline phosphatase |
VY93_RS02315 | Peptidase M32 |
VY93_RS02730 | Peptidase M13 |
VY93_RS00915 | Peptidase C39 |
VY93_RS04205 | Ribonuclease H |
VY93_RS02305 | Bifunctional 2′,3′-cyclic-nucleotide 2′-phosphodiesterase/3′-nucleotidase; bacterial extracellular solute-binding protein; fibronectin-binding protein |
VY93_RS03875 | DNA methylase |
Isomerases | |
VY93_RS02425 | Isomerase (sugar; phosphoglucose) |
VY93_RS01705 | Topoisomerase-primase |
VY93_RS00205 | Galactose mutarotase |
Oxidoreductases | |
VY93_RS00910 | NADH-ubiquinone oxidoreductase |
VY93_RS02220 | Acyl-CoA oxidase; DNA methylase |
Others | |
VY93_RS03020 | Recombinase Flp protein |
VY93_RS02085 | Permease (ABC-type glycerol-3-phosphate transport system; carbohydrate ABC transporter) |
NCBI Gene ID | Putative Function |
---|---|
VY93_RS00850 | Phosphotransferase; hemagglutinin |
VY913_RS01400 | Phase-variable hemagglutinin |
VY93_RS03820 | Phase-variable hemagglutinin |
VY93_RS01245 | Phase-variable hemagglutinin |
VY93_RS01250 | Phase-variable hemagglutinin |
VY93_RS01255 | Phase-variable hemagglutinin |
VY93_RS01260 | Phase-variable hemagglutinin |
VY93_RS01280 | Phase-variable hemagglutinin |
VY93_RS01285 | Phase-variable hemagglutinin |
VY93_RS04265 | Phase-variable hemagglutinin |
VY93_RS04120 | Phase-variable hemagglutinin |
VY93_RS01315 | Phase-variable hemagglutinin |
VY93_RS01350 | Phase-variable hemagglutinin |
VY93_RS01420 | Phase-variable hemagglutinin |
VY93_RS01425 | Phase-variable hemagglutinin |
VY93_RS01450 | Phase-variable hemagglutinin |
VY93_RS01455 | Phase-variable hemagglutinin |
VY93_RS01380 | Phase-variable hemagglutinin |
VY93_RS04325 | Phase-variable hemagglutinin |
VY93_RS01460 | Phase-variable hemagglutinin |
VY93_RS01270 | Phase-variable hemagglutinin |
VY93_RS01330 | Phase-variable hemagglutinin |
VY93_RS01410 | Phase-variable hemagglutinin |
VY93_RS00340 | Phase-variable hemagglutinin |
VY93_RS03730 | Phase-variable hemagglutinin |
NCBI Gene ID | Putative Function |
---|---|
VY93_RS00960 | P60-like lipoprotein |
VY93_RS04200 | Membrane lipoprotein |
VY93_RS01720 | Membrane lipoprotein |
VY93_RS00485 | P37-like ABC transporter substrate-binding lipoprotein |
VY93_RS03535 | Lipoprotein |
VY93_RS01895 | Lipoprotein |
VY93_RS01900 | Lipoprotein |
VY93_RS02090 | Lipoprotein |
VY93_RS00965 | Membrane protein P80 |
VY93_RS01825 | Murein lipoproteins |
VY93_RS04030 | Mycoplasma lipoprotein (MG045) |
VY93_RS00405 | Mycoplasma lipoprotein; fimbrial protein |
VY93_RS00700 | Membrane protein |
NCBI Gene ID | Putative Function |
---|---|
VY93_RS00780 | Putative helix-turn-helix protein (YlxM/p13-like) |
VY93_RS00990 | Ribbon-helix-helix protein |
VY93_RS01500 | Transcription factors |
VY93_RS00780 | Putative helix-turn-helix protein (YlxM/p13-like) |
VY93_RS01550 | Nucleic acid binding |
VY93_RS03080 | Transcriptional regulatory protein |
VY93_RS00845 | Guanine nucleotide exchange factor (GEF) domain of SopE; Pleckstrin homology-related domain protein |
NCBI Gene ID | Putative Function |
---|---|
VY93_RS01990 | Nematode chemoreceptor |
VY93_RS04250 | Elongation factor EF-Ts |
VY93_RS00240 | Seadorna_VP6 |
VY93_RS03025 | Pore-forming protein, afimbrial adhesin AFA-I |
VY93_RS02525 | Cadherins; anticodon_Ia_like protein |
VY93_RS02420 | Smr protein |
VY93_RS01110 | Super-infection exclusion protein B; |
VY93_RS00790 | Transmembrane protein 51 |
VY93_RS01765 | RDD-like protein domain protein |
VY93_RS01760 | Transcription antitermination factor NusB |
VY93_RS02865 | Replication initiation and membrane attachment protein |
VY93_RS02705 | LMP repeated-region protein |
VY93_RS00715 | Aromatic cluster surface protein |
VY93_RS00710 | Aromatic cluster surface protein |
VY93_RS00705 | Aromatic cluster surface protein |
VY93_RS00680 | Periplasmic binding protein, Laci family transcriptional regulator, sucrose operon repressor |
VY93_RS03280 | Chaperonin Cpn60/TCP-1 |
VY93_RS02250 | SMC-like protein; zinc finger protein; SH2 motif-like domain protein |
VY93_RS02310 | SH2 domain-containing protein |
VY93_RS03725 | Myosin head, motor region-containing protein |
VY93_RS00215 | Intracellular septation protein A |
VY93_RS02950 | Herpesvirus BTRF1 protein |
VY93_RS03520 | Signal-induced proliferation-associated 1-like protein 2 isoform X4; MARVEL domain-containing protein; cell division factor |
VY93_RS03805 | RNA-binding S4 domain-containing protein |
VY93_RS00640 | MtN3 and saliva-related transmembrane protein |
VY93_RS03665 | Mitochondrial carrier |
VY93_RS01690 | RPS2 ribosomal protein S2 |
VY93_RS02790 | PotD/PotF family extracellular solute-binding protein; excinuclease ABC; aromatic cluster surface protein |
VY93_RS03145 | Secretin-receptor family |
VY93_RS01565 | ThrRS/AlaRS common domain superfamily |
VY93_RS01215 | Lipocalins |
VY93_RS00545 | Lipocalins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, D.; Sun, J.; Guo, L.; Yang, F.; Tian, X.; He, S.; Li, J. Hypothetical Proteins of Mycoplasma synoviae Reannotation and Expression Changes Identified via RNA-Sequencing. Microorganisms 2023, 11, 2716. https://doi.org/10.3390/microorganisms11112716
Si D, Sun J, Guo L, Yang F, Tian X, He S, Li J. Hypothetical Proteins of Mycoplasma synoviae Reannotation and Expression Changes Identified via RNA-Sequencing. Microorganisms. 2023; 11(11):2716. https://doi.org/10.3390/microorganisms11112716
Chicago/Turabian StyleSi, Duoduo, Jialin Sun, Lei Guo, Fei Yang, Xingmiao Tian, Shenghu He, and Jidong Li. 2023. "Hypothetical Proteins of Mycoplasma synoviae Reannotation and Expression Changes Identified via RNA-Sequencing" Microorganisms 11, no. 11: 2716. https://doi.org/10.3390/microorganisms11112716
APA StyleSi, D., Sun, J., Guo, L., Yang, F., Tian, X., He, S., & Li, J. (2023). Hypothetical Proteins of Mycoplasma synoviae Reannotation and Expression Changes Identified via RNA-Sequencing. Microorganisms, 11(11), 2716. https://doi.org/10.3390/microorganisms11112716