Bioleaching Mercury from Coal with Aspergillus flavus M-3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coal Samples Preparation
2.2. Screening and Identification of Mercury Leaching Fungus from Coal
2.3. Determination of Physicochemical Properties and Speciation Analysis of Mercury during Bioleaching Coal
2.4. Analysis of Mineral Composition and Organic Functional Groups of Coal before and after Bioleaching
3. Results and Discussion
3.1. Isolation and Identification of Fungal Strain with Coal’s Bioliquefaction and Hg Bioleaching Ability
3.2. Analysis of pH, ORP, Ec, and Total Hg Content during Bioleaching of Mercury from Coal by the Fungal Strain M-3
3.3. Mercury Speciation Analysis in Coal during Bioleaching by the Fungal M-3
3.4. Proximate, Ultimate, and XRD Analysis before and after Bioleaching Coal by the Fungal Strain M-3
3.5. FT-IR Analysis before and after Bioleaching Coal by Fungal Strain M-3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Xu, Y.; Ren, H. Intelligent and ecological coal mining as well as clean utilization technology in China: Review and prospects. Int. J. Mining Sci. Technol. 2019, 29, 161–169. [Google Scholar] [CrossRef]
- Deonarine, A.; Schwartz, G.E.; Ruhl, L.S. Environmental Impacts of Coal Combustion Residuals: Current Understanding and Future Perspectives. Environ. Sci. Technol. 2023, 57, 1855–1869. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Wang, C.; Kong, L.; Sun, P.; Hu, Q.; Zhao, H.; Guo, Y.; Yang, S. Remarkable improvement of Ti incorporation on Hg-0 capture from smelting flue gas by sulfurated gamma-Fe2O3: Performance and mechanism. J. Hazard. Mater. 2020, 381, 120967. [Google Scholar] [CrossRef] [PubMed]
- Sonke, J.E.; Angot, H.; Zhang, Y.; Poulain, A.; Björn, E.; Schartup, A. Global change effects on biogeochemical mercury cycling. AMBIO 2023, 52, 853–876. [Google Scholar] [CrossRef]
- Chen, G.; Wang, L.; Yang, S. Research status and prospect of phytoremediation of mercury-contaminated soil. Earth Environ. 2022, 50, 754–766. [Google Scholar] [CrossRef]
- UN Environment. Global Mercury Assessment 2018; UN Environment Programme Chemicals and Health Branch Geneva: Geneva, Switzerland, 2019. [Google Scholar]
- Hao, Q.; Liu, Q.; Song, M. Removal behavior of methyl mercury and total mercury in low sulfur coal washing process. Environ. Chem. 2021, 40, 3936–3946. [Google Scholar]
- Cao, L.; Yang, J.; Xu, Y.; Sun, W.; Shen, Q.; Zhou, J. The coupling use of electro-chemical and advanced oxidation to enhance the gaseous elemental mercury removal in flue gas. Sep. Purif. Technol. 2020, 257, 117883. [Google Scholar] [CrossRef]
- Romanowska, I.; Strzelecki, B.; Bielecki, S. Biosolubilization of Polish brown coal by Gordonia alkanivorans S7 and Bacillus mycoides NS1020. Fuel Process. Technol. 2015, 131, 430–436. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Liu, T.; Tian, X.; Zhang, Y.; Wang, J.; Zhang, M.; Phoutthavong, T.; Liang, P. Mercury release behaviors of Guizhou bituminous coal during co-pyrolysis: Influence of chlorella. J. Environ. Sci. 2022, 119, 23–32. [Google Scholar] [CrossRef]
- Cao, Q.; Yang, L.; Ren, W.; Yan, R.; Wang, Y.; Liang, C. Environmental geochemical maps of harmful trace elements in Chinese coalfields. Sci. Total Environ. 2021, 799, 149475. [Google Scholar] [CrossRef]
- Li, S.; Li, F.; Li, P.; Wang, Y.; Shi, Q.; Liu, X.; Tan, J.; Han, Y. Bio-solubilization of Yunnan lignite by Penicillium ortum MJ51 and characterization of its products. Fuel 2023, 331, 13. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, Z.; Shi, G.; Wang, F.; Xie, Y. Characterization of Coke-Making Coals of High Reactivity from Northwest China. In Symposium on Characterization of Minerals, Metals, and Materials Held during the Annual Meeting of the Minerals-Metals-and-Materials-Society; TMS; Springer International Publishing Ag: Phoenix, AZ, USA, 2018. [Google Scholar]
- Ghani, M.J.; Akhtar, K.; Khaliq, S.; Akhtar, N.; Ghauri, M.A. Characterization of humic acids produced from fungal liquefaction of low-grade Thar coal. Process Biochem. 2021, 107, 1–12. [Google Scholar] [CrossRef]
- GB/T214-2007; Determination of Total Sulfur in Coal. Standards Press of China: Beijing, China, 2007.
- GB/T476-2008; Determination of Carbon and Hydrogen in Coal. Standards Press of China: Beijing, China, 2008.
- Zhang, Y.; Wang, S.; Mei, J. Optimization of conditions for bioleaching mercury from coal by Aspergillus flavus M-3. Coal Prep. Technol. 2023, 51, 38–45. [Google Scholar]
- Morosini, C.; Terzaghi, E.; Raspa, G.; Zanardini, E.; Anelli, S.; Armiraglio, S.; Petranich, E.; Covelli, S.; Di Guardo, A. Mercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: Role of soil properties, chemical loading, and cultivated plant species in driving its mobility. Environ. Pollut. 2021, 285, 9. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhang, W.Y. Evolution Mechanism of Macromolecular Structure in Coal during Heat Treatment: Based on FTIR and XRD In Situ Analysis Techniques. J. Spectrosc. 2019, 2019, 18. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Akhtar, K.; Khan, A.N.; Tahir, M.A.; Khaliq, S.; Akhtar, N.; Ragauskas, A.J. Bioconversion and quantification of humic substances from low rank coals using indigenous fungal isolates. J. Clean. Prod. 2022, 376, 134102. [Google Scholar] [CrossRef]
- Ghani, M.J.; Rajoka, M.I.; Akhtar, K. Investigations in fungal solubilization of coal: Mechanisms and significance. Biotechnol. Bioprocess Eng. 2015, 20, 634–642. [Google Scholar] [CrossRef]
- Pangayao, D.; Promentilla, M.A.; Gallardo, S.; van Hullebusch, E. Bioleaching kinetics of trace metals from coal ash using Pseudomonas spp. In Proceedings of the 25th Regional Symposium on Chemical Engineering (RSCE), Makati, Philippines, 21–22 November 2018. [Google Scholar]
- Vilcaez, J.; Suto, K.; Inoue, C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence. Int. J. Miner. Process. 2008, 88, 37–44. [Google Scholar] [CrossRef]
- Aghazadeh, S.; Abdollahi, H.; Gharabaghi, M.; Mirmohammadi, M. Green Extraction of Heavy Metals from Tetrahedrite-Rich Concentrates Using Mechanical Activation-Assisted Bioleaching. J. Sustain. Met. 2023, 9, 23. [Google Scholar] [CrossRef]
- Inaba, Y.; Kernan, T.; West, A.C.; Banta, S. Dispersion of sulfur creates a valuable new growth medium formulation that enables earlier sulfur oxidation in relation to iron oxidation in Acidithiobacillus ferrooxidans cultures. Biotechnol. Bioeng. 2021, 118, 3225–3238. [Google Scholar] [CrossRef]
- Qiu, C.; Xie, S.; Liu, N.; Meng, K.; Wang, C.; Wang, D.; Wang, S. Removal behavior and chemical speciation distributions of heavy metals in sewage sludge during bioleaching and combined bioleaching/Fenton-like processes. Sci. Rep. 2021, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, H.; Dong, Y.-B.; Li, G.-Y. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase. Int. J. Miner. Metall. Mater. 2018, 25, 253–261. [Google Scholar] [CrossRef]
- Qiu, C.; Bi, Y.; Zheng, J.; Wang, D.; Wang, C.; Liu, N.; Wang, S.; Sun, L. Effect of ozonation treatment on the chemical speciation distributions of heavy metals in sewage sludge and subsequent bioleaching process. Environ. Sci. Pollut. Res. 2020, 27, 19946–19954. [Google Scholar] [CrossRef] [PubMed]
- Song, S.W.; Wang, L.; Wang, X.X.; Qi, G.C.; Yu, L.; Liu, J. Speciation Analysis and Removal of Heavy Metals Zn, Cu, Cd from Sludge by Organic Acid. In Proceedings of the 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME), Shenzhen, China, 19–20 September 2015; Atlantis Press: Shenzhen, China, 2015. [Google Scholar]
- Zheng, Y.; Lu, J.; Zhang, Z.; Li, Y.; Tan, Y.; Cai, W.; Ma, C.; Chen, F. Effect of Low-Molecular Organic Acids on the Migration Characteristics of Nickel in Reclaimed Soil from The Panyi Mine Area in China. Toxics 2022, 10, 798. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhao, P.; Liu, H.; Nie, Z.; Zhu, J.; Qin, S.; Li, C. Selenium inhibits cadmium uptake and accumulation in the shoots of winte wheat by altering the transformation of chemical forms of cadmium in soil. Environ. Sci. Pollut. Res. 2022, 29, 8525–8537. [Google Scholar] [CrossRef]
- Zhang, Q.; Hah, G.-L. Speciation Characteristics and Risk Assessment of Soil Heavy Metals from Puding Karst Critical Zone, Guizhou Province. Huan Jing Ke Xue Huanjing Kexue 2022, 43, 3269–3277. [Google Scholar]
- Zhang, W.; Yu, T.; Yang, X.; Li, H. Speciation, Transformation, and Accumulation of Manure-derived Cu and Zn in the Soil-Rice System. Soil Sediment Contam. 2020, 29, 43–52. [Google Scholar] [CrossRef]
- Feng, X.; Sun, J.H.; Xie, Y.H. Degradation of Shanxi lignite by Trichoderma citrinoviride. Fuel 2021, 291, 9. [Google Scholar] [CrossRef]
- Haider, R.; Ghauri, M.A.; Jones, E.J.; Orem, W.H.; SanFilipo, J.R. Structural degradation of Thar lignite using MW1 fungal isolate: Optimization studies. Int. Biodeterior. Biodegrad. 2015, 100, 149–154. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Z.; Wang, S.; Cen, L.; Ni, B.J.; Liu, Q. Insights into the weathering behavior of pyrite in alkaline soil through electrochemical characterizations: Actual hazards or potentially benefits? J. Hazard. Mater. 2023, 451, 131145. [Google Scholar] [CrossRef]
- Yang, M.; Zou, B.; Jiang, C.; Ma, L.; Yang, Y. Elucidation of elemental and structural changes in high-volatile bituminous coal during thermal treatment by X-ray diffraction and terahertz time-domain spectroscopy. Fuel 2021, 293, 7. [Google Scholar] [CrossRef]
- Xia, D.; Su, X.-B.; Wu, Y.; Chen, X. Effect of different pretreatment methods and simulated gas production experiments on coal structure. J. China Coal Soc. 2013, 38, 129–133. [Google Scholar]
- Farooq, A.; Khan, U.A.; Ali, H.; Sathish, M.; Naqvi, S.A.H.; Iqbal, S.; Ali, H.; Mubeen, I.; Amir, M.B.; Mosa, W.F.A.; et al. Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens. Microorganisms 2022, 10, 2195. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, M.N.; Hamdi, S.A.; Korany, S.M.; Elbaz, R.M.; Farahat, M.G. Biosynthesis of Novel Tellurium Nanorods by Gayadomonas sp. TNPM15 Isolated from Mangrove Sediments and Assessment of Their Impact on Spore Germination and Ultrastructure of Phytopathogenic Fungi. Microorganisms 2023, 11, 558. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Cheng, Y.; Liu, Z.; Zhang, Q.; Zhao, K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification. Fuel 2019, 239, 559–572. [Google Scholar] [CrossRef]
- Majeke, B.; Collard, F.-X.; Tyhoda, L.; Görgens, J. The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products. Bioresour. Technol. 2021, 319, 124152. [Google Scholar] [CrossRef]
- Zhao, L.; Guanhua, N.; Hui, W.; Qian, S.; Gang, W.; Bingyou, J.; Chao, Z. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy. Fuel 2020, 272, 117705. [Google Scholar] [CrossRef]
- Sabar, M.A.; Ali, M.I.; Fatima, N.; Malik, A.Y.; Jamal, A.; Farman, M.; Huang, Z.; Urynowicz, M. Degradation of low rank coal by Rhizopus oryzae isolated from a Pakistani coal mine and its enhanced releases of organic substances. Fuel 2019, 253, 257–265. [Google Scholar] [CrossRef]
Coal Sample | Mad (%) | Aad (%) | Vdaf (%) | FCdaf (%) | Cdaf (%) | Hdaf (%) | Odaf (%) | Ndaf (%) | Sdaf (%) |
---|---|---|---|---|---|---|---|---|---|
Raw | 2.04 | 53.01 | 21.02 | 23.93 | 71.82 | 5.93 | 8.69 | 1.94 | 1.13 |
Residual | 2.79 | 58.50 | 22.83 | 17.33 | 69.78 | 6.45 | 9.97 | 2.78 | 1.98 |
Coal Sample | 2θ(002)/(°) | FWHM(002)/(°) | 2θ(γ)/(°) | FWHM(γ)/(°) | d002 (nm) | Lc (nm) | La (nm) | N |
---|---|---|---|---|---|---|---|---|
Raw | 26.68 | 0.11 | 26.46 | 0.89 | 0.33 | 1.27 | 3.50 | 4.81 |
Residual | 26.48 | 0.22 | 26.11 | 0.15 | 0.34 | 0.63 | 1.13 | 2.89 |
Peak | Peak Center (cm−1) | Peak Area | Functional Groups | ||
---|---|---|---|---|---|
Raw Coal | Residual Coal | Raw Coal | Residual Coal | ||
P1 | 3695.92 | 3695.81 | 0.05 | 0.02 | O-H stretching |
P2 | 3630.93 | 3632.35 | 0.21 | 0.06 | |
P3 | 3433.60 | 3411.92 | 1.12 | 1.22 | Hydrogen bond |
P4 | 2919.50 | 2922.07 | 0.09 | 0.07 | CH2 asymmetrical stretching |
P5 | 2851.54 | 2854.30 | 0.04 | 0.05 | CH asymmetrical stretching |
P6 | 1614.80 | 1623.49 | 0.10 | 0.21 | C=C stretching |
P7 | 1228.46 | 1263.54 | 0.93 | 0.00 | C-O stretching |
P8 | 1094.24 | 1191.38 | 1.43 | 1.04 | |
P9 | 1021.49 | 1035.58 | 2.30 | 1.62 | Si-O-Si or Si-O-C stretching |
P10 | 927.31 | 908.88 | 0.47 | 0.08 | C-O stretching |
P11 | 781.12 | 777.85 | 0.08 | 0.04 | C-H out-of-plane bending |
P12 | 691.77 | 691.34 | 0.03 | 0.01 | |
P13 | 536.02 | 535.65 | 0.71 | 0.33 | C-X stretching |
P14 | 471.01 | 469.21 | 0.48 | 0.21 | S-S stretching |
P15 | 429.77 | 427.61 | 0.16 | 0.08 |
Coal Sample | A900–700 | A1600 | A1800–1650 | A3000–2800 | H/C | Hal/Cal |
---|---|---|---|---|---|---|
Raw | 0.1153 | 0.0931 | 0.0084 | 0.1263 | 0.9908 | 1.8000 |
Residual | 0.0345 | 0.1083 | 0.0317 | 0.1207 | 1.1092 | 1.8000 |
Coal Sample | Hal/H | Cal/C | fal | I | DOC | “C” |
---|---|---|---|---|---|---|
Raw | 0.5227 | 0.2877 | 0.7123 | 0.9132 | 1.2395 | 0.0831 |
Residual | 0.7778 | 0.4793 | 0.5207 | 0.2857 | 0.3186 | 0.2263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, W.; Mei, J.; He, H.; Liu, C.; Tao, X.; Huang, Z. Bioleaching Mercury from Coal with Aspergillus flavus M-3. Microorganisms 2023, 11, 2702. https://doi.org/10.3390/microorganisms11112702
Mao W, Mei J, He H, Liu C, Tao X, Huang Z. Bioleaching Mercury from Coal with Aspergillus flavus M-3. Microorganisms. 2023; 11(11):2702. https://doi.org/10.3390/microorganisms11112702
Chicago/Turabian StyleMao, Wenqing, Juan Mei, Huan He, Cheng Liu, Xiuxiang Tao, and Zaixing Huang. 2023. "Bioleaching Mercury from Coal with Aspergillus flavus M-3" Microorganisms 11, no. 11: 2702. https://doi.org/10.3390/microorganisms11112702
APA StyleMao, W., Mei, J., He, H., Liu, C., Tao, X., & Huang, Z. (2023). Bioleaching Mercury from Coal with Aspergillus flavus M-3. Microorganisms, 11(11), 2702. https://doi.org/10.3390/microorganisms11112702