Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Preparation of Raw Materials
2.2. Isolation of Cellulose-Degrading Bacteria from Termite Gut Samples
2.3. 16S rDNA Identification
2.4. Whole-Genome Sequencing of B. velezensis BV-10
2.5. Experimental Design of King Grass Silage
2.6. Quality Index and Nutritional Analysis of Silage
2.7. Statistical Analysis
3. Results
3.1. Isolation and Identification of B. velezensis BV-10
3.2. Whole-Genome Sequencing of B. velezensis BV-10 and Functional Annotations
3.3. Analysis of Carbohydrate-Active Enzymes (CAZymes) and Pathogenic Bacterial Virulence Factors
3.4. Effect of Different Additives and Silage Fermentation Time on the Conventional Nutrient Composition of King Grass during Silaging
3.5. Effect of Different Additives and Silage Time on the Fermentation Quality of King Grass Silage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitro gas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Chen, R.; Li, M.; Yang, J.; Chen, L.; Zi, X.; Zhou, H.; Tang, J. Exploring the effect of wilting on fermentation profiles and microbial community structure during ensiling and air exposure of king grass silage. Front. Microbiol. 2022, 13, 971426. [Google Scholar] [CrossRef] [PubMed]
- Huisden, C.M.; Adesogan, A.T.; Kim, S.C.; Ososanya, T. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. J. Dairy. Sci. 2009, 92, 690–697. [Google Scholar] [CrossRef]
- Tian, H.; Zhu, Y.; Dai, M.; Li, T.; Guo, Y.; Deng, M.; Sun, B. Additives Altered Bacterial Communities and Metabolic Profiles in Silage Hybrid Pennisetum. Front. Microbiol. 2021, 12, 770728. [Google Scholar] [CrossRef]
- Addah, W.; Baah, J.; McAllister, T.A. Effects of an exogenous enzyme-containing inoculant on fermentation characteristics of barley silage and on growth performance of feedlot steers. Can. J. Anim. Sci. 2016, 96, 1–10. [Google Scholar] [CrossRef]
- Amaral, R.C.; Carvalho, B.F.; Costa, D.M.; Morenz, M.J.F.; Schwan, R.F.; Ávila, C.L.d.S. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim. Feed Sci. Technol. 2020, 264, 114472. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Deswal, D.; Sharma, S.; Bhattacharya, A.; Jain, K.K.; Kaur, A.; Pletschke, B.I.; Singh, A.; Karp, M. Revisiting cellulase production and redefining current strategies based on major challenges. Renew. Sustain. Energy Rev. 2016, 55, 249–272. [Google Scholar]
- Ilić, N.; Milić, M.; Beluhan, S.; Dimitrijević-Branković, S. Cellulases: From Lignocellulosic Biomass to Improved Production. Energies 2023, 16, 3598. [Google Scholar]
- Balasubramanian, N.; Simões, N. Bacillus pumilus S124A carboxymethyl cellulase; a thermo stable enzyme with a wide substrate spectrum utility. Int. J. Biol. Macromol. 2014, 67, 132–139. [Google Scholar] [CrossRef]
- Gupta, M.; Sharma, M.; Singh, S.; Gupta, P.; Bajaj, B.K. Enhanced Production of Cellulase from Bacillus licheniformis K-3 with Potential for Saccharification of Rice Straw. Energy Technol. 2015, 3, 216–224. [Google Scholar] [CrossRef]
- Lo, Y.-C.; Lu, W.-C.; Chen, C.-Y.; Chen, W.-M.; Chang, J.-S. Characterization and high-level production of xylanase from an indigenous cellulolytic bacterium Acinetobacter junii F6-02 from southern Taiwan soil. Biochem. Eng. J. 2010, 53, 77–84. [Google Scholar]
- Thomas, L.; Joseph, A.; Gottumukkala, L.D. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Bioresour. Technol. 2014, 158, 343–350. [Google Scholar] [PubMed]
- Ke, J.; Singh, D.; Chen, S. Aromatic compound degradation by the wood-feeding termite Coptotermes formosanus (Shiraki). Int. Biodeter. Biodegrad. 2011, 65, 744–756. [Google Scholar]
- Zhang, Z.; Wang, Y.; Wang, S.; Zhao, L.; Zhang, B.; Jia, W.; Zhai, Z.; Zhao, L.; Li, Y. Effects of antibacterial peptide-producing Bacillus subtilis, gallic acid, and cellulase on fermentation quality and bacterial community of whole-plant corn silage. Front. Microbiol. 2022, 13, 1028001. [Google Scholar]
- Sun, J.-Z.; Scharf, M.E. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci. 2010, 17, 163–165. [Google Scholar] [CrossRef]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar]
- Auer, L.; Lazuka, A.; Sillam-Dussès, D.; Miambi, E.; O’Donohue, M.; Hernandez-Raquet, G. Uncovering the Potential of Termite Gut Microbiome for Lignocellulose Bioconversion in Anaerobic Batch Bioreactors. Front. Microbiol. 2017, 8, 2623. [Google Scholar]
- Tsegaye, B.; Balomajumder, C.; Roy, P. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite. 3 Biotech 2018, 8, 447. [Google Scholar]
- Verma, M.; Ekka, A.; Mohapatra, T.; Ghosh, P. Optimization of kraft lignin decolorization and degradation by bacterial strain Bacillus velezensis using response surface methodology. J. Environ. Chem. Eng. 2020, 8, 104270. [Google Scholar]
- Chen, L.; Qu, Z.; Yu, W.; Zheng, L.; Qiao, H.; Wang, D.; Wei, B.; Zhao, Z. Comparative genomic and transcriptome analysis of Bacillus velezensis CL-4 fermented corn germ meal. AMB Express 2023, 13, 10. [Google Scholar]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Pan, Q.; Liu, Y.; et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef] [PubMed]
- Besemer, J.; Lomsadze, A.; Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001, 29, 2607–2618. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar]
- Kalvari, I.; Argasinska, J.; Quinones-Olvera, N.; Nawrocki, E.P.; Rivas, E.; Eddy, S.R.; Bateman, A.; Finn, R.D.; Petrov, A.I. Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018, 46, D335–D342. [Google Scholar]
- Conesa, A.; Götz, S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genom. 2008, 2008, 619832. [Google Scholar] [CrossRef]
- Powell, S.; Forslund, K.; Szklarczyk, D.; Trachana, K.; Roth, A.; Huerta-Cepas, J.; Gabaldón, T.; Rattei, T.; Creevey, C.; Kuhn, M.; et al. eggNOG v4.0: Nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014, 42, D231–D239. [Google Scholar] [CrossRef]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis--10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Stothard, P.; Wishart, D.S. Circular genome visualization and exploration using CGView. Bioinformatics 2005, 21, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Holt, D.A.; Hilst, A.R. Daily Variation in Carbohydrate Content of Selected Forage Crops1. Agron. J. 1969, 61, 239–242. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Li, J.; Shen, Y.; Cai, Y. Improvement of Fermentation Quality of Rice Straw Silage by Application of a Bacterial Inoculant and Glucose. Asian-Australas. J. Anim. Sci. 2010, 23, 901–906. [Google Scholar] [CrossRef]
- Acland, J. Association of Official Analytical Chemist AOAC-1990. Official Method of Analysis. East. Afr. Crops 1985, 15, 33–38. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy. Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Owens, V.N.; Albrecht, K.A.; Muck, R.E.; Duke, S.H. Protein Degradation and Fermentation Characteristics of Red Clover and Alfalfa Silage Harvested with Varying Levels of Total Nonstructural Carbohydrates. Crop Sci. 1999, 39, 1873–1880. [Google Scholar] [CrossRef]
- Santana, A.; Cheng, L.; Verdecia, D.; Ramírez, J.; López, S.; Cisneros, M.; Rugoho, I.; Maxwell, T.; Al-Marashdeh, O. Effect of a mixed silage of king grass (Cenchrus purpureus) and forage legumes (Leucaena leucocephala or Gliricidia sepium) on sheep intake, digestibility and nitrogen balance. Anim. Prod. Sci. 2019, 59, 2259–2264. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Lv, R.; Tang, J.; Cai, Y. Silage fermentation and ruminal degradation of cassava foliage prepared with microbial additive. AMB Express 2019, 9, 180. [Google Scholar] [CrossRef]
- Bonaldi, D.S.; Carvalho, B.F.; Ávila, C.; Silva, C.F. Effects of Bacillus subtilis and its metabolites on corn silage quality. Lett. Appl. Microbiol. 2021, 73, 46–53. [Google Scholar] [CrossRef]
- Chen, L.; Gu, W.; Xu, H.Y.; Yang, G.L.; Shan, X.F.; Chen, G.; Wang, C.F.; Qian, A.D. Complete genome sequence of Bacillus velezensis 157 isolated from Eucommia ulmoides with pathogenic bacteria inhibiting and lignocellulolytic enzymes production by SSF. 3 Biotech 2018, 8, 114. [Google Scholar] [CrossRef]
- Pandey, S.; Kushwah, J.; Tiwari, R.; Kumar, R.; Somvanshi, V.S.; Nain, L.; Saxena, A.K. Cloning and expression of β-1, 4-endoglucanase gene from Bacillus subtilis isolated from soil long term irrigated with effluents of paper and pulp mill. Microbiol. Res. 2014, 169, 693–698. [Google Scholar] [CrossRef]
- Li, Y.; Lei, L.; Zheng, L.; Xiao, X.; Tang, H.; Luo, C. Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots. Biotechnol. Biofuels 2020, 13, 34. [Google Scholar]
- Xu, R.; Zhang, K.; Liu, P.; Han, H.; Zhao, S.; Kakade, A.; Khan, A.; Du, D.; Li, X. Lignin depolymerization and utilization by bacteria. Bioresour. Technol. 2018, 269, 557–566. [Google Scholar]
- de Gonzalo, G.; Colpa, D.I.; Habib, M.H.; Fraaije, M.W. Bacterial enzymes involved in lignin degradation. J. Biotechnol. 2016, 236, 110–119. [Google Scholar]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: Suitability of taxonomic units notified to EFSA until September 2019. EFSA J. 2020, 18, e05965. [Google Scholar]
- Khalid, F.; Khalid, A.; Fu, Y.; Hu, Q.; Zheng, Y.; Khan, S.; Wang, Z. Potential of Bacillus velezensis as a probiotic in animal feed: A review. J. Microbiol. 2021, 59, 627–633. [Google Scholar]
- Xu, S.; Xie, X.; Shi, Y.; Chai, A.; Li, B.; Li, L. Development of a Real-Time Quantitative PCR Assay for the Specific Detection of Bacillus velezensis and Its Application in the Study of Colonization Ability. Microorganisms 2022, 10, 1216. [Google Scholar] [CrossRef]
- Fazle Rabbee, M.; Baek, K.H. Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus velezensis for Agricultural Applications. Molecules 2020, 25, 4973. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy. Sci. 2018, 101, 3952–3979. [Google Scholar]
- Bai, J.; Xu, D.; Xie, D.; Wang, M.; Li, Z.; Guo, X. Effects of antibacterial peptide-producing Bacillus subtilis and Lactobacillus buchneri on fermentation, aerobic stability, and microbial community of alfalfa silage. Bioresour. Technol. 2020, 315, 123881. [Google Scholar]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K.H. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 2019, 24, 1046. [Google Scholar]
- Chen, L.; Chen, W.; Zheng, B.; Yu, W.; Zheng, L.; Qu, Z.; Yan, X.; Wei, B.; Zhao, Z. Fermentation of NaHCO(3)-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization. Appl. Microbiol. Biotechnol. 2022, 106, 6077–6094. [Google Scholar]
- Uddin, M.E.; Santana, O.I.; Weigel, K.A.; Wattiaux, M.A. Enteric methane, lactation performances, digestibility, and metabolism of nitrogen and energy of Holsteins and Jerseys fed 2 levels of forage fiber from alfalfa silage or corn silage. J. Dairy. Sci. 2020, 103, 6087–6099. [Google Scholar]
- Amer, S.; Hassanat, F.; Berthiaume, R.; Seguin, P.; Mustafa, A.F. Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Anim. Feed Sci. Technol. 2012, 177, 23–29. [Google Scholar] [CrossRef]
- Zi, X.; Li, M.; Chen, Y.; Lv, R.; Zhou, H.; Tang, J. Effects of Citric Acid and Lactobacillus plantarum on Silage Quality and Bacterial Diversity of King Grass Silage. Front. Microbiol. 2021, 12, 631096. [Google Scholar] [CrossRef]
- Zheng, M.L.; Niu, D.Z.; Jiang, D.; Zuo, S.S.; Xu, C.C. Dynamics of microbial community during ensiling direct-cut alfalfa with and without LAB inoculant and sugar. J. Appl. Microbiol. 2017, 122, 1456–1470. [Google Scholar]
- Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B.; Staples, C.R. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. J. Dairy. Sci. 2004, 87, 3407–3416. [Google Scholar]
- Long, S.; Li, X.; Yuan, X.; Su, R.; Pan, J.; Chang, Y.; Shi, M.; Cui, Z.; Huang, N.; Wang, J. The Effect of Early and Delayed Harvest on Dynamics of Fermentation Profile, Chemical Composition, and Bacterial Community of King Grass Silage. Front. Microbiol. 2022, 13, 864649. [Google Scholar]
- Nishino, N.; Li, Y.; Wang, C.; Parvin, S. Effects of wilting and molasses addition on fermentation and bacterial community in guinea grass silage. Lett. Appl. Microbiol. 2012, 54, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yuan, X.; Desta, S.T.; Dong, Z.; Mugabe, W.; Shao, T. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour. Technol. 2018, 257, 76–83. [Google Scholar] [PubMed]
- Santos, A.O.; Ávila, C.L.; Pinto, J.C.; Carvalho, B.F.; Dias, D.R.; Schwan, R.F. Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. J. Appl. Microbiol. 2016, 120, 266–279. [Google Scholar] [CrossRef] [PubMed]
Classification | CAZy | Number of ORFs Annotated | Enzymes |
---|---|---|---|
Cellulose-related | GH1 | 2 | 6-phospho-β-glucosidase (EC 3.2.1.86) |
GH3 | 1 | β-glucosidase (EC 3.2.1.21) | |
GH4 | 3 | 6-phospho-β-glucosidase (EC 3.2.1.86) 6-phospho-α-glucosidase (EC 3.2.1.122) | |
GH5 | 2 | endo-1,4-β-glucanase (EC 3.2.1.4) | |
GH13 | 6 | a-glucosidase (EC 3.2.1.20) a-amylase (EC 3.2.1.1) | |
GH16 | 1 | β-1,3(4)-glucanase (EC 3.2.1.6) | |
GH32 | 3 | endo-levanase (EC 3.2.1.65) sucrose-6-phosphate hydrolase (EC 2.4.1.–) | |
PL1 | 2 | pectin lyase (EC 4.2.2.10) pectate lyase (EC 4.2.2.2) | |
PL9 | 1 | pectate lyase (EC 4.2.2.2) | |
Hemicellulose-related | GH11 | 1 | xylanase (EC 3.2.1.8) |
GH26 | 1 | β-mannanase (EC 3.2.1.78) | |
GH30 | 2 | glucosylceramidase (EC 3.2.1.45) | |
GH43 | 3 | arabinan endo-1,5-α-L-arabinosidase (EC 3.2.1.99) arabinoxylan arabinofuranohydrolase (EC 3.2.1.–) 1,4-β-xylosidase (EC 3.2.1.37) | |
GH51 | 2 | α-L-arabinofuranosidase (EC 3.2.1.55) | |
CE3 | 1 | acetyl xylan esterase (EC 3.1.1.72) | |
Lignin-related | AA1_2 | 1 | laccase (EC 1.10.3.2) |
AA4 | 1 | vanillyl-alcohol oxidase (EC 1.1.3.38) | |
AA6 | 1 | 1,4-benzoquinone reductases (EC 1.6.5.6) | |
AA7 | 3 | FAD-binding protein (EC 1.1.3.–) FAD-dependent oxidase (EC 1.1.3.–) | |
AA10 | 1 | copper-dependent lytic polysaccharide monooxygenases (EC 1.14.99.53) |
Item | Ensiling Days | Treatment | |||||
---|---|---|---|---|---|---|---|
CK | MO | CE | VEL | VEL+MO | VEL+CE | ||
DM (%FM) | 10 | 25.55 ± 1.05 a | 24.54 ± 0.29 ab | 23.52 ± 1.14 b | 24.57 ± 0.97 ab | 23.64 ± 0.78 ab | 23.27 ± 1.45 b |
20 | 25.06 ± 0.40 | 24.57 ± 0.56 | 23.65 ± 1.15 | 23.87 ± 0.62 | 24.55 ± 1.44 | 24.02 ± 0.82 | |
30 | 24.07 ± 1.60 | 23.81 ± 0.86 | 24.72 ± 1.23 | 24.30 ± 0.80 | 24.18 ± 1.09 | 23.94 ± 2.24 | |
CP (%DM) | 10 | 5.61 ± 0.12 b | 5.81 ± 0.06 bA | 5.25 ± 0.05 cB | 5.76 ± 0.20 bB | 7.01 ± 0.19 aA | 5.12 ± 0.15 cB |
20 | 5.53 ± 0.11 d | 5.81 ± 0.26 cdA | 5.07 ± 0.08 eB | 6.35 ± 0.14 bA | 6.72 ± 0.13 aAB | 5.88 ± 0.18 cA | |
30 | 5.77 ± 0.13 c | 5.43 ± 0.12 dB | 5.86 ± 0.17 cA | 6.20 ± 0.13 bA | 6.57 ± 0.22 aB | 6.03 ± 0.10 bcA | |
NDF (%DM) | 10 | 76.60 ± 1.56 a | 73.97 ± 0.95 bB | 75.03 ± 1.33 abAB | 76.07 ± 0.91 abB | 74.63 ± 1.86 abA | 75.10 ± 0.52 abA |
20 | 78.80 ± 1.83 a | 76.17 ± 0.59 abA | 76.63 ± 1.55 abA | 78.57 ± 1.17 aA | 74.17 ± 1.79 bA | 76.23 ± 2.18 abA | |
30 | 76.9 ± 0.96 a | 74.2 ± 0.66 bB | 73.53 ± 0.93 bB | 76.13 ± 0.59 aB | 70.27 ± 0.21 cB | 71.37 ± 1.27 cB | |
ADF (%DM) | 10 | 50.20 ± 0.40 bB | 49.00 ± 0.10 bB | 49.83 ± 1.19 bB | 49.30 ± 0.82 bB | 49.40 ± 0.44 bA | 52.63 ± 2.46 aA |
20 | 50.53 ± 0.68 bcAB | 51.17 ± 0.49 bA | 53.47 ± 0.40 aA | 50.70 ± 0.60 bcA | 49.13 ± 1.62 cAB | 50.57 ± 1.17 bcAB | |
30 | 51.37 ± 0.38 aA | 50.80 ± 0.79 aA | 50.83 ± 0.32 aB | 48.80 ± 0.66 bB | 47.13 ± 0.81 cB | 48.17 ± 1.24 bcB | |
WSC (%DM) | 10 | 14.24 ± 0.77 bA | 18.41 ± 0.43 aA | 14.27 ± 0.39 bA | 12.96 ± 0.60 bA | 17.64 ± 0.92 aA | 13.31 ± 0.89 bA |
20 | 10.92 ± 0.24 bB | 12.13 ± 0.29 aB | 10.62 ± 0.61 bB | 10.30 ± 0.35 bB | 10.88 ± 0.90 bB | 9.95 ± 0.47 bB | |
30 | 9.33 ± 0.63 abC | 10.19 ± 0.32 aC | 8.22 ± 0.36 cC | 8.28 ± 0.24 cC | 8.94 ± 0.35 bcC | 8.46 ± 0.89 bcB |
Item | Ensiling Days | Treatment | |||||
---|---|---|---|---|---|---|---|
CK | MO | CE | VEL | VEL+MO | VEL+CE | ||
pH | 10 | 4.61 ± 0.17 aA | 4.43 ± 0.04 abA | 4.50 ± 0.09 abA | 4.40 ± 0.06 bA | 4.34 ± 0.14 bcA | 4.17 ± 0.03 cA |
20 | 4.40 ± 0.27 aAB | 4.21 ± 0.14 abB | 4.07 ± 0.13 bcB | 4.03 ± 0.11 bcB | 3.77 ± 0.19 bB | 3.91 ± 0.04 bcB | |
30 | 4.07 ± 0.06 aB | 4.06 ± 0.06 aB | 3.88 ± 0.11 bB | 4.02 ± 0.04 abB | 3.98 ± 0.10 abB | 3.64 ± 0.04 cC | |
LA (mg/mL) | 10 | 15.41 ± 0.82 aC | 14.45 ± 1.09 abB | 11.39 ± 1.52 cC | 13.07 ± 1.63 bcC | 15.62 ± 0.60 aC | 14.14 ± 0.28 abB |
20 | 17.75 ± 1.33 abB | 13.44 ± 0.51 cB | 15.08 ± 1.05 bcB | 17.30 ± 1.72 abB | 20.25 ± 1.13 aB | 17.98 ± 3.35 abB | |
30 | 20.98 ± 0.57 bcA | 19.39 ± 1.52 cA | 22.29 ± 2.58 bcA | 20.59 ± 0.95 bcA | 27.92 ± 2.04 aA | 23.21 ± 2.62 bA | |
AA (mg/mL) | 10 | 8.26 ± 1.54 cB | 10.22 ± 1.04 bcB | 11.96 ± 1.68 abB | 12.86 ± 0.91 aA | 12.15 ± 0.39 abB | 12.69 ± 0.40 a |
20 | 9.32 ± 2.30 cB | 11.85 ± 1.93 bcB | 10.64 ± 1.62 cB | 10.09 ± 0.29 cB | 15.07 ± 1.23 aA | 13.47 ± 0.63 ab | |
30 | 14.22 ± 0.21 cA | 17.80 ± 1.22 abA | 19.04 ± 1.09 aA | 13.25 ± 0.42 cA | 15.13 ± 1.45 bcA | 12.43 ± 3.16 c | |
PA (mg/mL) | 10 | 11.68 ± 1.05 aB | 9.25 ± 1.15 bB | 10.71 ± 0.64 abB | 11.14 ± 1.64 abB | 9.31 ± 0.43 aB | 11.01 ± 0.27 abC |
20 | 14.86 ± 1.30 abA | 12.70 ± 1.25 cA | 12.92 ± 1.13b cAB | 11.04 ± 0.88 cB | 16.43 ± 1.11 aA | 14.88 ± 1.06 abB | |
30 | 14.75 ± 0.41 abA | 13.69 ± 0.45 abA | 15.87 ± 3.95 abA | 13.51 ± 0.32 bA | 14.98 ± 1.42 abA | 17.09 ± 0.57 aA | |
AN (mg/mL) | 10 | 0.17 ± 0.01 a | 0.18 ± 0.03 a | 0.13 ± 0.02 bB | 0.18 ± 0.03 a | 0.17 ± 0.01 aB | 0.15 ± 0.01 bB |
20 | 0.18 ± 0.02 a | 0.19 ± 0.01 a | 0.15 ± 0.01 bA | 0.15 ± 0.01 b | 0.19 ± 0.01 aA | 0.18 ± 0.02 aA | |
30 | 0.16 ± 0.01 c | 0.19 ± 0.01 a | 0.15 ± 0.01 cA | 0.15 ± 0.01 c | 0.18 ± 0.01 bB | 0.15 ± 0.01 cB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; He, X.; Chen, J.; Li, J.; Wu, Y.; Chen, Y.; Yang, Y. Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage. Microorganisms 2023, 11, 2697. https://doi.org/10.3390/microorganisms11112697
Zhang X, He X, Chen J, Li J, Wu Y, Chen Y, Yang Y. Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage. Microorganisms. 2023; 11(11):2697. https://doi.org/10.3390/microorganisms11112697
Chicago/Turabian StyleZhang, Xingbo, Xiaotao He, Jieru Chen, Jingtao Li, Yuhui Wu, Yu Chen, and Yuhui Yang. 2023. "Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage" Microorganisms 11, no. 11: 2697. https://doi.org/10.3390/microorganisms11112697
APA StyleZhang, X., He, X., Chen, J., Li, J., Wu, Y., Chen, Y., & Yang, Y. (2023). Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage. Microorganisms, 11(11), 2697. https://doi.org/10.3390/microorganisms11112697