Combining Whole Genome Sequencing Data from Human and Non-Human Sources: Tackling Listeria monocytogenes Outbreaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Listeriosis Surveillance
2.2. Monitoring of Food
2.3. Combined Database and Cluster Detection
3. Results
3.1. Listeriosis Surveillance and Cluster Detection
3.2. Epidemiological Evidence
3.3. Food Products and Production Locations
3.4. Starting Point of Investigation
3.5. Actions to Locate a Contaminated Production Site
3.6. Enforcement at Production Level and Follow-Up of Cases
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schoder, D.; Guldimann, C.; Martlbauer, E. Asymptomatic Carriage of Listeria monocytogenes by Animals and Humans and Its Impact on the Food Chain. Foods 2022, 11, 3472. [Google Scholar] [CrossRef] [PubMed]
- Linke, K.; Ruckerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, P.O.; Bourgeois, R.; Murray, R.G. Psychrotrophic properties of Listeria monocytogenes. Can. J. Microbiol. 1972, 18, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Nolan, D.A.; Chamblin, D.C.; Troller, J.A. Minimal water activity levels for growth and survival of Listeria monocytogenes and Listeria innocua. Int. J. Food Microbiol. 1992, 16, 323–335. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards; Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernandez Escamez, P.S.; Girones, R.; Herman, L.; Koutsoumanis, K.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, e05134. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 236. [Google Scholar] [CrossRef]
- Koopmans, M.M.; Brouwer, M.C.; Vazquez-Boland, J.A.; van de Beek, D. Human Listeriosis. Clin. Microbiol. Rev. 2023, 36, e0006019. [Google Scholar] [CrossRef]
- Friesema, I.H.; Kuiling, S.; van der Ende, A.; Heck, M.E.; Spanjaard, L.; van Pelt, W. Risk factors for sporadic listeriosis in the Netherlands, 2008 to 2013. Eurosurveillance 2015, 20, 21199. [Google Scholar] [CrossRef] [PubMed]
- Pohl, A.M.; Pouillot, R.; Bazaco, M.C.; Wolpert, B.J.; Healy, J.M.; Bruce, B.B.; Laughlin, M.E.; Hunter, J.C.; Dunn, J.R.; Hurd, S.; et al. Differences Among Incidence Rates of Invasive Listeriosis in the U.S. FoodNet Population by Age, Sex, Race/Ethnicity, and Pregnancy Status, 2008–2016. Foodborne Pathog. Dis. 2019, 16, 290–297. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union One Health 2021 Zoonoses Report. EFSA J. 2022, 20, 7666. [Google Scholar]
- Lakicevic, B.; Jankovic, V.; Pietzka, A.; Ruppitsch, W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J. Food Prot. 2023, 86, 100003. [Google Scholar] [CrossRef]
- Jenkins, C.; Dallman, T.J.; Grant, K.A. Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157:H7, England, 2013 to 2017. Eurosurveillance 2019, 24, 1800346. [Google Scholar] [CrossRef] [PubMed]
- Pietzka, A.; Allerberger, F.; Murer, A.; Lennkh, A.; Stoger, A.; Cabal Rosel, A.; Huhulescu, S.; Maritschnik, S.; Springer, B.; Lepuschitz, S.; et al. Whole Genome Sequencing Based Surveillance of L. monocytogenes for Early Detection and Investigations of Listeriosis Outbreaks. Front. Public Health 2019, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Coipan, C.E.; Friesema, I.H.M.; van Hoek, A.; van den Bosch, T.; van den Beld, M.; Kuiling, S.; Gras, L.M.; Bergval, I.; Bosch, T.; Wullings, B.; et al. New insights into the epidemiology of Listeria monocytogenes—A cross-sectoral retrospective genomic analysis in the Netherlands (2010–2020). Front. Microbiol. 2023, 14, 1147137. [Google Scholar] [CrossRef] [PubMed]
- Van Walle, I.; Bjorkman, J.T.; Cormican, M.; Dallman, T.; Mossong, J.; Moura, A.; Pietzka, A.; Ruppitsch, W.; Takkinen, J. European Listeria Wgs Typing G. Retrospective validation of whole genome sequencing-enhanced surveillance of listeriosis in Europe, 2010 to 2015. Eurosurveillance 2018, 23, 1700798. [Google Scholar] [CrossRef]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. CEN: Brussels, Belgium, 2017.
- ISO 11290-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. CEN: Brussels, Belgium, 2017.
- Assembly Pipeline. Available online: https://github.com/Papos92/assembly_pipeline (accessed on 13 June 2023).
- Ruppitsch, W.; Pietzka, A.; Prior, K.; Bletz, S.; Fernandez, H.L.; Allerberger, F.; Harmsen, D.; Mellmann, A. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Listeria monocytogenes. J. Clin. Microbiol. 2015, 53, 2869–2876. [Google Scholar] [CrossRef]
- Suominen, K.; Jaakola, S.; Salmenlinna, S.; Simola, M.; Wallgren, S.; Hakkinen, M.; Suokorpi, A.; Rimhanen-Finne, R. Invasive listeriosis in Finland: Surveillance and cluster investigations, 2011–2021. Epidemiol. Infect. 2023, 151, e118. [Google Scholar] [CrossRef] [PubMed]
- Zwietering, M.H.; Jacxsens, L.; Membré, J.-M.; Nauta, M.; Peterz, M. Relevance of microbial finished product testing in food safety management. Food Control 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Graves, L.M.; Hunter, S.B.; Ong, A.R.; Schoonmaker-Bopp, D.; Hise, K.; Kornstein, L.; DeWitt, W.E.; Hayes, P.S.; Dunne, E.; Mead, P.; et al. Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet network. J. Clin. Microbiol. 2005, 43, 2350–2355. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Allard, E.; Wooten, A.; Hur, M.; Sheth, I.; Laasri, A.; Hammack, T.S.; Macarisin, D. Recovery and Growth Potential of Listeria monocytogenes in Temperature Abused Milkshakes Prepared from Naturally Contaminated Ice Cream Linked to a Listeriosis Outbreak. Front. Microbiol. 2016, 7, 764. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.; Orsi, R.H.; Estrada, E.; Strawn, L.; Wiedmann, M. Whole-Genome Sequencing-Based Characterization of Listeria Isolates from Produce Packinghouses and Fresh-Cut Facilities Suggests Both Persistence and Reintroduction of Fully Virulent L. monocytogenes. Appl. Environ. Microbiol. 2022, 88, e0117722. [Google Scholar] [CrossRef] [PubMed]
- Harrand, A.S.; Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H. Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl. Environ. Microbiol. 2020, 86, e02493-19. [Google Scholar] [CrossRef]
- Reimer, A.; Weedmark, K.; Petkau, A.; Peterson, C.L.; Walker, M.; Knox, N.; Kent, H.; Mabon, P.; Berry, C.; Tyler, S.; et al. Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria. Microb. Genom. 2019, 5, e000237. [Google Scholar] [CrossRef]
- Lüth, S.; Kleta, S.; Al Dahouk, S. Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes—The way towards global harmonisation and data exchange. Trends Food Sci. Technol. 2018, 73, 67–75. [Google Scholar] [CrossRef]
- Ravindhiran, R.; Sivarajan, K.; Sekar, J.N.; Murugesan, R.; Dhandapani, K. Listeria monocytogenes an Emerging Pathogen: A Comprehensive Overview on Listeriosis, Virulence Determinants, Detection, and Anti-Listerial Interventions. Microb. Ecol. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, R.A.S.S.; Satharasinghe, D.A.; Tang, J.Y.H.; Rukayadi, Y.; Radu, K.R.; New, C.Y.; Son, R. Persistence of Listeria monocytogenes in food commodities: Foodborne pathogenesis, virulence factors, and implications for public health. Food Res. 2021, 5, 1–19. [Google Scholar] [CrossRef]
- Takeuchi-Storm, N.; Truelstrup Hansen, L.; Ladefoged Nielsen, N.; Andersen, J.K. Presence and Persistence of Listeria monocytogenes in the Danish Ready-to-Eat Food Production Environment. Hygiene 2023, 3, 18–32. [Google Scholar] [CrossRef]
Food Products with Lm Isolate | Type Location | Sequence Type (ST) | Serotype | Number of Human Cases (Deceased) | First Case | Last Case | Starting Point of Investigation |
---|---|---|---|---|---|---|---|
salmon | fish processing plant | 7 | 1/2a; 3a | 6 (1) | 2018 | 2020 | combined database |
smoked trout, salmon, mackerel, herring | fish processing plant | 1 | 4b | 15 (6) | 2020 | 2023 | combined database |
smoked salmon, mackerel, eel | fish processing plant | 1 | 4b | 12 (4 *) | 2019 | 2022 | combined database |
smoked salmon, mackerel, herring | fish processing plant | 173 | 1/2a | 15 (2) | 2017 | 2023 | 5 cases in 1 month |
smoked eel | fish processing plant | 2 | 4b | 19 (1) | 2019 | 2023 | outbreak, last 3 cases within 1 month |
salmon, shrimps, herring | fish processing plant | 8 | 1/2a | 5 (1) | 2020 | 2022 | repeated growth cases |
cold cuts of meat | meat processing plant | 6 | 4b | 19 (3 **) | 2017 | 2019 | 10 cases in several months |
liverwurst | meat processing plant | 37 | 1/2a | 14 (2) | 2018 | 2023 | 3 cases in 2 months |
goat cheese | soft cheese producer | 1 | 4b | 6 (0) | 2019 | 2020 | outbreak, last 4 cases within 1 month |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Friesema, I.H.M.; Verbart, C.C.; van der Voort, M.; Stassen, J.; Lanzl, M.I.; van der Weijden, C.; Slegers-Fitz-James, I.A.; Franz, E. Combining Whole Genome Sequencing Data from Human and Non-Human Sources: Tackling Listeria monocytogenes Outbreaks. Microorganisms 2023, 11, 2617. https://doi.org/10.3390/microorganisms11112617
Friesema IHM, Verbart CC, van der Voort M, Stassen J, Lanzl MI, van der Weijden C, Slegers-Fitz-James IA, Franz E. Combining Whole Genome Sequencing Data from Human and Non-Human Sources: Tackling Listeria monocytogenes Outbreaks. Microorganisms. 2023; 11(11):2617. https://doi.org/10.3390/microorganisms11112617
Chicago/Turabian StyleFriesema, Ingrid H. M., Charlotte C. Verbart, Menno van der Voort, Joost Stassen, Maren I. Lanzl, Coen van der Weijden, Ife A. Slegers-Fitz-James, and Eelco Franz. 2023. "Combining Whole Genome Sequencing Data from Human and Non-Human Sources: Tackling Listeria monocytogenes Outbreaks" Microorganisms 11, no. 11: 2617. https://doi.org/10.3390/microorganisms11112617
APA StyleFriesema, I. H. M., Verbart, C. C., van der Voort, M., Stassen, J., Lanzl, M. I., van der Weijden, C., Slegers-Fitz-James, I. A., & Franz, E. (2023). Combining Whole Genome Sequencing Data from Human and Non-Human Sources: Tackling Listeria monocytogenes Outbreaks. Microorganisms, 11(11), 2617. https://doi.org/10.3390/microorganisms11112617