Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021
Abstract
1. Introduction
2. Materials and Methods
2.1. Nosocomial Bacteremia Survey, Data Collection and Analysis
2.2. Microbiological Study
2.3. Statistical Analysis and Ethics Approval
3. Results
3.1. Nosocomial bacteremia 3-Month Survey
3.2. Microbiological Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Mah, T.-F.C.; O’Toole, G.A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001, 9, 34–39. [Google Scholar] [CrossRef]
- O’Neill, E.; Pozzi, C.; Houston, P.; Smyth, D.; Humphreys, H.; Robinson, D.A.; O’Gara, J.P. Association between Methicillin Susceptibility and Biofilm Regulation in Staphylococcus aureus Isolates from Device-Related Infections. J. Clin. Microbiol. 2007, 45, 1379–1388. [Google Scholar] [CrossRef]
- van Belkum, A.; Melles, D.C.; Peeters, J.K.; van Leeuwen, W.B.; van Duijkeren, E.; Huijsdens, X.W.; Spalburg, E.; de Neeling, A.J.; Verbrugh, H.A. Methicillin-Resistant and -Susceptible Staphylococcus aureus Sequence Type 398 in Pigs and Humans. Emerg. Infect. Dis. 2008, 14, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Valentin-Domelier, A.-S.; Girard, M.; Bertrand, X.; Violette, J.; Francois, P.; Donnio, P.-Y.; Talon, D.; Quentin, R.; Schrenzel, J.; Van Der Mee-Marquet, N.; et al. Methicillin-Susceptible ST398 Staphylococcus aureus Responsible for Bloodstream Infections: An Emerging Human-Adapted Subclone? PLoS ONE 2011, 6, e28369. [Google Scholar] [CrossRef]
- Valour, F.; Tasse, J.; Trouillet-Assant, S.; Rasigade, J.-P.; Lamy, B.; Chanard, E.; Verhoeven, P.; Decousser, J.-W.; Marchandin, H.; Bés, M.; et al. Methicillin-susceptible Staphylococcus aureus clonal complex 398: High prevalence and geographical heterogeneity in bone and joint infection and nasal carriage. Clin. Microbiol. Infect. 2014, 20, O772–O775. [Google Scholar] [CrossRef] [PubMed]
- Brunel, A.-S.; Bañuls, A.-L.; Marchandin, H.; Bouzinbi, N.; Morquin, D.; Jumas-Bilak, E.; Corne, P. Methicillin-Sensitive Staphylococcus aureus CC398 in Intensive Care Unit, France. Emerg. Infect. Dis. 2014, 20, 1511–1515. [Google Scholar] [CrossRef]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host Adaptation and Emergence of Methicillin Resistance in Livestock. mBio 2012, 3, e00305–e00311. [Google Scholar] [CrossRef]
- van der Mee-Marquet, N.; Corvaglia, A.-R.; Valentin, A.-S.; Hernandez, D.; Bertrand, X.; Girard, M.; Kluytmans, J.; Donnio, P.-Y.; Quentin, R.; François, P. Analysis of prophages harbored by the human-adapted subpopulation of Staphylococcus aureus CC398. Infect. Genet. Evol. 2013, 18, 299–308. [Google Scholar] [CrossRef]
- Uhlemann, A.-C.; Porcella, S.F.; Trivedi, S.; Sullivan, S.B.; Hafer, C.; Kennedy, A.D.; Barbian, K.D.; McCarthy, A.; Street, C.; Hirschberg, D.L.; et al. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. mBio 2012, 3, e00027-12. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, L.; Si, Y.; Jian, Y.; Wang, Y.; Li, T.; Dai, Y.; Huang, Q.; Ma, X.; He, L.; et al. The Surge of Hypervirulent ST398 MRSA Lineage with higher biofilm-forming ability is a critical threat to clinics. Front. Microbiol. 2021, 12, 636788. [Google Scholar] [CrossRef] [PubMed]
- Von Dach, E.; Diene, S.M.; Fankhauser, C.; Schrenzel, J.; Harbarth, S.; François, P. Comparative Genomics of Community-Associated Methicillin-Resistant Staphylococcus aureus shows the emergence of clone ST8-USA300 in Geneva, Switzerland. J. Infect. Dis. 2016, 213, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.D.; Simpson, W.A.; Younger, J.J.; Baddour, L.M.; Barrett, F.F.; Melton, D.M.; Beachey, E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985, 22, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Stepanović, S.; Vuković, D.; Hola, V.; DI Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef]
- Diene, S.M.; Corvaglia, A.R.; François, P.; Van Der Mee-Marquet, N.L. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genom. 2017, 18, 133. [Google Scholar] [CrossRef]
- Cheng, A.G.; Missiakas, D.; Schneewind, O. The Giant Protein Ebh Is a Determinant of Staphylococcus aureus Cell Size and Complement Resistance. J. Bacteriol. 2013, 196, 971–981. [Google Scholar] [CrossRef]
- Mama, O.M.; Aspiroz, C.; Ruiz-Ripa, L.; Ceballos, S.; Iñiguez-Barrio, M.; Cercenado, E.; Azcona, J.M.; López-Cerero, L.; Seral, C.; López-Calleja, A.I.; et al. Prevalence and Genetic Characteristics of Staphylococcus aureus CC398 Isolates From Invasive Infections in Spanish Hospitals, Focusing on the Livestock-Independent CC398-MSSA Clade. Front. Microbiol. 2021, 12, 623108. [Google Scholar] [CrossRef]
- Bonnet, I.; Millon, B.; Meugnier, H.; Vandenesch, F.; Maurin, M.; Pavese, P.; Boisset, S. High prevalence of spa type t571 among methicillin-susceptible Staphylococcus aureus from bacteremic patients in a French University Hospital. PLoS ONE 2018, 13, e0204977. [Google Scholar] [CrossRef]
- He, L.; Zheng, H.-X.; Wang, Y.; Le, K.Y.; Liu, Q.; Shang, J.; Dai, Y.; Meng, H.; Wang, X.; Li, T.; et al. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution. Genome Med. 2018, 10, 5. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Y.; Wang, D.; Wang, H.; Wu, D.; Shi, K.; Yan, P.; Yu, Y. Surgical Site Infections Caused by Highly Virulent Methicillin-Resistant Staphylococcus aureus Sequence Type 398, China. Emerg. Infect. Dis. 2019, 25, 157–160. [Google Scholar] [CrossRef]
- Bouiller, K.; Bertrand, X.; Hocquet, D.; Chirouze, C. Human Infection of Methicillin-Susceptible Staphylococcus aureus CC398: A Review. Microorganisms 2020, 8, 1737. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, Z.-J.; Sun, Z.; Feng, X.; Zou, M.; Cao, W.; Wang, S.; Zeng, J.; Wang, Y.; Sun, M. Molecular characteristics and virulence factors in methicillin-susceptible, resistant, and heterogeneous vancomycin-intermediate Staphylococcus aureus from central-southern China. J. Microbiol. Immunol. Infect. 2015, 48, 490–496. [Google Scholar] [CrossRef]
- Coombs, G.W.; Daley, D.; Shoby, P.; Yee, N.W.; Robinson, J.O.; Murray, R.; Korman, T.M.; Warner, M.S.; Papanaoum, K.; Derrington, P.; et al. Genomic characterisation of CC398 MRSA causing severe disease in Australia. Int. J. Antimicrob. Agents 2022, 59, 106577. [Google Scholar] [CrossRef] [PubMed]
- Goerke, C.; Wirtz, C.; Fluckiger, U.; Wolz, C. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 2006, 61, 1673–1685. [Google Scholar] [CrossRef]
- Rooijakkers, S.H.M.; Ruyken, M.; van Roon, J.; van Kessel, K.P.M.; van Strijp, J.A.G.; van Wamel, W.J.B. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell. Microbiol. 2006, 8, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Messad, N.; Landraud, L.; Canivet, B.; Lina, G.; Richard, J.-L.; Sotto, A.; Lavigne, J.-P.; Lemichez, E. Distribution of edin in Staphylococcus aureus isolated from diabetic foot ulcers. Clin. Microbiol. Infect. 2013, 19, 875–880. [Google Scholar] [CrossRef]
- Del Rio, A.; Cervera, C.; Moreno, A.; Moreillon, P.; Miró, J.M. Patients at Risk of Complications of Staphylococcus aureus Bloodstream Infection. Clin. Infect. Dis. 2009, 48, S246–S253. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.-S.; Lee, D.Y.; Rayamajhi, N.; Kang, M.L.; Yoo, H.S. Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus spp. isolated from animals and air. Res. Veter-Sci. 2008, 85, 433–438. [Google Scholar] [CrossRef]
- Ammendolia, M.G.; Di Rosa, R.; Montanaro, L.; Arciola, C.R.; Baldassarri, L. Slime Production and Expression of the Slime-Associated Antigen by Staphylococcal Clinical Isolates. J. Clin. Microbiol. 1999, 37, 3235–3238. [Google Scholar] [CrossRef] [PubMed]
- Croes, S.; Deurenberg, R.H.; Boumans, M.-L.L.; Beisser, P.S.; Neef, C.; Stobberingh, E.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, 229. [Google Scholar] [CrossRef]
- Pérez-Montarelo, D.; Viedma, E.; Larrosa, M.N.; Gómez-González, C.; de Gopegui, E.R.; Muñoz-Gallego, I.; Juan, R.S.; Fernández-Hidalgo, N.; Almirante, B.; Chaves, F. Molecular Epidemiology of Staphylococcus aureus Bacteremia: Association of Molecular Factors with the Source of Infection. Front. Microbiol. 2018, 9, 2210. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef] [PubMed]
- Sritharadol, R.; Hamada, M.; Kimura, S.; Ishii, Y.; Srichana, T.; Tateda, K. Mupirocin at Subinhibitory Concentrations Induces Biofilm Formation in Staphylococcus aureus. Microb. Drug Resist. 2018, 24, 1249–1258. [Google Scholar] [CrossRef] [PubMed]
- Jo, A.; Ahn, J. Phenotypic and genotypic characterisation of multiple antibiotic-resistant Staphylococcus aureus exposed to subinhibitory levels of oxacillin and levofloxacin. BMC Microbiol. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.S.; Burmølle, M.; Hansen, L.H.; Sørensen, S.J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 2012, 65, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Oie, S.; Hosokawa, I.; Kamiya, A. Contamination of room door handles by methicillin-sensitive/methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 2002, 51, 140–143. [Google Scholar] [CrossRef]
- Weinstein, R.A.; Hota, B. Contamination, Disinfection, and Cross-Colonization: Are Hospital Surfaces Reservoirs for Nosocomial Infection? Clin. Infect. Dis. 2004, 39, 1182–1189. [Google Scholar] [CrossRef]
- Sexton, T.; Clarke, P.; O’Neill, E.; Dillane, T.; Humphreys, H. Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: Correlation with patient isolates and implications for hospital hygiene. J. Hosp. Infect. 2006, 62, 187–194. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Chuard, C.; Vaudaux, P.; Waldvogel, F.A.; Lew, D.P. Susceptibility of Staphylococcus aureus growing on fibronectin-coated surfaces to bactericidal antibiotics. Antimicrob. Agents Chemother. 1993, 37, 625–632. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gilbert, P.; Das, J.; Foley, I. Biofilm Susceptibility to Antimicrobials. Adv. Dent. Res. 1997, 11, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Macia, M.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
ICU Sector | Bacteremia Incidence (Average Value (Median; Standard Deviation)) | ||
---|---|---|---|
All Bacteremias | S. aureus Bacteremias | ||
/1000 patient-days | /1000 patient-days | /100 admitted patients | |
Adult | 5.79 (5.01; 4.63) | 1.58 (0.39; 11.01) | 0.88 (0.29; 1.53) |
Pediatric | 3.05 (2.26; 3.38) | 0.24 (0.00; 0.55) | 0.88 (0.00; 2.88) |
Neonatal | 2.50 (2.50; 3.78) | 0.37 (0.00; 0.76) | 0.45 (0.00; 1.02) |
Patient Characteristics | Patient with Nosocomial Bacteremia | ||||||
---|---|---|---|---|---|---|---|
All | % | With S. aureus Bacteremia | |||||
All | % | With Studied Strains % | |||||
N | 1931 | 242 | 12.5 | 53 | |||
HFC category | univ./region/army | 728 | 37.7 | 89 | 36.8 | 17 | 31.1 |
general | 928 | 48.1 | 118 | 48.8 | 33 | 62.3 | |
short stay clinics | 262 | 13.6 | 31 | 12.8 | 3 | 5.7 | |
oncology centers | 13 | 0.7 | 4 | 1.7 | |||
Patient category | adults | 1736 | 89.9 | 221 | 91.3 | 50 | 94.3 |
children | 34 | 1.8 | 4 | 1.7 | 1 | 1.9 | |
newborns | 161 | 8.3 | 17 | 7.0 | 2 | 3.8 | |
Sex | males (nk 1) | 1316 (20) | 68.9 | 151 (1) | 62.7 | 37 | 74.0 |
Age (yr) 2 | adults | 63.4 (66.0) | 63.7 (66.0) | 63.8 (64.5) | |||
children | 2.6 (<1.0) | 0.3 (<1.0) | 14 (14) | ||||
Neonatal | birth weight (g) 2 | 1011.2 (840.0) | 981.2 (770.0) | 1820.0 (1820) | |||
Neonatal | gestational age (Wk) 2 | 27.6 (27.0) | 27.3 (26.0) | 31.5 (31.5) | |||
Immunosuppression 3 (nk 1) | 295 (62) | 16.9 | 30 (9) | 13.6 | 10 (1) | 19.2 | |
Cancer (nk 1) | 195 (175) | 12.0 | 26 (19) | 12.3 | 6 (8) | 13.3 | |
Severity score IGS II (adults) 2 | 45.9 (43.0) | 44.4 (40.0) | 40.0 (40.0) | ||||
COVID-19 status (nk 1) | 992 (186) | 56.8 | 136 (21) | 61.5 | 32 (7) | 69.6 | |
Patient death 4 (nk 1) | 533 (27) | 28.0 | 69 (2) | 28.8 | 15 (1) | 28.8 | |
Bacteremia source | |||||||
catheters | 538 | 27.9 | 62 | 25.6 | 14 | 26.4 | |
pneumonia | 529 | 27.4 | 121 | 50.0 | 24 | 45.3 | |
urinary tract | 115 | 6.0 | 1 | 0.4 | 1 | 1.9 | |
digestive tract | 139 | 7.2 | 3 | 1.2 | |||
other | 200 | 10.3 | 26 | 10.7 | 5 | 9.4 | |
not known | 410 | 21.2 | 29 | 12.0 | 9 | 17.0 |
Strain Characteristics | According to MLST | All Strains | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 8 | 12 | 15 | 22 | 30 | 45 | 59 | 398 | |||
N | 2 | 3 | 9 | 1 | 3 | 2 | 5 | 7 | 1 | 20 | 53 | |
Antimicrobial susceptibility | ||||||||||||
FOX resistance | 1 | 1 | 3 | 5 | ||||||||
erythromycin resistance | 1 | 5 | 2 | 1 | 19 | 28 | ||||||
fusidic acid resistance | 1 | 4 | 5 | |||||||||
fluoroquinolone resistance | 2 | 2 | ||||||||||
fosfomycin resistance | 1 | 1 | ||||||||||
tetracycline resistance | 1 | 1 | ||||||||||
kanamycin resistance | 1 | 1 | ||||||||||
mupA | 2 | 2 | ||||||||||
qac | 1 | 1 | 2 | |||||||||
Virulence genes | ||||||||||||
tst-1 | 3 | 2 | 5 | |||||||||
lukF/S | 0 | |||||||||||
Biofilm production | ||||||||||||
without glucose 1% | 2 | 1 | 1 | 1 | 5 | |||||||
strong producers | 1 | 1 | ||||||||||
with glucose 1% | 2 | 2 | 7 | 2 | 2 | 1 | 16 | 32 | ||||
strong producers | 2 | 1 | 3 | 6 | ||||||||
with glucose 1% and cloxacillin MIC/4 1 | 19 | |||||||||||
strong producers | 17 | |||||||||||
MBEC cloxacillin 1,2 (mg/L) | 128 | |||||||||||
Bacteremia source | ||||||||||||
catheters | 1 | 3 | 1 | 3 | 2 | 1 | 3 | 14 | ||||
pneumonia | 3 | 4 | 2 | 1 | 1 | 4 | 9 | 24 | ||||
urinary tract | 1 | 1 | ||||||||||
digestive tract | ||||||||||||
endocarditis | 2 | 2 | ||||||||||
skin and soft tissue | 3 | 3 | ||||||||||
not known | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 9 | ||||
Death 3 (nk 4) | 1 | 2 | 3 | 9 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Mee-Marquet, N.; Dos Santos, S.; Diene, S.M.; Duflot, I.; Mereghetti, L.; Valentin, A.-S.; François, P.; on behalf of the SPIADI Collaborative Group. Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021. Microorganisms 2022, 10, 1857. https://doi.org/10.3390/microorganisms10091857
van der Mee-Marquet N, Dos Santos S, Diene SM, Duflot I, Mereghetti L, Valentin A-S, François P, on behalf of the SPIADI Collaborative Group. Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021. Microorganisms. 2022; 10(9):1857. https://doi.org/10.3390/microorganisms10091857
Chicago/Turabian Stylevan der Mee-Marquet, Nathalie, Sandra Dos Santos, Seydina M. Diene, Isabelle Duflot, Laurent Mereghetti, Anne-Sophie Valentin, Patrice François, and on behalf of the SPIADI Collaborative Group. 2022. "Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021" Microorganisms 10, no. 9: 1857. https://doi.org/10.3390/microorganisms10091857
APA Stylevan der Mee-Marquet, N., Dos Santos, S., Diene, S. M., Duflot, I., Mereghetti, L., Valentin, A.-S., François, P., & on behalf of the SPIADI Collaborative Group. (2022). Strong Biofilm Formation and Low Cloxacillin Susceptibility in Biofilm-Growing CC398 Staphylococcus aureus Responsible for Bacteremia in French Intensive Care Units, 2021. Microorganisms, 10(9), 1857. https://doi.org/10.3390/microorganisms10091857