Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures
Abstract
:1. Introduction
2. Material and Methods
2.1. Bioprotective Starter Suspension
2.2. Bioprotective Starter Inoculum
2.3. Microbiological Analyses
2.4. Physico-Chemical Analyses
2.5. Analysis of Volatile Compounds (Volatilome)
2.6. Sensory Analyses
2.7. Statistical Analysis
3. Results
3.1. Microbial and Physico-Chemical Characteristics
3.2. Volatile Compound Characteristics (VOCS)
3.3. Sensory Characteristics
4. Discussion
4.1. Microbial and Physicochemical Parameters
4.2. Volatilome
4.3. Sensory Aspect
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Breda, L.S.; Belusso, A.C.; Nogueira, B.A.; Camargo, G.H.; Mitterer, M.L. Acceptance of fish hamburgers in school meals in the Southwest Region of Paraná, Brazil. Food Sci. Technol, Campinas 2017, 37 (Suppl. S1), 94–100. [Google Scholar] [CrossRef]
- Sampels, S. The effects of processing technologies and preparation on the final quality of fish products. Trends Food Sci. Techn. 2015, 44, 131–146. [Google Scholar] [CrossRef]
- Nestel, P.; Clifton, P.; Colquhoun, D.; Noakes, M.; Mori, T.; Sullivan, D.; Thomas, B. Indications for Omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circul. 2015, 24, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Latorres, J.M.; Mitterer-Daltoé, M.L.; Queiroz, M.I. Hedonic and word association techniques confirm a successful way of introducing fish into public school meals. J. Sensory Studies 2016, 31, 1–8. [Google Scholar] [CrossRef]
- Belusso, A.C.; Nogueira, B.A.; Breda, L.S.; Mitterer-Daltoé, M.L. Check all that apply (CATA) as an instrument for the development of fish products. Food Sci. Techn. (Campinas) 2016, 36, 1–7. [Google Scholar] [CrossRef]
- Corbo, M.R.; Speranza, B.; Filippone, A.; Granatiero, S.; Conte, A.; Sinigaglia, M.; Del Nobile, M. Study on the synergic effect of natural compounds on the microbial quality decay of packed fish hamburger. Int. J. Food Microbiol. 2008, 127, 261–267. [Google Scholar] [CrossRef]
- Mitterer-Daltoé, M.L.; Queiroz, M.I.; Fiszman, S.; Varela, P. Are fish products healthy? Eye tracking as a new food technology tool for a better understanding of consumer perception. Leb. Wiss. Techn. 2014, 55, 459–465. [Google Scholar] [CrossRef]
- Donadini, G.; Fumi, M.; Porretta, S. Hedonic response to fish in preschoolers. J. Sens. Stud. 2013, 28, 282–296. [Google Scholar] [CrossRef]
- Iacumin, L.; Cappellari, G.; Pellegrini, M.; Basso, M.; Comi, G. Analysis of the bioprotective potential of different lactic acid bacteria against Listeria monocytogenes in cold-smoked sea bass, a new product packaged under vacuum and stored at 6 ± 2 °C. Front. Microbiol. 2021, 20, 796655. [Google Scholar] [CrossRef]
- Corbo, M.R.; Di Giulio, S.; Conte, A.; Speranza, B.; Sinigaglia, M.; Del Nobile, M.A. Thymol and modified atmosphere packaging to control microbiological spoilage in packed fresh cod hamburgers. Int. J. Food Sci. Techn. 2009, 44, 1553–1560. [Google Scholar] [CrossRef]
- Gram, L.; Dalgaard, P. Fish spoilage bacteria—Problems and solutions. Curr. Opin. Biotechnol. 2002, 13, 262–266. [Google Scholar] [CrossRef]
- Iacumin, L.; Jayasinghe, A.S.; Pellegrini, M.; Comi, G. Evaluation of Different Techniques, including Modified Atmosphere, under Vacuum Packaging, Washing, and Latilactobacillus sakei as a Bioprotective Agent, to Increase the Shelf-Life of Fresh Gutted Sea Bass (Dicentrarchus labrax) and Sea Bream (Sparus aurata) Stored at 6 ± 2 °C. Biology 2022, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Comi, G. Meat and Fish spoilage. In Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Sykes, R., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 179–210. [Google Scholar]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSO) in Fish. In Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Sykes, R., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 60–98. [Google Scholar]
- Syropoulou, F.; Parlapani, F.F.; Kakasis, S.; Nychas, G.J.E.; Boziaris, I.S. Primary Processing and Storage Affect the Dominant Microbiota of Fresh and Chill-Stored Sea Bass Products. Foods 2021, 10, 671. [Google Scholar] [CrossRef]
- Poli, M.B.; Messini, A.; Parisi, G.; Scappini, F.; Figiani, V. Sensory, physical, chemical and microbiological changes in European sea bass (Dicentrarchus labrax) fillets packed under modified atmosphere/air or prepared from whole fish stored in ice. Int. J. Food Sci. Techn. 2006, 41, 444–454. [Google Scholar] [CrossRef]
- Torrieri, E.; Cavella, S.; Villani, F.; Masi, P. Influence of modified atmosphere packaging on the chilled shelf life of gutted farmed bass (Dicentrarchus labrax). J. Food Engin. 2006, 77, 1078–1086. [Google Scholar] [CrossRef]
- Goulas, A.E.; Kontominas, M.G. Combined effect of light salting, modified atmosphere packaging and oregano essential oil on the shelf-life of sea bream (Sparus aurata): Biochemical and sensory attributes. Food Chem. 2007, 100, 287–296. [Google Scholar] [CrossRef]
- Schelegueda, L.I.; Delcarlo, S.B.; Gliemmo, M.F.; Campos, C.A. Effect of antimicrobial mixtures and modified atmosphere packaging on the quality of Argentine hake (Merluccius hubbsi) burgers. LWT—Food Sci. Techn. 2016, 68, 258–264. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S. Natural preservatives for extending the shelf-life of seafood: A revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1595–1612. [Google Scholar] [CrossRef]
- Hasani, S.; Ojagh, S.M.; Ghorbani, M.; Hasani, M. Nano-encapsulation of lemon essential oil approach to reducing the oxidation process in fish burger during refrigerated storage. J. Food Biosci. Technol. 2020, 10, 35–46. [Google Scholar]
- Dilucia, F.; Lacivita, V.; Nobile, M.A.D.; Conte, A. Improving the Storability of Cod Fish-Burgers According to the Zero-Waste Approach. Foods 2021, 10, 1972. [Google Scholar] [CrossRef] [PubMed]
- Cedola, A.; Cardinali, A.; Del Nobile, M.A.; Conte, A. Fish burger enriched by olive oil industrial by-product. Food Sci. Nutr. 2017, 5, 837–844. [Google Scholar] [CrossRef] [PubMed]
- Albertos, I.; Marrtin-Diana, A.B.; Burón, M.; Rico, D. Development of functional bio-based seaweed (Himanthalia elongata and Palmaria palmata) edible films for extending the shelf life of fresh fish burgers. Food Packag. Shelf Life 2019, 22, 100382. [Google Scholar] [CrossRef]
- Mahmoud, B.S.M.; Kawai, Y.; Yamazaki, K.; Miyashita, K.; Suzuki, T. Effect of treatment with electrolyzed NaCl solutions and essential oil compound on the proximate composition, amino acid and fatty acid composition of carp fillets. Food Chem. 2007, 101, 1509–1515. [Google Scholar] [CrossRef]
- Danza, A.; Lucera, A.; Lavermicocca, P.; Lonigro, S.L.; Bavaro, A.R.; Mentana, A.; Centonze, D.; Conte, A.; Del Nobile, M.A. Tuna Burgers Preserved by the Selected Lactobacillus paracasei IMPC 4.1 Strain. Food Bioprocess. Technol. 2018, 11, 1651–1661. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. The use of bioprotective cultures. In Strategies to Obtaining Healthier Foods; Rodriguez, J.M.L., Carballo Garcìa, F.J., Eds.; Nova science Publishers, Inc.: New York, NY, USA, 2017; pp. 89–128. [Google Scholar]
- Schillinger, U.; Geisen, R.; Holzapfel, W.H. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci. Technol. 1996, 7, 158–164. [Google Scholar] [CrossRef]
- ISO 11290-1:1996 Adm.1:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Listeria monocytogenes. 2004. Available online: https://www.iso.org/sites/outage/ (accessed on 10 January 2022).
- ISO 6579-1: 2002 Cor.1:2004; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp. 2004. Available online: https://www.iso.org/sites/outage/ (accessed on 10 January 2022).
- Iacumin, L.; Cecchini, F.; Manzano, M.; Osualdini, M.; Boscolo, D.; Orlic, S.; Comi, G. Description of the microflora of sourdoughs by culture-dependent and culture independent methods. Food Microbiol. 2009, 26, 128–135. [Google Scholar] [CrossRef]
- Pearson, D. Laboratory Techniques in Food Analysis; Butterworths & Co. Publishers Ltd.: London, UK, 1993. [Google Scholar]
- Ke, P.Y.; Cervantes, E.; Robles-Martınez, C. Determination of thiobarbituric acid reactive substances (TBARS) in fish tissue by an improved distillation spectrophotometer method. J. Sci. Food Agricult. 1984, 35, 1248–1254. [Google Scholar] [CrossRef]
- Montanari, C.; Gatto, V.; Torriani, S.; Barbieri, F.; Bargossi, E.; Lanciotti, R.; Grazia, L.; Magnani, R.; Tabanelli, G.; Gardini, F. Effects of the diameter on physico-chemical, microbiological and volatile profile in dry fermented sausages produced with twodifferent starter cultures. Food Biosci. 2018, 22, 9–18. [Google Scholar] [CrossRef]
- Baublis, R.T.; Meullenet, J.F.; Sawyer, J.T.; Mehaffey, J.M.; Saha, A. Pump rate and cooked temperature effects on pork loin instrumental, sensory descriptive and consumer rated characteristics. Meat Sci. 2005, 72, 741–750. [Google Scholar] [CrossRef]
- Vàlkovà, V.; Salàkovà, A.; Buchtovà, H.; Tremlovà, B. Chemical, instrumental and sensory characteristics of cooked pork ham. Meat Sci. 2007, 77, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Regolamento (CE), N. 2074/2005 della Commissione del 5 dicembre 2005 – Gazzetta Ufficiale dell’Unione Europea. Available online: www.eur-lex.europa.eu (accessed on 1 September 2022).
- Ordónez, J.A.; Hierro, E.M.; Bruna, J.M.; de la Hoz, L. Changes in the components of dry fermented sausages during ripening. Crit. Rev. Food Sci. Nutr. 1999, 39, 329–367. [Google Scholar] [CrossRef] [PubMed]
- Françoise, L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 2010, 27, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Altieri, C.; Bevilacqua, A.; Campaniello, D.; D’Amato, D.; Sinigaglia, M. Estimating packaging atmosphere-temperature effects on the shelf life of cod fillets. Eur. Food Res. Techn. 2005, 220, 509–513. [Google Scholar] [CrossRef]
- Corbo, M.R.; Speranza, B.; Filippone, A.; Conte, A.; Sinigaglia, M.; Del Nobile, M.A. Natural compounds to preserve fresh fish burgers. Int. J. Food Sci. Technol. 2009, 44, 2021–2027. [Google Scholar] [CrossRef]
- Uçak, İ.; Özogul, Y.; Durmuş, M. The effects of rosemary extract combination with vacuum packing on the quality changes of Atlantic mackerel fish burgers. Int. J. Food Sci. Technol. 2011, 46, 1157–1163. [Google Scholar] [CrossRef]
- Rico, D.; Albertos, I.; Martinez-Alvarez, O.; Lopez-Caballero, M.E.; Martin-Diana, A.B. Use of sea fennel as a natural ingredient of edible films for extending the shelf life of fresh fish burgers. Molecul. 2020, 25, 5260. [Google Scholar] [CrossRef]
- Del Nobile, M.A.; Corbo, M.R.; Speranza, B.; Sinigaglia, M.; Conte, A.; Caroprese, M. Combined effect of MAP and active compounds on fresh blue fish burger. Int. J. Food Microbiol. 2009, 135, 281–287. [Google Scholar] [CrossRef]
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef]
- Parlapani, F.F. Microbial diversity of seafood. Curr. Opin. Food Sci. 2021, 37, 45–51. [Google Scholar] [CrossRef]
- Gómez-Sala, B.; Muñoz-Atienza, E.; Sánchez, J.; Basanta, A.; Herranz, C.; Hernández, P.E.; Cintas, L.M. Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products. Eur. Food Res. Technol. 2015, 241, 341–356. [Google Scholar] [CrossRef]
- González-Rodríguez, M.N.; Sanz, J.J.; Santos, J.Á.; Otero, A.; García-López, M.L. Numbers and types of microorganisms in vacuum-packed cold-smoked freshwater fish at the retail level. Int. J. Food Microbiol. 2002, 77, 161–168. [Google Scholar] [CrossRef]
- Macé, S.; Cornet, J.; Chevalier, F.; Cardinal, M.; Pilet, M.F.; Dousset, X.; Joffraud, J.J. Characterisation of the spoilage microbiota in raw salmon (Salmo salar) steaks stored under vacuum or modified atmosphere packaging combining conventional methods and PCR–TTGE. Food Microbiol. 2012, 30, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Andyanto, D.; Manzano, M.; Iacumin, L. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiol. 2016, 58, 16–22. [Google Scholar] [CrossRef]
- Bolívar, A.; Costa, J.C.C.P.; Posada-Izquierdo, G.D.; Bover-Cid, S.; Zurera, G.; Pérez-Rodríguez, F. Quantifying the bioprotective effect of Lactobacillus sakei CTC494 against Listeria monocytogenes on vacuum packaged hot-smoked sea bream. Food Microbiol. 2021, 94, 103649. [Google Scholar] [CrossRef]
- Aymerich, T.; Rodríguez, M.; Garriga, M.; Bover-Cid, S. Assessment of the bioprotective potential of lactic acid bacteria against Listeria monocytogenes on vacuum-packed cold-smoked salmon stored at 8 °C. Food Microbiol. 2019, 83, 64–70. [Google Scholar] [CrossRef]
- Tahiri, I.; Desbiens, M.; Kheadr, E.; Lacroix, C.; Fliss, I. Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiol. 2009, 26, 783–793. [Google Scholar] [CrossRef]
- Yamazaki, K.; Suzuki, M.; Kawai, Y.; Inoue, N.; Montville, T.J. Inhibition of Listeria monocytogenes in cold-smoked salmon by Carnobacterium piscicola CS526 isolated from frozen surimi. J. Food Protect. 2003, 66, 1420–1425. [Google Scholar] [CrossRef]
- Matamoros, S.; Leroi, F.; Cardinal, M.; Gigout, F.; Chadli, F.K.; Cornet, J.; Pilet, M.F. Psychrotrophic lactic acid bacteria used to improve the safety and quality of vacuum-packaged cooked and peeled tropical shrimp and cold-smoked salmon. J. Food Protect. 2009, 72, 365–374. [Google Scholar] [CrossRef]
- Silbande, A.; Adenet, S.; Smith-Ravin, J.; Joffraud, J.J.; Rochefort, K.; Leroi, F. Quality assessment of ice-stored tropical yellowfin tuna (Thunnus albacares) and influence of vacuum and modified atmosphere packaging. Food Microbiol. 2016, 60, 62–72. [Google Scholar] [CrossRef]
- López-Caballero, M.; Gonçalves, A.; Nunes, M. Effect of CO2/O2-containing modified atmospheres on packed deep water pink shrimp (Parapenaeus longirostris). Eur. Food Res. Technol. 2002, 214, 192–197. [Google Scholar] [CrossRef]
- Kostaki, M.; Giatrakou, V.; Savvaidis, I.N.; Kontominas, M.G. Combined effect of MAP and thyme essential oil on the microbiological, chemical and sensory attributes of organically aquacultured sea bass (Dicentrarchus labrax) fillets. Food Microbiol. 2009, 26, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Brillet, A.; Pilet, M.F.; Prevost, H.; Cardinal, M.; Leroi, F. Effect of inoculation of Carnobacterium divergens V41, a biopreservative strain against Listeria monocytogenes risk, on the microbiological, chemical and sensory quality of cold-smoked salmon. Int. J. Food Microbiol. 2005, 104, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, F.R.; Minervini, F.; De Angelis, M.; Gobbetti, M.; Gänzle, M.G. Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT 2019, 114, 108394. [Google Scholar] [CrossRef]
- Masuda, Y.; Kawabata, S.; Uedoi, T.; Honjoh, K.I.; Miyamoto, T. Construction of leaderless-bacteriocin-producing bacteriophage targeting E. coli and neighboring gram-positive pathogens. Microbiol. Spectr. 2021, 9, e00141-21. [Google Scholar] [CrossRef]
- Bao, R.; Liu, S.; Ji, C.; Liang, H.; Yang, S.; Yan, X.; Zhu, B. Shortening fermentation period and quality improvement of fermented fish, Chouguiyu, by co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Front. Microbiol. 2018, 9, 3003. [Google Scholar] [CrossRef]
- Cao, R.; Liu, Q.; Chen, S.; Yang, X.; Li, L. Application of Lactic Acid Bacteria (LAB) in freshness keeping of tilapia fillets as sashimi. J. Ocean Un. China 2015, 14, 675–680. [Google Scholar] [CrossRef]
- Chenoll, E.; Macián, M.C.; Elizaquivel, P.; Aznar, R. Lactic acid bacteria associated with vacuum-packed cooked meat product spoilage: Population analysis by rDNA-based methods. J. Appl. Microbiol. 2007, 102, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Lyhs, U.; Koort, J.M.; Lundström, H.S.; Björkroth, K.J. Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the lactic acid bacterium population associated with strong slime formation in an acetic-acid herring preserve. Int. J. Food Microbiol. 2004, 90, 207–218. [Google Scholar] [CrossRef]
- Pothakos, V.; Devlieghere, F.; Villani, F.; Björkroth, J.; Ercolini, D. Lactic acid bacteria and their controversial role in fresh meat spoilage. Meat Sci. 2015, 109, 66–74. [Google Scholar] [CrossRef]
- Tokur, B.; Polat, A.; Beklevik, G.; Özkütük, S. Changes in the quality of fishburger produced from Tilapia (Oreochromis niloticus) during frozen storage (−18 °C). Eur. Food Res. Technol. 2004, 218, 420–423. [Google Scholar] [CrossRef]
- Bekhit, A.E.D.A.; Holman, B.W.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Meng, J.; Yang, Q.; Wan, W.; Zhu, Q.; Zeng, X. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu). Food Chem. 2022, 369, 130885. [Google Scholar] [CrossRef] [PubMed]
- Iacumin, L.; Manzano, M.; Stella, S.; Comi, G. Fate of the microbial population and the physico-chemical parameters of “Sanganel” a typical blood sausages of the Friuli, a North-East region of Italy. Food Microbiol. 2017, 63, 84–91. [Google Scholar] [CrossRef]
- Che Man, Y.B.; Ramadas, J. Effect of packaging environment on quality changes of smoked Spanish mackerel under refrigeration. J. Food Quality 1998, 21, 167–174. [Google Scholar] [CrossRef]
- Zotta, T.; Parente, E.; Ricciardi, A. Aerobic metabolism in the genus Lactobacillus: Impact on stress response and potential applications in the food industry. J. Appl. Microbiol. 2017, 122, 857–869. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Op. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Barbieri, F.; Laghi, L.; Montanari, C.; Lan, Q.; Levante, A.; Gardini, F.; Tabanelli, G. Insights into the metabolomic diversity of Latilactobacillus sakei. Foods 2022, 11, 477. [Google Scholar] [CrossRef]
- Montanari, C.; Barbieri, F.; Magnani, M.; Grazia, L.; Gardini, F.; Tabanelli, T. Phenotypic diversity of Lactobacillus sakei strains. Front. Microbiol. 2018, 9, 2003. [Google Scholar] [CrossRef]
- Flores, M.; Olivares, A. Flavor. In Handbook of Fermented Meat and Poultry, 2nd ed.; Toldrá, F., Hui, Y.H., Astiasarán, I., Sebranek, J.C., Talon, R., Eds.; Wiley Blackwell: Ames, IA, USA, 2014; pp. 217–225. [Google Scholar]
- Carballo, J. The role of fermentation reactions in the generation of flavor and aroma of foods. In Fermentation, Effects on Food Properties; Mehta, B.M., Kamal-Eldin, A., Iwanski, R.Z., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 51–83. [Google Scholar]
- Laursen, B.G.; Leisner, J.J.; Dalgaard, P. Carnobacterium species: Effect of metabolic activity and interaction with Brochothrix thermosphacta on sensory characteristics of modified atmosphere packed shrimp. J. Agricult. Food Chem. 2006, 54, 3604–3611. [Google Scholar] [CrossRef]
- Vasilopoulos, C.; De Mey, E.; Dewulf, L.; Paelinck, H.; De Smedt, A.; Vandendriessche, F.; Leroy, F. Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture. Food Microbiol. 2010, 27, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Tirloni, E.; Andyanto, D.; Manzano, M.; Iacumin, L. Use of bio-protective cultures to improve the shelf-life and the sensorial characteristics of commercial hamburgers. LWT—Food Sci. Technol. 2015, 62, 1198–1202. [Google Scholar] [CrossRef]
Days | |||||||
---|---|---|---|---|---|---|---|
0 | 6 | 12 | 18 | 24 | 30 | ||
Starter | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Total bacterial count (Log CFU/g) | CTRL | 4.76 ± 0.12 a | 4.89 ± 0.47 a | 6.47 ± 0.63 b | 3.58 ± 0.17 a | 3.68 ± 0.67 a | 3.26 ± 0.19 a |
LAK-23 | 4.71 ± 0.08 a | 5.00 ± 0.59 a | 6.03 ± 0.37 ab | 4.06 ± 0.77 a | 3.20 ± 0.36 a | 3.49 ± 0.20 a | |
F-106 | 4.89 ± 0.09 a | 4.73 ± 0.06 a | 6.33 ± 0.13 b | 4.33 ± 0.49 a | 3.94 ± 0.44 a | 3.58 ± 0.07 a | |
FP-50 | 4.85 ± 0.09 a | 5.19 ± 0.44 a | 5.32 ± 0.20 a | 4.00 ± 0.67 a | 3.01 ± 0.05 a | 3.27 ± 0.43 a | |
BOX-57 | 5.22 ± 0.20 b | 5.80 ± 0.18 a | 5.70 ± 0.17 ab | 3.78 ± 0.30 a | 3.00 ± 0.17 a | 3.01 ± 0.15 a | |
Lactic acid bacteria (Log CFU/g) | CTRL | 3.42 ± 0.14 a | 4.44 ± 1.34 a | 7.55 ± 0.16 a | 8.73 ± 1.15 a | 7.83 ± 0.22 a | 9.18 ± 0.11 b |
LAK-23 | 5.13 ± 0.16 b | 6.94 ± 0.90 b | 8.79 ± 0.07 b | 8.58 ± 0.36 a | 9.15 ± 0.37 b | 9.07 ± 0.04 b | |
F-106 | 5.09 ± 0.09 b | 5.90 ± 0.89 ab | 8.17 ± 0.15 ab | 8.98 ± 0.21 a | 8.38 ± 0.23 ab | 8.62 ± 0.08 a | |
FP-50 | 5.68 ± 0.15 c | 5.64 ± 0.27 ab | 7.98 ± 0.66 ab | 9.48 ± 0.79 a | 8.76 ± 0.67 ab | 9.11 ± 0.16 b | |
BOX-57 | 5.39 ± 0.08 bc | 6.35 ± 0.86 ab | 8.36 ± 0.22 ab | 9.01 ± 0.17 a | 8.77 ± 0.26 ab | 8.99 ± 0.16 b | |
Enterobacteriaceae (Log CFU/g) | CTRL | 2.74 ± 0.14 a | 4.67 ± 0.27 a | 4.58 ± 1.02 a | 4.01 ± 0.27 a | 2.39 ± 0.41 bc | 1.44 ± 0.36 b |
LAK-23 | 2.83 ± 0.18 a | 4.40 ± 0.71 a | 5.45 ± 0.32 a | 3.55 ± 0.47 a | 0.52 ± 0.15 a | 0.48 ± 0.01 a | |
F-106 | 2.58 ± 0.12 a | 3.55 ± 1.55 a | 5.26 ± 1.13 a | 3.62 ± 0.32 a | 2.34 ± 0.38 bc | 3.00 ± 0.30 c | |
FP-50 | 2.63 ± 0.29 a | 4.31 ± 0.22 a | 3.97 ± 0.11 a | 4.08 ± 0.59 a | 1.48 ± 0.00 b | 2.40 ± 0.09 c | |
BOX-57 | 2.75 ± 0.06 a | 4.48 ± 0.27 a | 4.27 ± 0.77 a | 3.66 ± 0.37 a | 2.61 ± 0.62 c | 1.20 ± 0.22 b | |
pH | CTRL | 6.23 ± 0.03 ab | 6.25 ± 0.06 a | 5.56 ± 0.34 b | 4.36 ± 0.03 a | 4.30 ± 0.04 a | 4.31 ± 0.00 a |
LAK-23 | 6.31 ± 0.03 b | 6.30 ± 0.11 a | 4.89 ± 0.01 a | 4.48 ± 0.02 b | 4.32 ± 0.08 a | 4.34 ± 0.07 ab | |
F-106 | 6.27 ± 0.03 ab | 6.31 ± 0.06 a | 5.09 ± 0.14 a | 4.52 ± 0.09 b | 4.39 ± 0.05 a | 4.38 ± 0.02 ab | |
FP-50 | 6.29 ± 0.05 b | 5.99 ± 0.15 a | 4.67 ± 0.01 a | 4.36 ± 0.01 a | 4.23 ± 0.06 a | 4.37 ± 0.06 ab | |
BOX-57 | 6.17 ± 0.04 a | 6.00 ± 0.19 a | 4.83 ± 0.05 a | 4.57 ± 0.02 b | 4.40 ± 0.07 a | 4.45 ± 0.05 b | |
TVB-N (mg N/100 g) | CTRL | 25.60 ± 3.33 a | 32.80 ± 2.75 a | 40.03 ± 1.46 a | 47.27 ± 0.80 b | 60.93 ± 1.60 bc | 88.63 ± 0.96 d |
LAK-23 | 25.60 ± 3.33 a | 31.33 ± 2.91 a | 38.87 ± 1.70 a | 45.23 ± 2.58 ab | 55.13 ± 1.10 a | 74.37 ± 0.81 b | |
F-106 | 25.60 ± 3.33 a | 33.00 ± 2.95 a | 40.40 ± 1.13 a | 47.80 ± 0.60 b | 63.50 ± 2.69 c | 69.07 ± 1.25 a | |
FP-50 | 25.60 ± 3.33 a | 31.40 ± 0.96 a | 39.73 ± 1.39 a | 42.50 ± 1.32 a | 54.63 ± 2.01 a | 70.50 ± 1.11 a | |
BOX-57 | 25.60 ± 3.33 a | 32.73 ± 3.49 a | 39.43 ± 0.61 a | 45.63 ± 0.68 ab | 56.37 ± 1.59 ab | 80.53 ± 0.70 c |
Volatile Compounds | 0 Days | 6 Days | 12 Days | 18 Days | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTRL | CTRL | F-106 | BOX-57 | FP-50 | LAK-23 | CTRL | F-106 | BOX-57 | FP-50 | LAK-23 | CTRL | F-106 | BOX-57 | FP-50 | LAK-23 | |
Pentanal | 1.30 | 1.87 a | 1.76 a | 2.29 b | 1.91 a | 2.31 b | 1.52 a | 3.97 b | 2.69 c | 2.11 c | 2.65 c | 0.48 a | 1.06 b | 1.42 c | 1.42 c | 1.26 b |
Hexanal | 7.28 | 2.48 a | 1.97 a | 8.89 b | 7.09 c | 9.52 b | 4.36 a | 10.85 b | 5.82 c | 9.52 b | 12.87 b | 2.16 a | 0.43 b | 1.02 c | 2.15 a | 4.73 d |
Nonanal | 2.09 | 2.12 a | 1.73 b | 2.24 a | 1.22 c | 1.83 ab | 1.95 a | 2.43 b | 2.31 ab | 2.17 a | 2.47 b | 1.98 a | 2.38 b | 1.07 c | 1.00 c | 1.23 c |
Benzaldehyde | 0.93 | 2.31 a | 1.97 a | 3.47 b | 2.38 a | 2.69 ac | 1.76 a | 3.04 b | 3.00 b | 2.13 a | 2.06 a | 1.57 a | 2.50 b | 1.95 a | 1.44 a | 2.42 b |
ALDEHYDES | 11.60 | 8.79 a | 7.42 a | 16.90 b | 12.59 c | 16.35 b | 9.59 a | 20.29 b | 13.82 c | 15.93 d | 20.05 b | 6.20 a | 6.37 a | 5.46 ab | 6.01 a | 9.64 c |
Acetone | 2.46 | 2.35 | 2.89 | 2.48 | 2.18 | 2.63 | 3.46 a | 5.29 b | 3.51 a | 3.00 a | 4.31 c | 1.20 a | 2.63 b | 2.94 b | 3.30 c | 3.63 c |
2-butanone | 0.84 | 0.41 a | 1.09 b | 1.07 b | 0.68 a | 0.75 a | 1.97 a | 2.58 b | 1.72 a | 1.47 a | 1.88 a | 16.68 a | 1.38 b | 1.50 b | 1.59 b | 1.60 b |
Diacetyl | 0.00 | 0.00 a | 0.28 b | 4.97 c | 6.91 d | 2.54 e | 1.93 a | 6.24 b | 3.22 c | 2.00 a | 3.92 c | 4.21 a | 0.30 b | 0.00 b | 0.00 b | 0.90 c |
Methyl isobutyl ketone | 3.86 | 3.18 a | 4.77 b | 3.53 a | 4.51 b | 4.01 bc | 12.81 a | 19.30 b | 8.84 c | 11.20 d | 10.76 a | 6.36 a | 6.38 a | 6.74 a | 7.58 b | 7.34 b |
4-methyl,3-penten-2-one | 1.74 | 1.60 a | 1.36 ab | 1.63 a | 1.80 a | 2.08 a | 0.78 a | 1.12 a | 1.66 b | 1.12 a | 0.91 a | 1.04 a | 1.21 a | 1.34 a | 1.00 a | 2.43 b |
Acetoin | 0.00 | 0.00 a | 1.66 b | 12.18 c | 16.99 d | 8.03 e | 0.00 a | 3.82 b | 4.11 c | 2.88 d | 2.79 d | 30.57 a | 1.12 b | 1.97 c | 1.05 b | 1.89 c |
KETONES | 8.90 | 7.55 a | 12.05 b | 25.86 c | 33.07 d | 20.05 e | 20.95 a | 38.34 b | 23.06 ac | 21.68 a | 24.57 c | 60.06 a | 13.01 b | 14.49 c | 14.51 c | 17.78 e |
Isopropyl alcohol | 3.19 | 2.25 a | 4.53 b | 2.39 a | 3.70 c | 2.61 a | 5.27 a | 6.04 b | 3.75 c | 3.62 c | 5.33 a | 3.00 a | 4.49 b | 2.25 c | 3.43 a | 3.15 a |
Ethyl alcohol | 0.57 | 13.68 a | 12.87 a | 24.33 b | 15.42 c | 5.90 d | 20.22 a | 20.16 a | 27.05 b | 16.48 c | 6.21 d | 62.36 a | 15.37 b | 20.74 c | 12.87 d | 9.75 e |
1-propanol | 10.92 | 9.13 a | 10.16 a | 8.45 b | 8.84 ab | 10.59 ac | 14.40 a | 11.90 b | 10.92 b | 9.31 c | 16.19 d | 11.17 a | 8.10 b | 8.37 b | 9.56 c | 10.97 a |
1-penten-3-ol | 2.90 | 3.78 a | 5.37 b | 4.14 a | 4.49 c | 4.45 c | 4.39 a | 7.54 b | 3.74 c | 4.24 a | 5.23 d | 3.36 a | 3.69 a | 2.55 b | 3.32 a | 3.71 a |
1-butanol, 3-methyl | 0.00 | 0.00 a | 0.00 a | 2.91 b | 0.83 c | 0.63 c | 1.25 a | 1.35 a | 3.39 b | 1.61 a | 1.42 a | 11.44 a | 0.91 b | 3.07 c | 1.14 b | 0.72 b |
1-pentanol | 1.28 | 3.65 a | 3.69 a | 4.67 b | 3.24 a | 2.89 c | 3.05 a | 3.60 b | 2.52 c | 3.76 b | 4.05 d | 2.45 a | 1.84 b | 1.80 b | 2.60 a | 2.72 a |
3-buten-1-ol,3-methyl | 0.00 | 0.00 a | 0.00 a | 0.53 b | 0.17 ab | 0.00 ab | 0.33 a | 0.72 b | 0.54 a | 0.93 b | 0.88 b | 0.25 a | 0.67 b | 0.70 b | 0.96 b | 0.91 b |
cis 2-penten-1-ol | 1.71 | 3.26 a | 3.63 a | 3.17 a | 3.15 a | 2.87 b | 1.79 a | 3.03 b | 1.64 a | 2.27 c | 1.78 a | 1.66 a | 1.85 a | 1.13 b | 1.50 a | 1.62 a |
2-buten-1-ol, 3-methyl | 0.00 | 0.00 a | 0.00 a | 0.54 b | 0.25 b | 0.69 b | 1.15 a | 2.21 b | 4.00 c | 3.06 d | 2.98 d | 0.00 a | 5.80 b | 4.19 c | 4.23 c | 3.28 d |
Hexanol | 1.94 | 2.10 a | 2.81 b | 5.39 c | 3.61 d | 4.11 d | 2.47 a | 5.10 b | 6.19 c | 4.46 d | 4.36 d | 4.70 a | 3.41 b | 4.24 b | 3.63 b | 3.03 bd |
1-octen-3-ol | 2.78 | 5.48 | 5.59 | 5.49 | 5.54 | 5.21 | 3.92 a | 7.47 b | 4.21 ac | 4.45 c | 4.35 c | 4.51 a | 4.04 a | 2.95 b | 2.85 b | 3.05 b |
Heptanol | 1.12 | 1.38 a | 0.39 b | 0.38 b | 1.09 a | 1.19 a | 0.34 a | 0.00 b | 0.21 a | 0.00 b | 0.00 b | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
ALCOHOLS | 26.41 | 44.71 a | 49.03 b | 62.39 c | 50.34 d | 41.14 a | 58.57 a | 69.13 b | 68.17 b | 54.19 a | 52.80 ac | 104.90 a | 50.17 b | 51.98 b | 46.07 b | 42.94 bc |
Acetic acid | 1.12 | 0.71 a | 1.24 b | 15.57 c | 3.15 d | 5.32 e | 2.96 a | 24.71 b | 66.15 c | 38.58 d | 38.87 d | 16.21 a | 53.03 b | 52.55 b | 48.10 c | 39.48 d |
Propanoic acid | 0.00 | 0.26 a | 0.00 b | 0.70 a | 0.40 a | 0.55 a | 0.46 a | 0.94 a | 1.26 ab | 0.95 a | 1.39 b | 3.49 a | 0.58 b | 0.75 b | 0.64 b | 0.73 b |
Butanoic acid | 0.00 | 0.00 a | 0.00 a | 0.46 b | 0.28 b | 0.40 b | 0.31 a | 0.90 b | 1.62 c | 1.24 b | 1.46 bc | 0.23 a | 1.12 b | 1.03 b | 0.97 b | 0.75 b |
Butanoic acid, 3-methyl | 0.00 | 0.00 a | 0.00 a | 0.74 b | 0.00 a | 0.19 ab | 0.00 a | 0.00 a | 0.74 b | 0.24 ab | 0.00 a | 0.67 a | 0.36 a | 1.26 b | 0.32 a | 0.00 c |
Hexanoic acid | 1.11 | 0.61 a | 0.38 a | 1.85 b | 0.78 a | 0.97 a | 0.70 a | 2.21 b | 2.60 b | 2.19 b | 2.41 b | 0.95 a | 2.56 b | 2.16 b | 1.74 c | 1.39 a |
ACIDS | 2.23 | 1.57 a | 1.62 a | 19.32 b | 4.61 c | 7.42 d | 4.43 a | 28.75 b | 72.36 c | 43.20 d | 44.13 d | 21.56 a | 57.65 b | 57.75 b | 51.77 c | 42.35 d |
Ethyl acetate | 1.08 | 3.93 a | 6.83 b | 5.99 c | 4.05 d | 2.50 e | 5.81 a | 14.15 b | 10.44 c | 6.91 d | 5.35 a | 13.99 a | 5.13 b | 5.89 b | 7.00 c | 4.88 bd |
ESTERS | 1.08 | 3.93 a | 6.83 b | 5.99 c | 4.05 d | 2.50 e | 5.81 a | 14.15 b | 10.44 c | 6.91 d | 5.35 a | 13.99 a | 5.13 b | 5.89 b | 7.00 c | 4.88 bd |
Sensory Attributes | Day 12 | ||||
---|---|---|---|---|---|
CTRL | BOX-57 | F-106 | FP-50 | LAK-23 | |
Fermentation | 8/12 | 6/12 | 4/12 | 5/12 | 3/12 |
Rancid | 7/12 | 4/12 | 3/12 | 3/12 | 2/12 |
Sweet | 2/12 | 1/12 | 1/12 | 1/12 | 1/12 |
Pungent | 7/12 | 2/12 | 3/12 | 3/12 | 2/12 |
Fish | 12/12 | 12/12 | 12/12 | 12/12 | 12/12 |
Sour | 4/12 | 5/12 | 5/12 | 4/12 | 3/12 |
Bitter | 6/12 | 4/12 | 2/12 | 2/12 | 2/12 |
Ammonia | 4/12 | 3/12 | 1/12 | 2/12 | 1/12 |
Slimes | 2/12 | 0/12 | 0/12 | 1/12 | 0/12 |
Final scores a | 5 | 4 | 2 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacumin, L.; Pellegrini, M.; Sist, A.; Tabanelli, G.; Montanari, C.; Bernardi, C.; Comi, G. Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures. Microorganisms 2022, 10, 1786. https://doi.org/10.3390/microorganisms10091786
Iacumin L, Pellegrini M, Sist A, Tabanelli G, Montanari C, Bernardi C, Comi G. Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures. Microorganisms. 2022; 10(9):1786. https://doi.org/10.3390/microorganisms10091786
Chicago/Turabian StyleIacumin, Lucilla, Michela Pellegrini, Alice Sist, Giulia Tabanelli, Chiara Montanari, Cristian Bernardi, and Giuseppe Comi. 2022. "Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures" Microorganisms 10, no. 9: 1786. https://doi.org/10.3390/microorganisms10091786
APA StyleIacumin, L., Pellegrini, M., Sist, A., Tabanelli, G., Montanari, C., Bernardi, C., & Comi, G. (2022). Improving the Shelf-Life of Fish Burgers Made with a Mix of Sea Bass and Sea Bream Meat by Bioprotective Cultures. Microorganisms, 10(9), 1786. https://doi.org/10.3390/microorganisms10091786