On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of the Isolates
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. MDR Escherichia coli
3.1.1. Descriptive Statistics
3.1.2. Univariable Factor Associated with MDR E. coli
3.1.3. Multivariable Factor Associated with MDR E. coli
3.2. MDR Vibrio parahaemolyticus
3.2.1. Descriptive Statistics
3.2.2. Univariable Factors Associated with MDR V. parahaemolyticus
3.2.3. Multivariable Factor Associated with MDR V. parahaemolyticus
4. Discussion
4.1. Escherichia coli
4.2. Vibrio parahaemolyticus
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Causes of death. Our World in Data. 2018. Available online: https://ourworldindata.org/causes-of-death (accessed on 20 June 2022).
- WHO. WHO Estimates of the Global Burden of Foodborne Diseases. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf (accessed on 20 June 2022).
- Lee, H.; Yoon, Y. Etiological agents implicated in foodborne illness worldwide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- WHO. Burden of Foodborne Diseases in the South-East Asia Region. 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/332224/9789290225034-eng.pdf?sequence=1&isAllowed=y (accessed on 21 June 2022).
- Lim, C.; Takahashi, E.; Hongsuwan, M.; Wuthiekanun, V.; Thamlikitkul, V.; Hinjoy, S.; Day, N.P.J.; Peacock, S.J.; Limmathurotsakul, D. Epidemiology and burden of multidrug-resistant bacterial infection in a developing country. eLife 2016, 5, 18082. [Google Scholar] [CrossRef]
- Bashir, I.; Lone, F.A.; Bhat, R.A.; Mir, S.A.; Dar, Z.A.; Dar, S.A. Concerns and threats of contamination on aquatic ecosystems. In Bioremediation and Biotechnology; Hakeem, K., Bhat, R., Qadri, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–26. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Schar, D.; Klein, E.Y.; Laxminarayan, R.; Gilbert, M.; Van Boeckel, T.P. Global trends in antimicrobial use in aquaculture. Sci. Rep. 2020, 10, 21878. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Managaki, S.; Pärnänen, K.; Karkman, A.; Lyra, C.; Tamminen, M.; Suzuki, S.; Virta, M. Sulphonamide and trimethoprim resistance genes persist in sediments at Baltic Sea aquaculture farms but are not detected in the surrounding environment. PLoS ONE 2014, 9, e92702. [Google Scholar] [CrossRef] [PubMed]
- Muziasari, W.I.; Pärnänen, K.; Johnson, T.A.; Lyra, C.; Karkman, A.; Stedtfeld, R.D.; Tamminen, M.; Tiedje, J.M.; Virta, M. Aquaculture changes the profile of antibiotic resistance and mobile genetic element associated genes in Baltic Sea sediments. FEMS Microbiol. Ecol. 2016, 92, fiw052. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.Q.A.; Cabello, F.C.; L’Abée-Lund, T.M.; Tomova, A.; Godfrey, H.P.; Buschmann, A.H.; Sørum, H. Antimicrobial resistance and antimicrobial resistance genes in marine bacteria from salmon aquaculture and non-aquaculture sites. Environ. Microbiol. 2014, 16, 1310–1320. [Google Scholar] [CrossRef]
- Patil, H.J.; Gatica, J.; Zolti, A.; Benet-Perelberg, A.; Naor, A.; Dror, B.; Al Ashhab, A.; Marman, S.; Hasan, N.A.; Colwell, R.R.; et al. Temporal resistome and microbial community dynamics in an intensive aquaculture facility with prophylactic antimicrobial treatment. Microorganisms 2020, 8, 1984. [Google Scholar] [CrossRef]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Jiang, X.; Ke, Y.; He, T.; Xie, S. Metagenomic insights into the profile of antibiotic resistomes in sediments of aquaculture wastewater treatment system. J. Environ. Sci. 2022, 113, 345–355. [Google Scholar] [CrossRef]
- Nishino, T.; Suzuki, H.; Mizumoto, S.; Morinushi, H.; Nagaoka, H.; Goto, K.; Yamamoto, S. Antimicrobial Drug-resistance Profile of Vibrio parahaemolyticus isolated from Japanese Horse Mackerel (Trachurus japonicus). Food Saf. 2021, 9, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.V.; Verma, P.; Singh, A.P. High prevalence of antimicrobial resistance in Escherichia coli, Salmonella spp. and Staphylococcus aureus isolated from fish samples in India. Aquac. Res. 2020, 51, 1200–1210. [Google Scholar] [CrossRef]
- Tan, C.W.; Rukayadi, Y.; Hasan, H.; Thung, T.Y.; Lee, E.; Rollon, W.D.; Hara, H.; Kayali, A.Y.; Nishibuchi, M.; Radu, S. Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi J. Biol. Sci. 2020, 27, 1602–1608. [Google Scholar] [CrossRef]
- Blake, D.P.; Hillman, K.; Fenlon, D.R.; Low, J.C. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions. J. Appl. Microbiol. 2003, 95, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef] [Green Version]
- Nair, G.B.; Ramamurthy, T.; Bhattacharya, S.K.; Dutta, B.; Takeda, Y.; Sack, D.A. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 2007, 20, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- FAO. Fisheries and Aquaculture Statistics. Global Aquaculture and Fisheries Production 1950–2018 (Fishstat). FAO Fisheries and Aquaculture Department: Rome, Italy, 2020; Available online: https://www.fao.org/fishery/en/collection/global-capture-production/en (accessed on 20 June 2022).
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- SEAFDEC. The Southeast Asian State of Fisheries and Aquaculture 2017. South East Asian Fisheries Department Center; Southeast Asian Fisheries Development Center: Bangkok, Thailand, 2017; pp. 1–167. [Google Scholar]
- Hishamunda, N.; Bueno, P.; Ridler, N.; Yap, W.G. Analysis of Aquaculture Development in Southeast Asia: A Policy Perspective; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; pp. 1–69. ISBN 978-92-5-106339-2. [Google Scholar]
- Waiho, K.; Fazhan, H.; Ishak, S.D.; Kasan, N.A.; Liew, H.J.; Norainy, M.H.; Ikhwanuddin, M. Potential impacts of COVID-19 on the aquaculture sector of Malaysia and its coping strategies. Aquac. Rep. 2020, 18, 100450. [Google Scholar] [CrossRef]
- Budiati, T.; Rusul, G.; Wan-abdullah, W.N.; Mat, Y. Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture 2013, 372–375, 127–132. [Google Scholar] [CrossRef]
- Jingjit, N.; Preeprem, S.; Surachat, K.; Mittraparp-Arthorn, P. Characterization and analysis of clustered regularly interspaced short palindromic repeats (Crisprs) in pandemic and non-pandemic Vibrio parahaemolyticus isolates from seafood sources. Microorganisms 2021, 9, 1220. [Google Scholar] [CrossRef]
- Kusumaningrum, H.D.; Dewanti-Hariyadi, S.R. Multidrug resistance among different serotypes of Salmonella isolates from fresh products in Indonesia. Int. Food Res. J. 2012, 19, 57–63. [Google Scholar]
- Le, H.V.; Kawahara, R.; Khong, D.T.; Tran, H.T.; Nguyen, T.N.; Pham, K.N.; Jinnai, M.; Kumeda, Y.; Nakayama, T.; Ueda, S.; et al. Widespread dissemination of extended-spectrum β-lactamase-producing, multidrug-resistant Escherichia coli in livestock and fishery products in Vietnam. Int. J. Food Contam. 2015, 2, 282. [Google Scholar] [CrossRef] [Green Version]
- Letchumanan, V.; Pusparajah, P.; Tan, L.T.H.; Yin, W.F.; Lee, L.H.; Chan, K.G. Occurrence and antibiotic resistance of Vibrio parahaemolyticus from Shellfish in Selangor, Malaysia. Front. Microbiol. 2015, 6, 1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amalina, N.Z.; Santha, S.; Zulperi, D.; Amal, M.N.A.; Yusof, M.T.; Zamri-Saad, M.; Ina-Salwany, M.Y. Prevalence, antimicrobial susceptibility and plasmid profiling of Vibrio spp. isolated from cultured groupers in Peninsular Malaysia. BMC Microbiol. 2019, 19, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewi, R.R.; Hassan, L.; Daud, H.M.; Matori, M.F.; Nordin, F.; Ahmad, N.I.; Zakaria, Z. Prevalence and Antimicrobial Resistance of Escherichia coli, Salmonella and Vibrio Derived from Farm-Raised Red Hybrid Tilapia (Oreochromis spp.) and Asian Sea Bass (Lates calcarifer, Bloch 1970) on the West Coast of Peninsular Malaysia. Antibiotics 2022, 11, 136. [Google Scholar] [CrossRef]
- Jang, S.; Biberstein, E.; Hirsh, D. A Diagnostic: Manual of Veterinary Clinical Bacteriology and Mycology; University of California Davis County: Iowa, CA, USA, 2008. [Google Scholar]
- Ryu, S.H.; Park, S.G.; Choi, S.M.; Hwang, Y.O.; Ham, H.J.; Kim, S.U.; Lee, Y.K.; Kim, M.S.; Park, G.Y.; Kim, K.S.; et al. Antimicrobial resistance and resistance genes in Escherichia coli strains isolated from commercial fish and seafood. Int. J. Food Microbiol. 2012, 152, 14–18. [Google Scholar] [CrossRef]
- Huq, A.; Haley, B.J.; Taviani, E.; Chen, A.; Hassan, N.A.; Cowell, R.R. Detection, Isolation, and Identification of Vibrio cholerae from the Environment. Curr. Protoc. Microbiol. 2013, 178, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Momtaz, H.; Dehkordi, F.S.; Rahimi, E.; Asgarifar, A. Detection of Escherichia coli, Salmonella species, and Vibrio cholerae in tap water and bottled drinking water in Isfahan, Iran. BMC Public Health 2013, 13, 1. [Google Scholar] [CrossRef] [Green Version]
- CDC. Chapter 5: Examination of Food and Environmental Sample; Lab. Methods Diagnosis Vibrio cholerae. 2014. Available online: https://www.cdc.gov/cholera/pdf/laboratory-methods-for-the-diagnosis-of-vibrio-cholerae-chapter-5.pdf (accessed on 2 February 2018).
- Neogi, S.B.; Chowdhury, N.; Asakura, M.; Hinenoya, A.; Haldar, S.; Saidi, S.M.; Kogure, K.; Lara, R.J.; Yamasaki, S. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett. Appl. Microbiol. 2010, 51, 293–300. [Google Scholar] [CrossRef]
- OIE Standards, Guidelines and Resolution on Antimicrobial Resistance and the Use of Antimicrobial Agents. World Organi-sation for Animal Health. 2015. Available online: https://web.oie.int/delegateweb/eng/ebook/AF-book-AMR-ANG_FULL.pdf?WAHISPHPSESSID=03152ead00d06990fa9066b7b71fcabc (accessed on 25 February 2021).
- WHO. WHO List of Critically Important Antimicrobials (CIA). 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/312266/9789241515528-eng.pdf (accessed on 2 February 2018).
- CLSI Standard VET01; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, 5th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 19–50.
- CLSI Guideline VET03; Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated from Aquatic Animals, 2nd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; pp. 41–60.
- CLSI Guideline M45; Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016; pp. 56–60.
- CLSI Document M07-A9; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; pp. 10–19.
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agoba, E.E.; Adu, F.; Agyare, C.; Boamah, V.E. Antibiotic use and practices in selected fish farms in the Ashanti region of Ghana. J. Infect. Dis. Treat. 2017, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Ayson, F.G.; Sugama, K.; Yashiro, R.; Jesus-Ayson, E.G. Nursery and Grow-out Culture of Asian Seabass Lates calcalifer, in selected Countries in South East Asia. In Biology and Culture of Asian Seabass Lates Calcarifer; Jerry, D.R., Ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2014; pp. 273–292. [Google Scholar]
- FAO. FAO Aquaculture Training Series. 2007. Available online: https://www.fao.org/fishery/docs/CDrom/FAO_Training/FAO_Training/General/x6708e/x6708e01.htm (accessed on 10 December 2020).
- Green, B.W. Fertilizers in aquaculture. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 27–52. [Google Scholar] [CrossRef]
- Boyd, C.E. Aquaculture pond fertilization. CAB Rev. 2018, 13, 3002. [Google Scholar] [CrossRef]
- Pucher, J.; Steinbronn, S.; Mayrhofer, R.; Schad, I.; El-Matbouli, M.; Focken, U. Improved Sustainable Aquaculture System for Small-Scale Farmers in Northern Vietnam. In Sustainable Land Use and Rural Development in Southeast Asia: Innovations and Policies for Mountainous Areas; Frohlich, H.L., Schreinemachers, P., Stahr, K., Gerhard, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 281–320. [Google Scholar] [CrossRef] [Green Version]
- WHO. WHONET Tutorial Data Analysis 1 for the Surveillance of Antimicrobial Resistance. 2006. Available online: http://www.whonet.org/Docs/WHONET%206.Expert%20system.doc (accessed on 16 September 2020).
- WHO. WHONET Tutorial Data Analysis 2 for the Surveillance of Antimicrobial Resistance. 2006. Available online: https://ddgqe0f1ahilg.cloudfront.net/Docs/WHONET%205.Data%20analysis%202.doc (accessed on 20 September 2020).
- Crowson, M. Multilevel Binary Logistic Regression Using IBM SPSS. 2020. Powerpoint Slides. Available online: https://drive.google.com/open?id=16UJsWJodaVFdxJesu7OTQFgGWtrsITzv (accessed on 8 December 2021).
- Sommet, N.; Morselli, D. Keep calm and learn multilevel logistic modeling: A simplified three-step procedure using stata, R, Mplus, and SPSS. Int. Rev. Soc. Psychol. 2017, 30, 203–218. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, Z.; Li, Y.; Krewski, D.; Wen, S.W. A multi-level analysis of risk factors for Schistosoma japonicum infection in China. Int. J. Infect. Dis. 2009, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainda, G.; Bessell, P.B.; Muma, J.B.; McAteer, S.P.; Chase-Topping, M.E.; Gibbons, J.; Stevens, M.P.; Gally, D.L.; Barend, B.M. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci. Rep. 2015, 5, 2439. [Google Scholar] [CrossRef] [Green Version]
- Seltman, H.J. Chapter 15, Mixed Models. 2014. Available online: https://www.stat.cmu.edu/~hseltman/309/Book/chapter15.pdf (accessed on 5 February 2021).
- Shen, Y.; Lv, Z.; Yang, L.; Liu, D.; Ou, Y.; Xu, C.; Liu, W.; Yuan, D.; Hao, Y.; He, J.; et al. Integrated aquaculture contributes to the transfer of mcr-1 between animals and humans via the aquaculture supply chain. Environ. Int. 2019, 130, 104708. [Google Scholar] [CrossRef]
- Hassan, J.; Eddine, R.Z.; Mann, D.; Li, S.; Deng, X.; Saoud, I.P.; Kassem, I.I. The mobile colistin resistance gene, mcr-1.1, is carried on incx4 plasmids in multidrug resistant E. coli isolated from rainbow trout aquaculture. Microorganisms 2020, 8, 1636. [Google Scholar] [CrossRef]
- Nhinh, D.T.; Le, D.V.; Van Van, K.; Giang, N.T.H.; Dang, L.T.; Hoai, T.D. Prevalence, virulence gene distribution and alarming the multidrug resistance of Aeromonas hydrophila associated with disease outbreaks in freshwater aquaculture. Antibiotics 2021, 10, 532. [Google Scholar] [CrossRef]
- Adeyemi, F.M.; Ojo, O.O.; Badejo, A.A.; Oyedara, O.O.; Olaitan, J.O.; Adetunji, C.O.; Hefft, D.I.; Ogunjobi, A.A.; Akinde, S.B. Integrated poultry-fish farming system encourages multidrug-resistant gram-negative bacteria dissemination in pond environment and fishes. Aquaculture 2022, 548, 737558. [Google Scholar] [CrossRef]
- Dhanapala, P.M.; Kalupahana, R.S.; Kalupahana, A.W.; Wijesekera, D.P.H.; Kottawatta, S.A.; Jayasekera, N.K.; Silva-Fletcher, A.; Jagoda, S.S.S.S. Characterization and antimicrobial resistance of environmental and clinical Aeromonas species isolated from fresh water ornamental fish and associated farming environment in Sri Lanka. Microorganisms 2021, 9, 2106. [Google Scholar] [CrossRef] [PubMed]
- Schar, D.; Zhao, C.; Wang, Y.; Larsson, D.G.J.; Gilbert, M.; Van Boeckel, T.P. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat. Commun. 2021, 12, 5384. [Google Scholar] [CrossRef] [PubMed]
- Thornber, K.; Verner-Jeffreys, D.; Hinchliffe, S.; Rahman, M.M.; Bass, D.; Tyler, C.R. Evaluating antimicrobial resistance in the global shrimp industry. Rev. Aquac. 2020, 12, 966–986. [Google Scholar] [CrossRef] [Green Version]
- Petersen, A.; Andersen, J.S.; Kaewmak, T.; Somsiri, T.; Dalsgaard, A. Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl. Environ. Microbiol. 2002, 68, 6036–6042. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.Q.A.; Colquhoun, D.J.; Nikuli, H.L.; Sørum, H. Prevalence of Antibiotic Resistance Genes in the Bacterial Flora of Integrated Fish Farming Environments of Pakistan and Tanzania. Environ. Sci. Technol. 2012, 46, 8672–8679. [Google Scholar] [CrossRef]
- Minich, J.J.; Zhu, Q.; Xu, Z.Z.; Amir, A.; Ngochera, M.; Simwaka, M.; Allen, E.E.; Zidana, H.; Knight, R. Microbial effects of livestock manure fertilization on freshwater aquaculture ponds rearing tilapia (Oreochromis shiranus) and North African catfish (Clarias gariepinus). Microbiologyopen 2018, 7, e00716. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.; Domingues, S.; Da Silva, G.J. Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef]
- Fatoba, D.O.; Abia, A.L.K.; Amoako, D.G.; Essack, S.Y. Rethinking manure application: Increase in multidrug-resistant enterococcus spp. in agricultural soil following chicken litter application. Microorganisms 2021, 9, 885. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Nhung, N.T.; Cuong, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: A review. Antibiotics 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and Antibiotic Resistance Genes in Animal Manure—Consequences of Its Application in Agriculture. Front. Microbiol. 2021, 12, 656. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.G.; Raza, S.; Ta, L.T.; Le, L.A.T.; Ho, C.T.; Unno, T. Metagenomic investigation of the seasonal distribution of bacterial community and antibiotic-resistant genes in Day River Downstream, Ninh Binh, Vietnam. Appl. Biol. Chem. 2022, 65, 8262. [Google Scholar] [CrossRef]
- Furushita, M.; Shiba, T.; Maeda, T.; Yahata, M.; Kaneoka, A.; Takahashi, Y.; Torii, K.; Hasegawa, T.; Ohta, M. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol. 2003, 69, 5336–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomova, A.; Ivanova, L.; Buschmann, A.H.; Rioseco, M.L.; Kalsi, R.K.; Godfrey, H.P.; Cabello, F.C. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture. Environ. Microbiol. Rep. 2015, 7, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Elsaidy, N.; Abouelenien, F.; Kirrella, G.A.K. Impact of using raw or fermented manure as fish feed on microbial quality of water and fish. Egypt. J. Aquat. Res. 2015, 41, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Omojowo, F.; Omojasola, P.F. Microbiological quality of fresh tilapia raised in ponds fertilized with raw and sterilized cow dung manure. In Proceedings of the 27th Annual Conference and Biennial General Meeting of the Fisheries Society of Nigeria (FISON), Port-Harcourt, Nigeria, 25–30 November 2012; pp. 278–280. [Google Scholar]
- Islam, M.S.; Nakagawa, K.; Abdullah-Al-Mamun, M.; Siddique, M.A.B.; Berndtsson, R. Is road-side fishpond water in Bangladesh safe for human use? An assessment using water quality indices. Environ. Chall. 2022, 6, 100434. [Google Scholar] [CrossRef]
- Joseph, B.I. Temporary Freshwater Pond Quality and Properties: A Potential indicator of the Health Level of Environment. Oceanogr. Fish. Open Access J. 2017, 2, 8711. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, L.; Wang, Q.; Zeng, H.; Xu, J.; Chen, Z. Antibiotics in aquaculture ponds from Guilin, South of China: Occurrence, distribution, and health risk assessment. Environ. Res. 2022, 204, 112084. [Google Scholar] [CrossRef]
- Baquero, F.; Alvarez-Ortega, C.; Martinez, J.L. Ecology and evolution of antibiotic resistance. Environ. Microbiol. Rep. 2009, 1, 469–476. [Google Scholar] [CrossRef]
- Giraud, E.; Douet, D.G.; Le Bris, H.; Bouju-Albert, A.; Donnay-Moreno, C.; Thorin, C.; Pouliquen, H. Survey of antibiotic resistance in an integrated marine aquaculture system under oxolinic acid treatment. FEMS Microbiol. Ecol. 2006, 55, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Arámbul, E.; Castillo-Vargasmachuca, S.G.; Ponce-Palafox, J.T.; Páez-Osuna, F.; Arredondo-Figueroa, J.L.; Esparza-Leal, H.M. Environmental variability at a marine cage culture operation in the Matanchén Bay, SE Gulf of California, Mexico. Rev. Biol. Mar. Oceanogr. 2018, 53, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 2298. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, Q.; Liu, P.; Guo, R.; Jin, S. Evaluation and Analysis of Water Quality of Marine Aquaculture Area. Int. J. Environ. Res. Public Health 2020, 17, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borella, L.; Salogni, C.; Vitale, N.; Scali, F.; Moretti, V.M.; Pasquali, P.; Alborali, G.L. Motile aeromonads from farmed and wild freshwater fish in northern Italy: An evaluation of antimicrobial activity and multidrug resistance during 2013 and 2016. Acta Vet. Scand. 2020, 62, 6. [Google Scholar] [CrossRef]
- Pruden, A.; Arabi, M.; Storteboom, H.N. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 2012, 46, 11541–11549. [Google Scholar] [CrossRef]
- Ghaderpour, A.; Ho, W.S.; Chew, L.L.; Bong, C.W.; Chong, V.C.; Thong, K.L.; Chai, L.C. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia. Front. Microbiol. 2015, 6, 977. [Google Scholar] [CrossRef] [Green Version]
- Yee, J.; Jong, M.; Acharya, K.; Sue, S.; Liew, X.; Smith, D.R.; Zainon, Z.; Goodson, M.L.; Werner, D.; Graham, D.W.; et al. Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management. J. Hazard. Mater. 2021, 405, 124687. [Google Scholar] [CrossRef]
- Zheng, D.; Yin, G.; Liu, M.; Chen, C.; Jiang, Y.; Hou, L.; Zheng, Y. A systematic review of antibiotics and antibiotic resistance genes in estuarine and coastal environments. Sci. Total Environ. 2021, 777, 146009. [Google Scholar] [CrossRef]
Variables | Frequency | Positive (%) | Chi-Square (χ2) | p-Value |
---|---|---|---|---|
Human activity near farm | ||||
Yes | 161 | 77 (47.8) | 2.460 | 0.117 |
No | 88 | 33 (37.5) | ||
Livestock near farm | ||||
Yes | 80 | 45 (56.3) | 6.967 | 0.008 * |
No | 169 | 65 (38.5) | ||
Type of fish | ||||
Tilapia | 202 | 94(46.5) | 2.413 | 0.120 |
Asian seabass | 47 | 16 (34) | ||
Type of production system | ||||
Earthen pond | 186 | 92 (49.5) | 8.328 | 0.004 * |
Cage | 63 | 18 (28.6) | ||
Water exchange | ||||
Yes | 236 | 102 (43.2) | 1.677 | 0.195 |
No | 13 | 8 (61.5) | ||
Manure application | ||||
Yes | 36 | 27 (75) | 16.213 | 0.000 * |
No | 213 | 83 (39) | ||
Diseases history | ||||
Yes | 37 | 14 (37.8) | 0.708 | 0.400 |
No | 212 | 96 (45.3) | ||
Antibiotic application | ||||
Yes | 16 | 10 (62.5) | 2.328 | 0.127 |
No | 233 | 100 (42.9) | ||
Presence of pets in farm (dogs, cats) | ||||
Yes | 139 | 71 (51.1) | 6.079 | 0.014 * |
No | 110 | 39 (35.5) |
Variables | Coefficient | SE | t | p-Value | OR | 95% Confidence Interval |
---|---|---|---|---|---|---|
Intercept | −0.424 | 0.2298 | −1.846 | 0.066 | 0.65 | 0.42–1.03 |
Manure application (Yes) | 1.500 | 0.6636 | 2.261 | 0.025 | 4.48 | 1.21–16.57 |
Water exchange (Yes) | 0.903 | 0.8212 | 1.099 | 0.273 | 2.47 | 0.49–12.43 |
Variables | Frequency | Positive (%) | Chi-Square (χ2) | p-Value |
---|---|---|---|---|
Human activity near farm | ||||
Yes | 63 | 32(50.8) | 51.857 | 0.000 * |
No | 99 | 3(3.0) | ||
Livestock near farm | ||||
Yes | 21 | 10(47.6) | 9.640 | 0.002 * |
No | 141 | 25(17.7) | ||
Type of production system | ||||
Earthen pond | 52 | 30(57.7) | 58.884 | 0.000 * |
Cage | 110 | 5(4.5) | ||
Diseases history | ||||
Yes | 62 | 13(21) | 0.024 | 0.877 |
No | 100 | 22(22) | ||
Antibiotic application | ||||
Yes | 21 | 10(47.6) | 9.640 | 0.002 * |
No | 141 | 25(17.7) | ||
Presence of pets in farm (dogs, cats) | ||||
Yes | 69 | 20(29) | 3.866 | 0.049 * |
No | 93 | 15(16.1) |
Variables | Coefficient | SE | t | p-Value | OR | 95% Confidence Interval |
---|---|---|---|---|---|---|
Intercept | −3.025 | 0.4783 | −6.325 | 0.000 | 0.049 | 0.019–0.125 |
Type of production system (earthen pond) | 2.099 | 0.867 | 2.421 | 0.017 | 8.16 | 1.47–45.23 |
Human activity near farm (Yes) | 1.522 | 0.9163 | 1.661 | 0.099 | 4.58 | 0.75–27.98 |
Livestock near farm (Yes) | −0.691 | 0.5760 | −1.200 | 0.232 | 0.50 | 0.16–1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewi, R.R.; Hassan, L.; Daud, H.M.; Matori, M.F.; Zakaria, Z.; Ahmad, N.I.; Aziz, S.A.; Jajere, S.M. On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish. Microorganisms 2022, 10, 1520. https://doi.org/10.3390/microorganisms10081520
Dewi RR, Hassan L, Daud HM, Matori MF, Zakaria Z, Ahmad NI, Aziz SA, Jajere SM. On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish. Microorganisms. 2022; 10(8):1520. https://doi.org/10.3390/microorganisms10081520
Chicago/Turabian StyleDewi, Rita Rosmala, Latiffah Hassan, Hassan Mohammad Daud, Mohd. Fuad Matori, Zunita Zakaria, Nur Indah Ahmad, Saleha A. Aziz, and Saleh Mohammed Jajere. 2022. "On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish" Microorganisms 10, no. 8: 1520. https://doi.org/10.3390/microorganisms10081520
APA StyleDewi, R. R., Hassan, L., Daud, H. M., Matori, M. F., Zakaria, Z., Ahmad, N. I., Aziz, S. A., & Jajere, S. M. (2022). On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish. Microorganisms, 10(8), 1520. https://doi.org/10.3390/microorganisms10081520