Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Identification of Clinical Strains
3.2. Identification of Internal Reference Strains
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Falkinham, J.O., III. Ecology of nontuberculous mycobacteria. Microorganisms 2021, 9, 2262. [Google Scholar] [CrossRef] [PubMed]
- Nishiuchi, Y.; Iwamoto, T.; Maruyama, F. Infection sources of a common non- tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front. Med. 2017, 4, 27. [Google Scholar] [CrossRef] [PubMed]
- Honda, J.R.; Virdi, R.; Chan, E.D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 2018, 9, 2029. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Upadhyay, V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J. Med. Res. 2020, 152, 185–226. [Google Scholar] [CrossRef]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J., Jr.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 2017, 72 (Suppl. S2), ii1–ii64. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef]
- Seagar, A.L.; Prendergast, C.; Emmanuel, F.X.; Rayner, A.; Thomson, S.; Laurenson, I.F. Evaluation of the GenoType Mycobacteria Direct assay for the simultaneous detection of the Mycobacterium tuberculosis complex and four atypical mycobacterial species in smear-positive respiratory specimens. J. Med. Microbiol. 2008, 57, 605–611. [Google Scholar] [CrossRef]
- Perry, M.D.; White, P.L.; Ruddy, M. Potential for use of the Seegene Anyplex MTB/NTM real-time detection assay in a regional reference laboratory. J. Clin. Microbiol. 2014, 52, 1708–1710. [Google Scholar] [CrossRef]
- Alcaide, F.; Amlerová, J.; Bou, G.; Ceyssens, P.J.; Coll, P.; Corcoran, D.; Fangous, M.S.; González-Álvarez, I.; Gorton, R.; Greub, G.; et al. How to: Identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin. Microbiol. Infect. 2018, 24, 599–603. [Google Scholar] [CrossRef]
- Wilen, C.B.; McMullen, A.R.; Burnham, C.A. Comparison of sample preparation methods, instrumentation platforms, and contemporary commercial databases for identification of clinically relevant mycobacteria by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J. Clin. Microbiol. 2015, 53, 2308–2315. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Temporal, D.; Rodríguez-Sánchez, B.; Alcaide, F. Evaluation of MALDI biotyper interpretation criteria for accurate identification of nontuberculous mycobacteria. J. Clin. Microbiol. 2020, 58, e01103-20. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Temporal, D.; Alcaide, F.; Mareković, I.; O’Connor, J.A.; Gorton, R.; van Ingen, J.; van den Bossche, A.; Héry-Arnaud, G.; Beauruelle, C.; Orth-Höller, D.; et al. Multicentre study on the reproducibility of MALDI-TOF MS for nontuberculous mycobacteria identification. Sci. Rep. 2022, 12, 1237. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Ma, P.; Fan, W.; Gu, B.; Ju, S. Accuracy of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for identification of mycobacteria: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 4131. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.A.; Lynch-Healy, M.; Corcoran, D.; O’Reilly, B.; O’Mahony, J.; Lucey, B. Improved Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS)-based identification of Mycobacterium spp. by use of a novel two-step cell disruption preparatory technique. J. Clin. Microbiol. 2016, 54, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.J., Jr.; Brown, B.A.; Silcox, V.A.; Tsukamura, M.; Nash, D.R.; Steele, L.C.; Steingrube, V.A.; Smith, J.; Sumter, G.; Zhang, Y.S.; et al. Clinical disease, drug susceptibility, and biochemical patterns of the unnamed third biovariant complex of Mycobacterium fortuitum. J. Infect. Dis. 1991, 163, 598–603. [Google Scholar] [CrossRef]
- van Eck, K.; Faro, D.; Wattenberg, M.; de Jong, A.; Kuipers, S.; van Ingen, J. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry fails to identify nontuberculous mycobacteria from primary cultures of respiratory samples. J. Clin. Microbiol. 2016, 54, 1915–1917. [Google Scholar] [CrossRef][Green Version]
- Kalaiarasan, E.; Thangavelu, K.; Krishnapriya, K.; Muthuraj, M.; Jose, M.; Joseph, N.M. Diagnostic performance of real time PCR and MALDI-TOF in the detection of nontuberculous mycobacteria from clinical isolates. Tuberculosis 2020, 125, 101988. [Google Scholar] [CrossRef]
- Huang, T.S.; Lee, C.C.; Tu, H.Z.; Lee, S.S. Rapid identification of mycobacteria from positive MGIT broths of primary cultures by MALDI-TOF mass spectrometry. PLoS ONE 2018, 13, e0192291. [Google Scholar] [CrossRef]
- Miller, E.; Cantrell, C.; Beard, M.; Derylak, A.; Babady, N.E.; McMillen, T.; Miranda, E.; Body, B.; Tang, Y.W.; Vasireddy, R.; et al. Performance of Vitek MS v3.0 for identification of Mycobacterium species from patient samples by use of automated liquid medium systems. J. Clin. Microbiol. 2018, 56, e00219-18. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Shim, H.J.; Yun, S.A.; Kang, O.K.; Chung, Y.N.; Kim, T.Y.; Lee, H.; Kim, J.; Park, Y.J.; Huh, H.J.; et al. Evaluation of the ASTA MicroIDSys matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for identification of mycobacteria directly from positive MGIT liquid cultures. Int. J. Infect. Dis. 2021, 102, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Epperson, L.E.; Timke, M.; Hasan, N.A.; Godo, P.; Durbin, D.; Helstrom, N.K.; Shi, G.; Kostrzewa, M.; Strong, M.; Salfinger, M. Evaluation of a novel MALDI biotyper algorithm to distinguish Mycobacterium intracellulare from Mycobacterium chimaera. Front. Microbiol. 2018, 9, 3140. [Google Scholar] [CrossRef] [PubMed]
- MBT Mycobacteria IVD Module. Available online: https://www.bruker.com/en/products-and-solutions/microbiology-and-diagnostics/microbial-identification-for-clinical-laboratories-ivd-ce/mbt-mycobacteria-ivd-module.html (accessed on 1 June 2022).
Species (n.) | No. of Identified Isolates from Clinical Samples with Score (S) of: | ||
---|---|---|---|
1.6 ≤ S < 1.8 | 1.8 ≤ S < 2 | S ≥ 2.0 | |
M. paragordonae/gordonae (16) | 2 | 14 | |
M. chimaera/intracellulare group (15) | 1 | 14 | |
M. avium (13) | 1 | 12 | |
M. fortuitum (4) | 4 | ||
M. kansasii (4) | 4 | ||
M. abscessus (1) | 1 | ||
M. mucogenicum/phocaicum (1) | 1 | ||
M. xenopi (1) | 1 | ||
M. chelonae (1) | 1 | ||
M. celatum (1) | 1 | ||
M. lentiflavum (1) | 1 | ||
M. marinum (1) | 1 | ||
M. septicum (1) § | 1 | ||
Total 60 (%) | 3 (5%) | 6 (10%) | 51 (85%) |
Species (n.) | No. of Identified Isolates from Internal Reference Strains with Score (S) of: | ||
---|---|---|---|
1.6 ≤ S < 1.8 | 1.8 ≤ S < 2 | S ≥ 2.0 | |
M. chimaera/intracellulare group (3) | 3 | ||
M. mucogenicum/phocaicum (2) § | 2 | ||
M. abscessus (2) M. avium (1) | 1 | 2 | |
M. kansasii (1) | 1 | ||
M. gordonae (1) | 1 | ||
M. triplex (1) | 1 | ||
M. simiae (1) | 1 | ||
M. xenopi (1) | 1 | ||
M. malmoense (1) | 1 | ||
M. marinum (1) | 1 | ||
M. parascrofulaceum (1) | 1 | ||
Total 16 (%) | 0 (0%) | 5 (31%) | 11 (69%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rindi, L.; Puglisi, V.; Franconi, I.; Fais, R.; Lupetti, A. Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms 2022, 10, 1447. https://doi.org/10.3390/microorganisms10071447
Rindi L, Puglisi V, Franconi I, Fais R, Lupetti A. Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms. 2022; 10(7):1447. https://doi.org/10.3390/microorganisms10071447
Chicago/Turabian StyleRindi, Laura, Vincenzo Puglisi, Iacopo Franconi, Roberta Fais, and Antonella Lupetti. 2022. "Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS" Microorganisms 10, no. 7: 1447. https://doi.org/10.3390/microorganisms10071447
APA StyleRindi, L., Puglisi, V., Franconi, I., Fais, R., & Lupetti, A. (2022). Rapid and Accurate Identification of Nontuberculous Mycobacteria Directly from Positive Primary MGIT Cultures by MALDI-TOF MS. Microorganisms, 10(7), 1447. https://doi.org/10.3390/microorganisms10071447