Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media, and Reagents
2.2. Construction of Plasmids and Strains
2.3. Fermentation Conditions
2.4. Biomass and Metabolite Analysis
2.5. Fluorescence Microscopy
3. Results
3.1. Reconstruction of the Midstream Module for Biosynthesis of Naringenin from CA
3.2. Investigation of the Subcellular Localization of the Midstream Module
3.3. Efficient De Novo Biosynthesis of Naringenin
3.4. De Novo Biosynthesis of Genistein
3.5. Fermentation Optimization to Increase Genistein Production
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dixon, R.A.; Ferreira, D. Genistein. Phytochemistry 2002, 60, 205–211. [Google Scholar] [CrossRef]
- Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother. 2015, 76, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, K.; Akhtar, M.H. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. 2017, 57, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Blicharski, T.; Oniszczuk, A. Extraction methods for the isolation of isoflavonoids from plant material. Open Chem. 2017, 15, 34–45. [Google Scholar] [CrossRef]
- Sajid, M.; Stone, S.R.; Kaur, P. Recent advances in heterologous synthesis paving way for future green-modular bioindustries: A review with special reference to isoflavonoids. Front. Bioeng. Biotechnol. 2021, 9, 673270. [Google Scholar] [CrossRef]
- Rani, D.; Vimolmangkang, S. Trends in the biotechnological production of isoflavonoids in plant cell suspension cultures. Phytochem. Rev. 2022. [Google Scholar] [CrossRef]
- Sohn, S.I.; Pandian, S.; Oh, Y.J.; Kang, H.J.; Cho, W.S.; Cho, Y.S. Metabolic engineering of isoflavones: An updated overview. Front. Plant Sci. 2021, 12, 670103. [Google Scholar] [CrossRef]
- Ban, Z.; Qin, H.; Mitchell, A.J.; Liu, B.; Zhang, F.; Weng, J.K.; Dixon, R.A.; Wang, G. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proc. Natl. Acad. Sci. USA 2018, 115, E5223–E5232. [Google Scholar] [CrossRef] [Green Version]
- Waki, T.; Mameda, R.; Nakano, T.; Yamada, S.; Terashita, M.; Ito, K.; Tenma, N.; Li, Y.; Fujino, N.; Uno, K.; et al. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nat. Commun. 2020, 11, 870. [Google Scholar] [CrossRef]
- Dastmalchi, M. Elusive partners: A review of the auxiliary proteins guiding metabolic flux in flavonoid biosynthesis. Plant J. 2021, 108, 314–329. [Google Scholar] [CrossRef]
- Du, H.; Huang, Y.; Tang, Y. Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl. Microbiol. Biotechnol. 2010, 86, 1293–1312. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Sun, X.; Yan, Y.; Yuan, Q.; Wang, J.; Shen, X. Metabolic engineering of microorganisms for the production of flavonoids. Front. Bioeng. Biotechnol. 2020, 8, 589069. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Li, G.; Savolainen, O.; Chen, Y.; Nielsen, J. De novo biosynthesis of bioactive isoflavonoids by engineered yeast cell factories. Nat. Commun. 2021, 12, 6085. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, B.G.; Lee, H.J.; Lim, Y.; Hur, H.G.; Ahn, J.H. Enhancement of isoflavone synthase activity by co-expression of P450 reductase from rice. Biotechnol. Lett. 2005, 27, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Chemler, J.A.; Lim, C.G.; Daiss, J.L.; Koffas, M.A.G. A versatile microbial system for biosynthesis of novel polyphenols with altered estrogen receptor binding activity. Chem. Biol. 2010, 17, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Trantas, E.; Panopoulos, N.; Ververidis, F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab. Eng. 2009, 11, 355–366. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Lei, D.; Zhao, G.-R. Modular metabolic engineering for production of phloretic acid, phloretin and phlorizin in Escherichia coli. Chem. Eng. Sci. 2022, 247, 116931. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Zhao, G.-R. Systems metabolic engineering of Escherichia coli coculture for de novo production of genistein. ACS Synth. Biol. 2022, 11, 1746–1757. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhao, F.; Lu, C.; Zhao, G.-R.; Lu, W.-Y. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae. Metab. Eng. 2018, 49, 28–35. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Shen, Y.; Hou, J.; Bao, X. Screening phosphorylation site mutations in yeast acetyl-CoA carboxylase using malonyl-CoA sensor to improve malonyl-CoA-derived product. Front. Microbiol. 2018, 9, 47. [Google Scholar] [CrossRef]
- Luttik, M.A.H.; Vuralhan, Z.; Suir, E.; Braus, G.H.; Pronk, J.T.; Daran, J.M. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metab. Eng. 2008, 10, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lyu, Y.; Zeng, W.; Du, G.; Zhou, J.; Chen, J. Efficient biosynthesis of (2S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zhou, H.; Zhou, J.; Chen, J. Promoter-library-based pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in Saccharomyces cerevisiae. J. Agric. Food Chem. 2020, 68, 6884–6891. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.K.; Avalos, J.L. Harnessing yeast organelles for metabolic engineering. Nat. Chem. Biol. 2017, 13, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Szczebara, F.M.; Chandelier, C.; Villeret, C.; Masurel, A.; Bourot, S.; Duport, C.; Blanchard, S.; Groisillier, A.; Testet, E.; Costaglioli, P.; et al. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat. Biotechnol. 2003, 21, 143–149. [Google Scholar] [CrossRef]
- Zhu, Z.T.; Du, M.M.; Gao, B.; Tao, X.Y.; Zhao, M.; Ren, Y.H.; Wang, F.Q.; Wei, D.Z. Metabolic compartmentalization in yeast mitochondria: Burden and solution for squalene overproduction. Metab. Eng. 2021, 68, 232–245. [Google Scholar] [CrossRef]
- Liu, G.S.; Li, T.; Zhou, W.; Jiang, M.; Tao, X.Y.; Liu, M.; Zhao, M.; Ren, Y.H.; Gao, B.; Wang, F.Q.; et al. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction. Metab. Eng. 2020, 57, 151–161. [Google Scholar] [CrossRef]
- Avalos, J.L.; Fink, G.R.; Stephanopoulos, G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 2013, 31, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Grewal, P.S.; Samson, J.A.; Baker, J.J.; Choi, B.; Dueber, J.E. Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol. 2021, 17, 96–103. [Google Scholar] [CrossRef]
- Lyu, X.; Zhao, G.; Ng, K.R.; Mark, R.; Chen, W.N. Metabolic engineering of Saccharomyces cerevisiae for de novo production of kaempferol. J. Agric. Food Chem. 2019, 67, 5596–5606. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y.; Hillwig, M.L.; Shen, Y.; Yang, L.; Wang, Y.; Zhang, X.; Liu, W.; Peters, R.J.; Chen, X.; et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proc. Natl. Acad. Sci. USA 2013, 110, 12108–12113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Liang, J.; Shao, L.; Liu, L.; Gao, K.; Zhang, J.L.; Sun, Z.; Xu, W.; Lin, P.; Yu, R.; et al. Green production of silybin and isosilybin by merging metabolic engineering approaches and enzymatic catalysis. Metab. Eng. 2020, 59, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G. Biological synthesis of genistein in Escherichia coli. J. Microbiol. Biotechnol. 2020, 30, 770–776. [Google Scholar] [CrossRef] [PubMed]
Strains | Description | Source |
---|---|---|
CEN.PK2-1C | MATa; ura3-52, trp1-289, leu2-3112, his3Δ1, MAL2-8C, SUC2 | Invitrogen |
YH1 | CEN.PK2-1C, pMNG1 | This study |
YH2 | CEN.PK2-1C, pMNG2 | This study |
YH3 | CEN.PK2-1C, pMNG3 | This study |
YH4 | CEN.PK2-1C, pMNG4 | This study |
YH5 | CEN.PK2-1C, pMNG5 | This study |
YH6 | CEN.PK2-1C, pMNG6 | This study |
YH7 | CEN.PK2-1C, pMNG7 | This study |
YH8 | CEN.PK2-1C, pMNG8 | This study |
YH12 | CEN.PK2-1C, YPRC∆15::loxp-LEU2-loxp-PHXT7-EbCHS-TADH1-PTEF1-Ha4CL-TGPM1-PTEF2-ErCHI-TCYC1 | This study |
YH13 | YH12, pMNG12 | This study |
YH14 | YH12, pMNG13 | This study |
YH15 | YH12, pMNG14 | This study |
YH16 | YH12, pMNG15 | This study |
YH18 | CEN.PK2-1C, YPRC∆15::loxp-LEU2-loxp-PHXT7-EbCHS-TADH1-PTEF1-Ha4CL-TGPM1-PTEF2-ErCHI-TCYC1-PPGK1-SbCHIL-TGPD | This study |
YH19M | CEN.PK2-1C, HO::HIS3-PTDH3-COXIV-(GGGGS)3-mCherry-TACS1 | This study |
YH20C | YH19M, pMNG17 | This study |
YH20M | YH19M, pMNG18 | This study |
YH21M | CEN.PK2-1C, YPRC∆15::loxp-LEU2-loxp-PHXT7-MLS-EbCHS-TADH1-PTEF1-MLS-Ha4CL-TGPM1-PTEF2-MLS-ErCHI-TCYC1-PPGK1-MLS-SbCHIL-TGPD | This study |
YH22P | CEN.PK2-1C, HO::HIS3-PTDH3-PEX3-(GGGGS)3-mCherry-TACS1 | This study |
YH23P | YH22P, pMNG19 | This study |
YH24P | CEN.PK2-1C, YPRC∆15::loxp-LEU2-loxp-PHXT7-EbCHS-ePTS1-TADH1-PTEF1-Ha4CL-ePTS1-TGPM1-PTEF2-ErCHI-ePTS1-TCYC1-PPGK1-SbCHIL-ePTS1-TGPD | This study |
YH25P | YH24P, HO::loxp-TRP1-loxp-PTDH1-ACC1S659A,S686A,S1157A-ePTS1-TACS1 | This study |
YH26P | YH24P, 1622b::loxp-HIS3-loxp-PHXT7-EbCHS-ePTS1-TADH1-PTDH3-FjTAL-ePTS1-TENO2 | This study |
YH27 | YH18, 1622b::loxp-HIS3-loxp-PHXT7-EbCHS-TADH1-PTDH3-FjTAL-TENO2 | This study |
YH28 | YH27, PDC5Δ::loxp-TRP1-loxp | This study |
YH29 | YH28, pCRE | This study |
YH30 | YH29, ARO10Δ::loxp-HIS3-loxp | This study |
YH31 | YH30, PHA2Δ::loxp-LEU2-loxp-PTDH3-ARO4K229L-TADH1-PHXT7-ARO7G141S-TTEF1-PHXK1-EcAROL-TCYC1 | This study |
YH32 | YH31, 308a::loxp-TRP1-loxp-PTDH1-Bbxfpk-TGPD | This study |
YH33 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-TpIFS-TPGK1-PCCW12-GmHID-TTEF1 | This study |
YH34 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-TpIFS-TPGK1-PPDC1-GmCPR-TTDH2-PCCW12-GmHID-TTEF1 | This study |
YH35 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-TpIFS-TPGK1-PPDC1-LjCPR-TTDH2-PCCW12-GmHID-TTEF1 | This study |
YH36 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-LjIFS-TPGK1-PCCW12-GmHID-TTEF1 | This study |
YH37 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-LjIFS-TPGK1-PPDC1-GmCPR-TTDH2-PCCW12-GmHID-TTEF1 | This study |
YH38 | CEN.PK2-1C, YORW∆17::loxp-TRP1-loxp-PTDH1-LjIFS-TPGK1-PPDC1-LjCPR-TTDH2-PCCW12-GmHID-TTEF1 | This study |
YH39 | YH31, YORW∆17::loxp-TRP1-loxp-PTDH1-LjIFS-TPGK1-PPDC1-LjCPR-TTDH2-PCCW12-GmHID-TTEF1 | This study |
YH40 | YH39, delta::loxp-URA3-loxp-PTDH1-LjIFS-TPGK1 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Y.; Liu, X.; Zhang, L.; Zhao, G.-R. Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein. Microorganisms 2022, 10, 1402. https://doi.org/10.3390/microorganisms10071402
Meng Y, Liu X, Zhang L, Zhao G-R. Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein. Microorganisms. 2022; 10(7):1402. https://doi.org/10.3390/microorganisms10071402
Chicago/Turabian StyleMeng, Yonghui, Xue Liu, Lijuan Zhang, and Guang-Rong Zhao. 2022. "Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein" Microorganisms 10, no. 7: 1402. https://doi.org/10.3390/microorganisms10071402
APA StyleMeng, Y., Liu, X., Zhang, L., & Zhao, G.-R. (2022). Modular Engineering of Saccharomyces cerevisiae for De Novo Biosynthesis of Genistein. Microorganisms, 10(7), 1402. https://doi.org/10.3390/microorganisms10071402