West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Biological Material from Wild Birds
2.3. Molecular Detection of WNV in Wild Birds
2.4. Mosquito Sampling and Identification
2.5. Molecular Detection of WNV in Mosquitoes
2.6. Environmental Variables
2.7. Ecological Niche Modeling (ENM) for Wild Birds and Mosquitoes
3. Results
3.1. Molecular Detection of WNV in Wild Birds
3.2. Molecular Detection of WNV in Pools of Mosquito Vectors
3.3. Predictive Ecological Niche Modeling (ENM)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malkinson, M.; Banet, C. The Role of Birds in the Ecology of West Nile Virus in Europe and Africa. Curr. Top. Microbiol. Immunol. 2002, 267, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Komar, N. West Nile Virus: Epidemiology and Ecology in North America. In Advances in Virus Research; Chambers, T.J., Monath, T.P., Eds.; The Flaviviruses: Detection, Diagnosis, and Vaccine Development; Academic Press: New York, NY, USA, 2003; Volume 61, pp. 185–234. [Google Scholar]
- McLean, R.G. West Nile Virus in North American Birds. Ornithol. Monogr. 2006, 2006, 44–46. [Google Scholar] [CrossRef] [Green Version]
- McLean, R.G.; Ubico, S.R.; Bourne, D.; Komar, N. West Nile Virus in Livestock and Wildlife. In Japanese Encephalitis and West Nile Viruses; Mackenzie, J.S., Barrett, A.D.T., Deubel, V., Eds.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2002; pp. 271–308. ISBN 978-3-642-59403-8. [Google Scholar]
- Gamino, V.; Höfle, U. Pathology and Tissue Tropism of Natural West Nile Virus Infection in Birds: A Review. Vet. Res. 2013, 44, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, R.A.; Nemeth, N.M. Experimental Infections with West Nile Virus. Curr. Opin. Infect. Dis. 2007, 20, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Bunning, M.L.; Bowen, R.A.; Cropp, B.C.; Sullivan, K.G.; Davis, B.S.; Komar, N.; Godsey, M.; Baker, D.; Hettler, D.L.; Holmes, D.A.; et al. Experimental Infection of Horses with West Nile Virus. Emerg. Infect. Dis. 2002, 8, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Pealer, L.N.; Marfin, A.A.; Petersen, L.R.; Lanciotti, R.S.; Page, P.L.; Stramer, S.L.; Stobierski, M.G.; Signs, K.; Newman, B.; Kapoor, H.; et al. Transmission of West Nile Virus through Blood Transfusion in the United States in 2002. N. Engl. J. Med. 2003, 349, 1236–1245. [Google Scholar] [CrossRef]
- Colpitts, T.M.; Conway, M.J.; Montgomery, R.R.; Fikrig, E. West Nile Virus: Biology, Transmission, and Human Infection. Clin. Microbiol. Rev. 2012, 25, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.R.; Brault, A.C.; Nasci, R.S. West Nile Virus: Review of the Literature. JAMA 2013, 310, 308–315. [Google Scholar] [CrossRef]
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. J. Trop. Med. 1940, 20, 471–472. [Google Scholar] [CrossRef]
- Hurlbut, H.S.; Rizk, F.; Taylor, R.M.; Work, T.H. A Study of the Ecology of West Nile Virus in Egypt. Am. J. Trop. Med. Hyg. 1956, 5, 579–620. [Google Scholar] [CrossRef]
- Tsai, T.; Popovici, F.; Cernescu, C.; Campbell, G.; Nedelcu, N. West Nile Encephalitis Epidemic in Southeastern Romania. The Lancet 1998, 352, 767–771. [Google Scholar] [CrossRef]
- Platonov, A.E.; Shipulin, G.A.; Shipulina, O.Y.; Tyutyunnik, E.N.; Frolochkina, T.I.; Lanciotti, R.S.; Yazyshina, S.; Platonova, O.V.; Obukhov, I.L.; Zhukov, A.N.; et al. Outbreak of West Nile Virus Infection, Volgograd Region, Russia, 1999. Emerg. Infect. Dis. 2001, 7, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Nash, D.; O’Leary, D.; Sherman, M. The Outbreak of West Nile Virus Infection in the New York City Area in 1999. N. Engl. J. Med. 2001, 344, 1807–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberger, M.; Pitlik, S.D.; Gandacu, D.; Lang, R.; Nassar, F.; David, D.B.; Rubinstein, E.; Izthaki, A.; Mishal, J.; Kitzes, R.; et al. West Nile Fever Outbreak, Israel, 2000: Epidemiologic Aspects. Emerg. Infect. Dis. 2001, 7, 686–691. [Google Scholar] [CrossRef]
- Papa, A.; Danis, K.; Baka, A.; Bakas, A.; Dougas, G.; Lytras, T.; Theocharopoulos, G.; Chrysagis, D.; Vassiliadou, E.; Kamaria, F.; et al. Ongoing Outbreak of West Nile Virus Infections in Humans in Greece, July–August 2010. Eurosurveillance 2010, 15, 19644. [Google Scholar] [CrossRef]
- May, F.J.; Davis, C.T.; Tesh, R.B.; Barrett, A.D.T. Phylogeography of West Nile Virus: From the Cradle of Evolution in Africa to Eurasia, Australia, and the Americas. J. Virol. 2011, 85, 2964–2974. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, J.S.; Gubler, D.J.; Petersen, L.R. Emerging Flaviviruses: The Spread and Resurgence of Japanese Encephalitis, West Nile and Dengue Viruses. Nat. Med. 2004, 10, S98–S109. [Google Scholar] [CrossRef]
- Calistri, P.; Giovannini, A.; Hubalek, Z.; Ionescu, A.; Monaco, F.; Savini, G.; Lelli, R. Epidemiology of West Nile in Europe and in the Mediterranean Basin. Open Virol. J. 2010, 4, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, Migration and Emerging Zoonoses: West Nile Virus, Lyme Disease, Influenza A and Enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Randolph, S.E.; Rogers, D.J. The Arrival, Establishment and Spread of Exotic Diseases: Patterns and Predictions. Nat. Rev. Microbiol. 2010, 8, 361–371. [Google Scholar] [CrossRef]
- Rappole, J.H.; Hubálek, Z. Migratory Birds and West Nile Virus. J. Appl. Microbiol. 2003, 94, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Pape, W.J. Predicting Human West Nile Virus Infections With Mosquito Surveillance Data. Am. J. Epidemiol. 2013, 178, 829–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, J.F.; Shaman, J. Mosquito-Borne Arboviral Surveillance and the Prediction of Disease Outbreaks; IntechOpen: London, UK, 2011; ISBN 978-953-307-669-0. [Google Scholar]
- Young, J.J.; Haussig, J.M.; Aberle, S.W.; Pervanidou, D.; Riccardo, F.; Sekulić, N.; Bakonyi, T.; Gossner, C.M. Epidemiology of Human West Nile Virus Infections in the European Union and European Union Enlargement Countries, 2010 to 2018. Eurosurveillance 2021, 26, 2001095. [Google Scholar] [CrossRef]
- Paz, S. Climate Change Impacts on West Nile Virus Transmission in a Global Context. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130561. [Google Scholar] [CrossRef] [PubMed]
- Marcantonio, M.; Rizzoli, A.; Metz, M.; Rosà, R.; Marini, G.; Chadwick, E.; Neteler, M. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe. PLoS ONE 2015, 10, e0121158. [Google Scholar] [CrossRef] [Green Version]
- Ahmadnejad, F.; Otarod, V.; Fathnia, A.; Ahmadabadi, A.; Fallah, M.H.; Zavareh, A.; Miandehi, N.; Durand, B.; Sabatier, P. Impact of Climate and Environmental Factors on West Nile Virus Circulation in Iran. J. Arthropod-Borne Dis. 2016, 10, 315–327. [Google Scholar]
- Hess, A.; Davis, J.K.; Wimberly, M.C. Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America. GeoHealth 2018, 2, 395–409. [Google Scholar] [CrossRef]
- Mavrakis, A.; Papavasileiou, C.; Alexakis, D.; Papakitsos, E.C.; Salvati, L. Meteorological Patterns and the Evolution of West Nile Virus in an Environmentally Stressed Mediterranean Area. Environ. Monit. Assess. 2021, 193, 227. [Google Scholar] [CrossRef]
- West Nile Virus. NPHO. Available online: https://eody.gov.gr/en/disease/west-nile-virus/ (accessed on 7 October 2021).
- Valiakos, G.; Plavos, K.; Vontas, A.; Sofia, M.; Giannakopoulos, A.; Giannoulis, T.; Spyrou, V.; Tsokana, C.N.; Chatzopoulos, D.; Kantere, M.; et al. Phylogenetic Analysis of Bird-Virulent West Nile Virus Strain, Greece. Emerg. Infect. Dis. 2019, 25, 2323–2325. [Google Scholar] [CrossRef]
- Surveillance of West Nile Fever in Wild Birds and Equines. Available online: http://www.minagric.gr/index.php/el/for-farmer-2/animal-production/horses/602-progrepitdneilou17 (accessed on 14 June 2022).
- Vector Control Practices and Strategies against West Nile Virus. Available online: https://www.ecdc.europa.eu/en/publications-data/vector-control-practices-and-strategies-against-west-nile-virus (accessed on 18 April 2022).
- Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol. Z. 1884, 1, 215–226. [Google Scholar]
- Chaskopoulou, A.; Dovas, C.I.; Chaintoutis, S.C.; Bouzalas, I.; Ara, G.; Papanastassopoulou, M. Evidence of Enzootic Circulation of West Nile Virus (Nea Santa-Greece-2010, Lineage 2), Greece, May to July 2011. Eurosurveillance 2011, 16, 19933. [Google Scholar] [CrossRef] [PubMed]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-92873-7. [Google Scholar]
- Del Amo, J.; Sotelo, E.; Fernández-Pinero, J.; Gallardo, C.; Llorente, F.; Agüero, M.; Jiménez-Clavero, M.A. A Novel Quantitative Multiplex Real-Time RT-PCR for the Simultaneous Detection and Differentiation of West Nile Virus Lineages 1 and 2, and of Usutu Virus. J. Virol. Methods 2013, 189, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.Y.; Kauffman, E.B.; Ren, P.; Felton, A.; Tai, J.H.; Dupuis, A.P.; Jones, S.A.; Ngo, K.A.; Nicholas, D.C.; Maffei, J.; et al. High-Throughput Detection of West Nile Virus RNA. J. Clin. Microbiol. 2001, 39, 1264–1271. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. Available online: https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.1276 (accessed on 7 October 2021). [CrossRef]
- SRTM 90m Digital Elevation Database v4.1. Available online: https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/ (accessed on 7 October 2021).
- HydroSHEDS. Available online: https://www.hydrosheds.org/ (accessed on 7 October 2021).
- Datasets—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/#c0=5&c11=&c5=all&b_start=0 (accessed on 7 October 2021).
- Copernicus Land Monitoring Service—Corine Land Cover—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-corine (accessed on 7 October 2021).
- Nicolas, G.; Robinson, T.P.; Wint, G.R.W.; Conchedda, G.; Cinardi, G.; Gilbert, M. Using Random Forest to Improve the Downscaling of Global Livestock Census Data. PLoS ONE 2016, 11, e0150424. [Google Scholar] [CrossRef] [Green Version]
- Homepage|Copernicus. Available online: https://www.copernicus.eu/en (accessed on 7 October 2021).
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the Black Box: An Open-source Release of Maxent. Ecography 2017, 40, 887–893. Available online: https://onlinelibrary.wiley.com/doi/10.1111/ecog.03049 (accessed on 7 October 2021). [CrossRef]
- Phillipsa, S.J.; Andersonbc, R.P.; Schapired, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. Available online: https://www.sciencedirect.com/science/article/pii/S030438000500267X (accessed on 7 October 2021). [CrossRef] [Green Version]
- Komar, N. West Nile Viral Encephalitis. Rev. Sci. Tech. Int. Off. Epizoot. 2000, 19, 166–176. [Google Scholar] [CrossRef]
- Wheeler, S.S.; Barker, C.M.; Fang, Y.; Armijos, M.V.; Carroll, B.D.; Husted, S.; Johnson, W.O.; Reisen, W.K. Differential Impact of West nile virus on california birds. Condor 2009, 111, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Valiakos, G.; Touloudi, A.; Athanasiou, L.V.; Giannakopoulos, A.; Iacovakis, C.; Birtsas, P.; Spyrou, V.; Dalabiras, Z.; Petrovska, L.; Billinis, C. Serological and Molecular Investigation into the Role of Wild Birds in the Epidemiology of West Nile Virus in Greece. Virol. J. 2012, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Napp, S.; Montalvo, T.; Piñol-Baena, C.; Gómez-Martín, M.B.; Nicolás-Francisco, O.; Soler, M.; Busquets, N. Usefulness of Eurasian Magpies (Pica Pica) for West Nile Virus Surveillance in Non-Endemic and Endemic Situations. Viruses 2019, 11, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, H.E.; Mathews, N.S.; Hauber, M.E.; Martin, L.B. The Natural History of Model Organisms: The House Sparrow in the Service of Basic and Applied Biology. eLife 2020, 9, e52803. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, S.S.; Vineyard, M.P.; Woods, L.W.; Reisen, W.K. Dynamics of West Nile Virus Persistence in House Sparrows (Passer Domesticus). PLoS Negl. Trop. Dis. 2012, 6, e1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Amo, J.; Llorente, F.; Figuerola, J.; Soriguer, R.C.; Moreno, A.M.; Cordioli, P.; Weissenböck, H.; Jiménez-Clavero, M.Á. Experimental Infection of House Sparrows (Passer Domesticus) with West Nile Virus Isolates of Euro-Mediterranean and North American Origins. Vet. Res. 2014, 45, 33. [Google Scholar] [CrossRef] [Green Version]
- Duggal, N.K.; Bosco-Lauth, A.; Bowen, R.A.; Wheeler, S.S.; Reisen, W.K.; Felix, T.A.; Mann, B.R.; Romo, H.; Swetnam, D.M.; Barrett, A.D.T.; et al. Evidence for Co-Evolution of West Nile Virus and House Sparrows in North America. PLoS Negl. Trop. Dis. 2014, 8, e3262. [Google Scholar] [CrossRef]
- Gancz, A.Y.; Barker, I.K.; Lindsay, R.; Dibernardo, A.; McKeever, K.; Hunter, B. West Nile Virus Outbreak in North American Owls, Ontario, 2002. Emerg. Infect. Dis. 2004, 10, 2135–2142. [Google Scholar] [CrossRef]
- West Nile Virus in Owls in Germany and Southern Europe. Available online: https://www.gov.uk/government/publications/west-nile-virus-in-owls-in-germany (accessed on 7 October 2021).
- Maneas, G.; Makopoulou, E.; Bousbouras, D.; Berg, H.; Manzoni, S. Anthropogenic Changes in a Mediterranean Coastal Wetland during the Last Century—The Case of Gialova Lagoon, Messinia, Greece. Water 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Purple Heron (Ardea Purpurea) BirdLife Species Factsheet. Available online: http://datazo-ne.birdlife.org/species/factsheet/purple-heron-ardea-purpurea/details (accessed on 7 October 2021).
- Common Whitethroat (Sylvia Communis) BirdLife Species Factsheet. Available online: http://datazo-ne.birdlife.org/species/factsheet/common-whitethroat-sylvia-communis/details (accessed on 7 October 2021).
- Spanish Sparrow (Passer Hispaniolensis) BirdLife Species Factsheet. Available online: http://datazo-ne.birdlife.org/species/factsheet/spanish-sparrow-passer-hispaniolensis/details (accessed on 7 October 2021).
- Rizzoli, A.; Bolzoni, L.; Chadwick, E.A.; Capelli, G.; Montarsi, F.; Grisenti, M.; de la Puente, J.M.; Muñoz, J.; Figuerola, J.; Soriguer, R.; et al. Understanding West Nile Virus Ecology in Europe: Culex Pipiens Host Feeding Preference in a Hotspot of Virus Emergence. Parasit. Vectors 2015, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Pereira-dos-Santos, T.; Roiz, D.; Lourenço-de-Oliveira, R.; Paupy, C. A Systematic Review: Is Aedes Albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? Pathogens 2020, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Valiakos, G.; Papaspyropoulos, K.; Giannakopoulos, A.; Birtsas, P.; Tsiodras, S.; Hutchings, M.R.; Spyrou, V.; Pervanidou, D.; Athanasiou, L.V.; Papadopoulos, N.; et al. Use of Wild Bird Surveillance, Human Case Data and GIS Spatial Analysis for Predicting Spatial Distributions of West Nile Virus in Greece. PLoS ONE 2014, 9, e96935. [Google Scholar] [CrossRef] [Green Version]
- González, M.A.; Prosser, S.W.; Hernández-Triana, L.M.; Alarcón-Elbal, P.M.; Goiri, F.; López, S.; Ruiz-Arrondo, I.; Hebert, P.D.N.; García-Pérez, A.L. Avian Feeding Preferences of Culex Pipiens and Culiseta Spp. Along an Urban-to-Wild Gradient in Northern Spain. Front. Ecol. Evol. 2020, 8, 568835. [Google Scholar] [CrossRef]
No | Wild Bird Species | Migratory Status | Regional Units | Total | |||||
---|---|---|---|---|---|---|---|---|---|
Scientific Name | Common Name | Argolida | Arcadia | Korinthia | Lakonia | Messinia | |||
1 | Ardea purpurea | Purple heron | Migratory | - 1 | - | - | - | 1/1 2 | 1/1 |
2 | Athene noctua | Little owl | Resident | - | - | - | - | 1/1 | 1/1 |
3 | Corvus monedula | Jackdaw | Resident | - | 1/2 | - | - | - | 1/2 |
4 | Curruca communis | Common whitethroat | Migratory | - | 0/1 | - | - | 1/1 | 1/2 |
5 | Garrulus glandarius | Eurasian jay | Resident | - | 1/6 | 0/1 | 0/4 | 0/1 | 1/12 |
6 | Parus major | Great tit | Resident | - | 0/3 | 1/1 | - | 2/4 | 3/8 |
7 | Passer domesticus | House sparrow | Resident | - | 0/4 | 2/26 (25 + 1 D) | 3/16 | 0/11 | 5/57 (8.77%) |
8 | Passer hispaniolensis | Spanish sparrow | Partial migratory | - | - | - | - | 2/3 | 2/3 |
9 | Pica pica | Eurasian magpie | Resident | 12/53 (51 + 2 D) | 3/39 (38 + 1 D) | 12/71 (67 + 4 D) | 2/36 | 1/28 | 30/227 (13.22%) |
10 | Strix aluco | Tawny owl | Resident | - | - | - | - | 1/1 | 1/1 |
Regional Unit | Species | Number of Positive Pools/ Total Pools Examined |
---|---|---|
Argolida | Culex pipiens | 6/137 |
Aedes albopictus | 1/12 | |
Arcadia | Culex pipiens | 4/75 |
Aedes albopictus | 1/10 | |
Korinthia | Culex pipiens | 4/27 |
Aedes albopictus | 0/3 | |
Laconia | Culex pipiens | 4/60 |
Aedes albopictus | 0/7 | |
Messinia | Culex pipiens | 2/64 |
Aedes albopictus | 0/6 | |
Total | Culex pipiens | 20/363 |
Aedes albopictus | 2/38 |
Wild Bird WNV Model | |||
Environmental Variable | Code | Percent Contribution (%) | Permutation Importance (%) |
Altitude | dem | 58.8 | 46.4 |
Land uses (44 categories) | landcorine | 25.7 | 32.7 |
Distance from water collections | waterdis | 3.9 | 1.8 |
Annual mean temperature | clima1 | 3.8 | 2.0 |
Livestock densities | sheepd | 3.7 | 3.6 |
May NDVI 1 | mayndvi | 2.2 | 3.3 |
Human population density | popden | 1.0 | 7.3 |
April NDVI 1 | aprndvi | 0.8 | 2.4 |
Mosquito WNV model | |||
Environmental variable | Code | Percent contribution (%) | Permutation importance (%) |
Altitude | dem | 31.2 | 98.5 |
Human population density | popden | 22.9 | 0 |
Land uses (44 categories) | landcorine | 22.9 | 0.9 |
Annual mean temperature | clima1 | 15.7 | 0 |
Maximum temperature of warmest month | clima5 | 3.8 | 0.7 |
Total annual precipitation (mm) | clima12 | 12.3 | 0 |
April NDVI 1 | aprndvi | 1.2 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sofia, M.; Giannakopoulos, A.; Giantsis, I.A.; Touloudi, A.; Birtsas, P.; Papageorgiou, K.; Athanasakopoulou, Z.; Chatzopoulos, D.C.; Vrioni, G.; Galamatis, D.; et al. West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece. Microorganisms 2022, 10, 1328. https://doi.org/10.3390/microorganisms10071328
Sofia M, Giannakopoulos A, Giantsis IA, Touloudi A, Birtsas P, Papageorgiou K, Athanasakopoulou Z, Chatzopoulos DC, Vrioni G, Galamatis D, et al. West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece. Microorganisms. 2022; 10(7):1328. https://doi.org/10.3390/microorganisms10071328
Chicago/Turabian StyleSofia, Marina, Alexios Giannakopoulos, Ioannis A. Giantsis, Antonia Touloudi, Periklis Birtsas, Kontantinos Papageorgiou, Zoi Athanasakopoulou, Dimitris C. Chatzopoulos, Georgia Vrioni, Dimitrios Galamatis, and et al. 2022. "West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece" Microorganisms 10, no. 7: 1328. https://doi.org/10.3390/microorganisms10071328
APA StyleSofia, M., Giannakopoulos, A., Giantsis, I. A., Touloudi, A., Birtsas, P., Papageorgiou, K., Athanasakopoulou, Z., Chatzopoulos, D. C., Vrioni, G., Galamatis, D., Diamantopoulos, V., Mpellou, S., Petridou, E., Kritas, S. K., Palli, M., Georgakopoulos, G., Spyrou, V., Tsakris, A., Chaskopoulou, A., & Billinis, C. (2022). West Nile Virus Occurrence and Ecological Niche Modeling in Wild Bird Species and Mosquito Vectors: An Active Surveillance Program in the Peloponnese Region of Greece. Microorganisms, 10(7), 1328. https://doi.org/10.3390/microorganisms10071328