Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Preparation and Processing of DBS Cards
2.3. Multiplex Serology and Antigen Selection
2.4. Data Processing and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, R.K.; Joseph, A.; Van Wyk, J.; Rocco, S.; Atmaja, A.; May, E.; Yan, T.; Bobrovitz, N.; Chevrier, J.; Cheng, M.P.; et al. SeroTracker: A global SARS-CoV-2 seroprevalence dashboard. Lancet Infect. Dis. 2021, 21, e75–e76. [Google Scholar] [CrossRef]
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Nourollahpour Shiadeh, M.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Nicola, M.; Sohrabi, C.; Mathew, G.; Kerwan, A.; Al-Jabir, A.; Griffin, M.; Agha, M.; Agha, R. Health policy and leadership models during the COVID-19 pandemic: A review. Int. J. Surg. 2020, 81, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Routledge, I.; Takahashi, S.; Epstein, A.; Hakim, J.; Janson, O.; Turcios, K.; Vinden, J.; Risos, J.T.; Baniqued, M.R.; Pham, L.; et al. Using sero-epidemiology to monitor disparities in vaccination and infection with SARS-CoV-2. Nat. Commun. 2022, 13, 2451. [Google Scholar] [CrossRef] [PubMed]
- Hodcroft, E.B.; Zuber, M.; Nadeau, S.; Vaughan, T.G.; Crawford, K.H.D.; Althaus, C.L.; Reichmuth, M.L.; Bowen, J.E.; Walls, A.C.; Corti, D.; et al. Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature 2021, 595, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Butt, J.; Murugan, R.; Hippchen, T.; Olberg, S.; van Straaten, M.; Wardemann, H.; Stebbins, E.; Krausslich, H.G.; Bartenschlager, R.; Brenner, H.; et al. From Multiplex Serology to Serolomics-A Novel Approach to the Antibody Response against the SARS-CoV-2 Proteome. Viruses 2021, 13, 749. [Google Scholar] [CrossRef]
- Schwarz, T.; Heiss, K.; Mahendran, Y.; Casilag, F.; Kurth, F.; Sander, L.E.; Wendtner, C.M.; Hoechstetter, M.A.; Muller, M.A.; Sekul, R.; et al. SARS-CoV-2 Proteome-Wide Analysis Revealed Significant Epitope Signatures in COVID-19 Patients. Front. Immunol. 2021, 12, 629185. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, X.; Chen, Y.; Wang, D.; Zhang, D.; Yan, S.; Wang, H.; Xiao, M.; Liang, T.; Li, H.; et al. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct. Target. Ther. 2021, 6, 304. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Lei, Q.; Huang, L.; Lai, D.Y.; Guo, S.J.; Jiang, H.W.; Hou, H.; Zheng, Y.X.; Wang, X.N.; et al. COVID-ONE-hi: The One-stop Database for COVID-19 Specific Humoral Immunity and Clinical Parameters. Genom. Proteom. Bioinform. 2021, 19, 669–678. [Google Scholar] [CrossRef]
- Brenner, N.; Mentzer, A.J.; Butt, J.; Michel, A.; Prager, K.; Brozy, J.; Weissbrich, B.; Aiello, A.E.; Meier, H.C.S.; Breuer, J.; et al. Validation of Multiplex Serology detecting human herpesviruses 1–5. PLoS ONE 2018, 13, e0209379. [Google Scholar] [CrossRef]
- Brenner, N.; Mentzer, A.J.; Butt, J.; Braband, K.L.; Michel, A.; Jeffery, K.; Klenerman, P.; Gartner, B.; Schnitzler, P.; Hill, A.; et al. Validation of Multiplex Serology for human hepatitis viruses B and C, human T-lymphotropic virus 1 and Toxoplasma gondii. PLoS ONE 2019, 14, e0210407. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.; Waterboer, T.; Kist, M.; Pawlita, M. Helicobacter pylori multiplex serology. Helicobacter 2009, 14, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Trabert, B.; Waterboer, T.; Idahl, A.; Brenner, N.; Brinton, L.A.; Butt, J.; Coburn, S.B.; Hartge, P.; Hufnagel, K.; Inturrisi, F.; et al. Antibodies Against Chlamydia trachomatis and Ovarian Cancer Risk in Two Independent Populations. J. Natl. Cancer Inst. 2019, 111, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterboer, T.; Sehr, P.; Michael, K.M.; Franceschi, S.; Nieland, J.D.; Joos, T.O.; Templin, M.F.; Pawlita, M. Multiplex human papillomavirus serology based on in situ-purified glutathione s-transferase fusion proteins. Clin. Chem. 2005, 51, 1845–1853. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Werner, S.; Butt, J.; Zornig, I.; Knebel, P.; Michel, A.; Eichmuller, S.B.; Jager, D.; Waterboer, T.; Pawlita, M.; et al. Prospective evaluation of 64 serum autoantibodies as biomarkers for early detection of colorectal cancer in a true screening setting. Oncotarget 2016, 7, 16420–16432. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.P.; Cubitt, W.D. The use of the dried blood spot sample in epidemiological studies. J. Clin. Pathol. 1999, 52, 633–639. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.D.; Rosman, L.M.; Ratcliff, J.D.; Strickland, P.T.; Graham, D.R.; Silbergeld, E.K. State of the Science in Dried Blood Spots. Clin. Chem. 2018, 64, 656–679. [Google Scholar] [CrossRef] [Green Version]
- Amendola, A.; Bianchi, S.; Gori, M.; Barcellini, L.; Colzani, D.; Canuti, M.; Giacomet, V.; Fabiano, V.; Folgori, L.; Zuccotti, G.V.; et al. Dried Blood Spot as an Alternative to Plasma/Serum for SARS-CoV-2 IgG Detection, an Opportunity to Be Sized to Facilitate COVID-19 Surveillance Among Schoolchildren. Pediatr. Infect. Dis. J. 2021, 40, e46–e47. [Google Scholar] [CrossRef]
- James, C.A.; Barfield, M.D.; Maass, K.F.; Patel, S.R.; Anderson, M.D. Will patient-centric sampling become the norm for clinical trials after COVID-19? Nat. Med. 2020, 26, 1810. [Google Scholar] [CrossRef]
- den Hartog, G.; Schepp, R.M.; Kuijer, M.; GeurtsvanKessel, C.; van Beek, J.; Rots, N.; Koopmans, M.P.G.; van der Klis, F.R.M.; van Binnendijk, R.S. SARS-CoV-2-Specific Antibody Detection for Seroepidemiology: A Multiplex Analysis Approach Accounting for Accurate Seroprevalence. J. Infect. Dis. 2020, 222, 1452–1461. [Google Scholar] [CrossRef]
- Amini, F.; Auma, E.; Hsia, Y.F.; Bilton, S.; Hall, T.; Ramkhelawon, L.; Heath, P.T.; Le Doare, K. Reliability of dried blood spot (DBS) cards in antibody measurement: A systematic review. PLoS ONE 2021, 16, e0248218. [Google Scholar] [CrossRef] [PubMed]
- Seessle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Muller, B.; Merle, U. Persistent symptoms in adult patients one year after COVID-19: A prospective cohort study. Clin. Infect. Dis. 2022, 74, 1191–1198. [Google Scholar] [PubMed]
- Waterboer, T.; Dondog, B.; Michael, K.M.; Michel, A.; Schmitt, M.; Vaccarella, S.; Franceschi, S.; Clifford, G.; Pawlita, M. Dried blood spot samples for seroepidemiology of infections with human papillomaviruses, Helicobacter pylori, Hepatitis C Virus, and JC Virus. Cancer Epidemiol. Biomark. Prev. 2012, 21, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morley, G.L.; Taylor, S.; Jossi, S.; Perez-Toledo, M.; Faustini, S.E.; Marcial-Juarez, E.; Shields, A.M.; Goodall, M.; Allen, J.D.; Watanabe, Y.; et al. Sensitive Detection of SARS-CoV-2-Specific Antibodies in Dried Blood Spot Samples. Emerg. Infect. Dis. 2020, 26, 2970–2973. [Google Scholar] [CrossRef]
- Fujii, Y.; Kaneko, S.; Nzou, S.M.; Mwau, M.; Njenga, S.M.; Tanigawa, C.; Kimotho, J.; Mwangi, A.W.; Kiche, I.; Matsumoto, S.; et al. Serological Surveillance Development for Tropical Infectious Diseases Using Simultaneous Microsphere-Based Multiplex Assays and Finite Mixture Models. PLoS Negl. Trop. Dis. 2014, 8, e3040. [Google Scholar] [CrossRef] [Green Version]
- Roxhed, N.; Bendes, A.; Dale, M.; Mattsson, C.; Hanke, L.; Dodig-Crnkovic, T.; Christian, M.; Meineke, B.; Elsasser, S.; Andrell, J.; et al. Multianalyte serology in home-sampled blood enables an unbiased assessment of the immune response against SARS-CoV-2. Nat. Commun. 2021, 12, 3695. [Google Scholar] [CrossRef]
Serum | DBS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Median Antibody Readout [MFI] (IQR) | Cutoff [MFI] | Seroprev. [%] | Median Antibody Readout [MFI] (IQR) | Cutoff [MFI] | Seroprev. [%] | Pearson’s r | ICC (3,k) | ||
Structural antigens | S1-RBD | 9497 (6212–12,618) | 626 | 98 | 5117 (2758–7585) | 300 | 98 | 0.88 (0.83–0.91) | 0.92 (0.88–0.94 |
N | 15,743 (11,960–18,296) | 3133 | 99 | 10,867 (7042–14,368) | 800 | 99 | 0.88 (0.83–0.91) | 0.93 (0.91–0.95) | |
Non- structural and accessory antigens | ORF3a | 98 (46–374) * | 287 | 30 | 54 (41–139) * | 120 | 30 | 0.97 (0.96–0.98) | 0.87 (0.82–0.91) |
ORF6 | 6 (1–12) * | 100 | 3 | 28 (23–35) * | 100 ** | 2 | 0.97 (0.96–0.98) | 0.60 (0.44–0.71) | |
NSP2 | 287 (166–801) | 1391 | 17 | 203 (152–326) | 430 | 17 | 0.92 (0.89–0.94) | 0.78 (0.69–0.84) | |
NSP7 | 1 (1–15) * | 1719 | 2 | 8 (5–17) * | 620 | 2 | 0.98 (0.98–0.99) | 0.84 (0.78–0.89) | |
NSP8 | 17 (6–32) * | 849 | 1 | 10 (7–20) * | 160 | 1 | 0.81 (0.74–0.86) | 0.52 (0.33–0.66) | |
NSP10 | 16 (10–29) * | 147 | 7 | 16 (11–22) * | 100 ** | 2 | 0.83 (0.77–0.87) | 0.51 (0.32–0.65) | |
NSP15 | 26 (18–40) * | 135 | 4 | 19 (13–28) * | 100 ** | 1 | 0.71 (0.61–0.78) | 0.65 (0.51–0.75) | |
Control antigens | BK | 13,533 (5312–16,303) | 250 | 100 | 7540 (2398–11,161) | 100 ** | 100 | 0.90 (0.86–0.93) | 0.94 (0.91–0.96) |
JC | 1599 (639–5494) | 250 | 93 | 659 (328–2981) | 100 ** | 96 | 0.96 (0.95–0.97) | 0.94 (0.91–0.95) | |
VZV | 1932 (489–4433) | 250 | 87 | 718 (184–2033) | 100 ** | 86 | 0.95 (0.93–0.97) | 0.93 (0.90–0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeske, R.; Merle, U.; Müller, B.; Waterboer, T.; Butt, J. Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics. Microorganisms 2022, 10, 1311. https://doi.org/10.3390/microorganisms10071311
Jeske R, Merle U, Müller B, Waterboer T, Butt J. Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics. Microorganisms. 2022; 10(7):1311. https://doi.org/10.3390/microorganisms10071311
Chicago/Turabian StyleJeske, Rima, Uta Merle, Barbara Müller, Tim Waterboer, and Julia Butt. 2022. "Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics" Microorganisms 10, no. 7: 1311. https://doi.org/10.3390/microorganisms10071311
APA StyleJeske, R., Merle, U., Müller, B., Waterboer, T., & Butt, J. (2022). Performance of Dried Blood Spot Samples in SARS-CoV-2 Serolomics. Microorganisms, 10(7), 1311. https://doi.org/10.3390/microorganisms10071311