Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Physicochemical Characterization
2.3. Microorganism Growth Inhibition
2.4. Statistical Analysis
3. Results
3.1. Synthesis and Characterizations
3.2. Antimicrobial Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rozhin, A.; Batasheva, S.; Kruychkova, M.; Cherednichenko, Y.; Rozhina, E.; Fakhrullin, R. Biogenic Silver Nanoparticles: Synthesis and Application as Antibacterial and Antifungal Agents. Micromachines 2021, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Kratosova, G.; Holisova, V.; Konvickova, Z.; Ingle, A.P.; Gaikwad, S.; Skrlova, K.; Prokop, A.; Rai, M.; Placha, D. From biotechnology principles to functional and low-cost metallic bionanocatalysts. Biotechnol. Adv. 2019, 37, 154–176. [Google Scholar] [CrossRef] [PubMed]
- Kanchi, S.; Kumar, G.; Lo, A.Y.; Tseng, C.M.; Chen, S.K.; Lin, C.Y.; Chin, T.S. Exploitation of de-oiled jatropha waste for gold nanoparticles synthesis: A green approach. Arab. J. Chem. 2018, 11, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Bailão, E.F.; Devilla, I.A.; da Conceição, E.C.; Borges, L.L. Bioactive Compounds Found in Brazilian Cerrado Fruits. Int. J. Mol. Sci. 2015, 16, 23760–23783. [Google Scholar] [CrossRef] [PubMed]
- Schapoval, E.E.; Silveira, S.M.; Miranda, M.L.; Alice, C.B.; Henriques, A.T. Evaluation of some pharmacological activities of Eugenia uniflora L. J. Ethnopharmacol. 1994, 44, 137–142. [Google Scholar] [CrossRef]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. J. Ethnopharmacol. 2019, 232, 30–38. [Google Scholar] [CrossRef]
- Lago, J.H.; Souza, E.D.; Mariane, B.; Pascon, R.; Vallim, M.A.; Martins, R.C.; Baroli, A.A.; Carvalho, B.A.; Soares, M.G.; dos Santos, R.T.; et al. Chemical and biological evaluation of essential oils from two species of Myrtaceae—Eugenia uniflora L. and Plinia trunciflora (O. Berg) Kausel. Molecules 2011, 16, 9827–9837. [Google Scholar] [CrossRef] [Green Version]
- Porcu, O.M.; Rodriguez-Amaya, D.B. Variation in the carotenoid composition of the lycopene-rich Brazilian fruit Eugenia uniflora L. Plant Foods Hum. Nutr. 2008, 63, 195–199. [Google Scholar] [CrossRef]
- Victoria, F.N.; Lenardão, E.J.; Savegnago, L.; Perin, G.; Jacob, R.G.; Alves, D.; da Silva, W.P.; da Motta, A.e.S.; Nascente, P.a.S. Essential oil of the leaves of Eugenia uniflora L.: Antioxidant and antimicrobial properties. Food Chem. Toxicol. 2012, 50, 2668–2674. [Google Scholar] [CrossRef] [Green Version]
- Goldberg-Stein, S.; Fink, A.; Paroder, V.; Kobi, M.; Yee, J.; Chernyak, V. Abdominopelvic CT findings in patients with novel coronavirus disease 2019 (COVID-19). Abdom. Radiol. 2020, 45, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.L.F.; Aquino, P.E.A.; Júnior, J.G.A.S.; Cristo, J.S.; Filho, M.A.V.; Moura, F.F.; Ferreira, N.M.N.; Silva, M.K.N.; Nascimento, E.M.; Correia, F.M.A.; et al. In vitro evaluation of the antibacterial potential and modification of antibiotic activity of the Eugenia uniflora L. essential oil in association with led lights. Microb. Pathog. 2017, 110, 512–518. [Google Scholar] [CrossRef]
- Rodrigues, K.A.; Amorim, L.V.; de Oliveira, J.M.; Dias, C.N.; Moraes, D.F.; Andrade, E.H.; Maia, J.G.; Carneiro, S.M.; Carvalho, F.A. Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action. Evid. Based Complement. Altern. Med. 2013, 2013, 279726. [Google Scholar] [CrossRef] [Green Version]
- Santos, K.K.A.; Matias, E.F.F.; Tintino, S.R.; Souza, C.E.S.; Braga, M.; Guedes, G.M.M.; Costa, J.G.M.; Menezes, I.R.A.; Coutinho, H.D.M. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L. J. Med. Food 2013, 16, 669–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.C.; Barbosa, L.; Seito, L.N.; Fernandes, A. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat. Prod. Res. 2012, 26, 1510–1514. [Google Scholar] [CrossRef]
- Liu, C.; Cai, D.; Zhang, L.; Tang, W.; Yan, R.; Guo, H.; Chen, X. Identification of hydrolyzable tannins (punicalagin, punicalin and geraniin) as novel inhibitors of hepatitis B virus covalently closed circular DNA. Antivir. Res. 2016, 134, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, R.; Hagedorn, C.H. Tannic Acid Inhibits Hepatitis C Virus Entry into Huh7.5 Cells. PLoS ONE 2015, 10, e0131358. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.; Kumar, N.S.; Hemalatha, S. Antiviral phytocompounds target envelop protein to control Zika virus. Comput. Biol. Chem. 2018, 77, 402–412. [Google Scholar] [CrossRef]
- de Souza, A.M.; de Oliveira, C.F.; de Oliveira, V.B.; Betim, F.C.M.; Miguel, O.G.; Miguel, M.D. Traditional Uses, Phytochemistry, and Antimicrobial Activities of Eugenia Species—A Review. Planta Med. 2018, 84, 1232–1248. [Google Scholar] [CrossRef] [Green Version]
- de Souza, J.M.; Rodrigues, M.V.P.; Cirqueira, R.T.; Alves, M.; Lordelo, E.P.; de Oliveira, C.F.; Pietro, R. Evaluation of antimicrobial, hypotensive and diuretic effect of Eugenia uniflora extracts. Mundo Da Saude 2018, 42, 269–275. [Google Scholar] [CrossRef]
- Santos, J.F.S.D.; Rocha, J.E.; Bezerra, C.F.; Silva, M.K.d.N.; de Matos, Y.M.L.S.; de Freitas, T.S.; Santos, A.T.L.D.; da Cruz, R.P.; Machado, A.J.T.; Rodrigues, T.H.S.; et al. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food Chem. 2018, 261, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, H.; Rajagopal, K.; Shah, A.H. The Green route of Silver nanotechnology: Phytosynthesis and applications. Int. J. Nano Dimens. 2016, 7, 97–108. [Google Scholar]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benelli, G.; Kadaikunnan, S.; Alharbi, N.S.; Govindarajan, M. Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: Effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. Environ. Sci. Pollut. Res. 2018, 25, 10228–10242. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Vanlalveni, C.; Adhikari, P.P.; Lalfakzuala, R.; Rokhum, L. Green biosynthesis, characterisation and antimicrobial activities of silver nanoparticles using fruit extract of Solanum viarum. IET Nanobiotechnol. 2018, 12, 933–938. [Google Scholar] [CrossRef] [PubMed]
- de Souza, C.D.; Nogueira, B.R.; Rostelato, M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Lopes, C.R.B.; Courrol, L.C. Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. J. Lumin. 2018, 199, 183–187. [Google Scholar] [CrossRef]
- Kshirsagar, P.; Sangaru, S.S.; Malvindi, M.A.; Martiradonna, L.; Cingolani, R.; Pompa, P.P. Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method. Colloids Surf. A-Physicochem. Eng. Asp. 2011, 392, 264–270. [Google Scholar] [CrossRef]
- Sakamoto, M.; Fujistuka, M.; Majima, T. Light as a construction tool of metal nanoparticles: Synthesis and mechanism. J. Photochem. Photobiol. C-Photochem. Rev. 2009, 10, 33–56. [Google Scholar] [CrossRef]
- Nataro, J.P.; Baldini, M.M.; Kaper, J.B.; Black, R.E.; Bravo, N.; Levine, M.M. Detection of an adherence factor of enteropathogenic Escherichia-coli with a dna probe. J. Infect. Dis. 1985, 152, 560–565. [Google Scholar] [CrossRef]
- Skoko, S.; Ambrosetti, M.; Giovannini, T.; Cappelli, C. Simulating Absorption Spectra of Flavonoids in Aqueous Solution: A Polarizable QM/MM Study. Molecules 2020, 25, 5853. [Google Scholar] [CrossRef] [PubMed]
- Domenici, V.; Ancora, D.; Cifelli, M.; Serani, A.; Veracini, C.A.; Zandomeneghi, M. Extraction of Pigment Information from Near-UV Vis Absorption Spectra of Extra Virgin Olive Oils. J. Agric. Food Chem. 2014, 62, 9317–9325. [Google Scholar] [CrossRef] [PubMed]
- Dugganaboyana, G.K.; Sharanya, R.N.L.; Rakshith, K.; Nagendra, K.S. Novel biogenic synthesis of AgNPs from seed extract of Eugenia uniflora L.: In vitro assessment of their antioxidant, antimicrobial and cytotoxic potential. Int. Res. J. Pharm. 2017, 8, 109–114. [Google Scholar] [CrossRef]
- Lopes, C.R.B.; Silva, F.R.D.; Ferrari, V.B.; Okamoto, D.N.; de Vasconcelos, S.P.; Courrol, L.C. Facile synthesis of gold nanoparticles using Mimusops coriacea leaves extract. In Proceedings of the 2019 SBFoton International Optics and Photonics Conference (SBFoton IOPC), Sao Paulo, Brazil, 7–9 October 2019. [Google Scholar]
- Patle, T.K.; Shrivas, K.; Kurrey, R.; Upadhyay, S.; Jangde, R.; Chauhan, R. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV-vis and FTIR spectroscopy. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2020, 242, 118717. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.-T.; Xu, X.-R.; Gan, R.-Y.; Zhang, Y.; Xia, E.-Q.; Li, H.-B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Tasca, F.; Antiochia, R. Biocide Activity of Green Quercetin-Mediated Synthesized Silver Nanoparticles. Nanomaterials 2020, 10, 909. [Google Scholar] [CrossRef]
- Gardea-Torresdey, J.L.; Gomez, E.; Peralta-Videa, J.R.; Parsons, J.G.; Troiani, H.; Jose-Yacaman, M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19, 1357–1361. [Google Scholar] [CrossRef]
- Hussain, M.; Raja, N.I.; Iqbal, M.; Aslam, S. Applications of Plant Flavonoids in the Green Synthesis of Colloidal Silver Nanoparticles and Impacts on Human Health. Iran. J. Sci. Technol. Trans. A-Sci. 2019, 43, 1381–1392. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Panwar, J.; Yun, Y.S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 1, 591–602. [Google Scholar] [CrossRef]
- Sintubin, L.; Verstraete, W.; Boon, N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol. Bioeng. 2012, 109, 2422–2436. [Google Scholar] [CrossRef]
- Odeniyi, M.A.; Okumah, V.C.; Adebayo-Tayo, B.C.; Odeniyi, O.A. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm. 2020, 15, 100197. [Google Scholar] [CrossRef]
- Mani, R.; Vijayakumar, P.; Dhas, T.S.; Velu, K.; Inbakandan, D.; Thamaraiselvi, C.; Greff, B.; Chandrasekaran, M.; Almutairi, S.M.; Alharbi, F.S.; et al. Synthesis of biogenic silver nanoparticles using butter fruit pulp extract and evaluation of their antibacterial activity against Providencia vermicola in Rohu. J. King Saud Univ. Sci. 2022, 34, 101814. [Google Scholar] [CrossRef]
- Bhat, M.P.; Kumar, R.S.; Rudrappa, M.; Basavarajappa, D.S.; Swamy, P.S.; Almansour, A.I.; Perumal, K.; Nayaka, S. Bio-inspired silver nanoparticles from Artocarpus lakoocha fruit extract and evaluation of their antibacterial activity and anticancer activity on human prostate cancer cell line. Appl. Nanosci. 2022. [Google Scholar] [CrossRef]
- Singh, P.; Mijakovic, I. Rowan Berries: A Potential Source for Green Synthesis of Extremely Monodisperse Gold and Silver Nanoparticles and Their Antimicrobial Property. Pharmaceutics 2022, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Hussain, S.B.; Nosheen, A.; Mahmood, T.; Shafique, M.; Ul-Haq, N.; Haq, A.U. Antibacterial activities of gold nanoparticles synthesized by citrus limonum fruit extract. Pak. J. Bot. 2021, 53, 2305–2310. [Google Scholar] [CrossRef]
- Montes-Avila, J.; Lopez-Angulo, G.; Duarte-de-la-Pena, G.; Diaz-Camacho, S.P.; Osuna-Galindo, V.C.; Lopez-Valenzuela, J.A.; Delgado-Vargas, F. Antioxidant, Antibacterial, and Antiparasitary Activities of Green Nanoparticles Synthesized Using Water-Soluble Melanins of Fruits. Bionanoscience 2022, 12, 228–240. [Google Scholar] [CrossRef]
- Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; et al. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Farhadi, S.; Ajerloo, B.; Mohammadi, A. Green Biosynthesis of Spherical Silver Nanoparticles by Using Date Palm (Phoenix Dactylifera) Fruit Extract and Study of Their Antibacterial and Catalytic Activities. Acta Chim. Slov. 2017, 64, 129–143. [Google Scholar] [CrossRef]
- Bankar, A.; Joshi, B.; Kumar, A.R.; Zinjarde, S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A-Physicochem. Eng. Asp. 2010, 368, 58–63. [Google Scholar] [CrossRef]
- Einbond, L.S.; Reynertson, K.A.; Luo, X.D.; Basile, M.J.; Kennelly, E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004, 84, 23–28. [Google Scholar] [CrossRef]
- Arunachalam, K.; Shanmuganathan, B.; Sreeja, P.S.; Parimelazhagan, T. Phytosynthesis of silver nanoparticles using the leaves extract of Ficus talboti king and evaluation of antioxidant and antibacterial activities. Environ. Sci. Pollut. Res. 2015, 22, 18066–18075. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Chaudhary, A. Synthesis of Quercetin Functionalized Silver Nanoparticles and Their Application for the Colorimetric Detection of L-Cysteine in Biologically Complex Fluids. Chemistryselect 2022, 7, e202104147. [Google Scholar] [CrossRef]
- Qing, W.X.; Wang, Y.; Li, X.; Lu, M.H.; Liu, X.H. Facile synthesis of mPEG-luteolin-capped silver nanoparticles with antimicrobial activity and cytotoxicity to neuroblastoma SK-N-SH cells. Colloids Surf. B-Biointerfaces 2017, 160, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 82. [Google Scholar] [CrossRef]
- Manrique, G.D.; Lajolo, F.M. FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol. Technol. 2002, 25, 99–107. [Google Scholar] [CrossRef]
- Sobeh, M.; Braun, M.S.; Krstin, S.; Youssef, F.S.; Ashour, M.L.; Wink, M. Chemical Profiling of the Essential Oils of Syzygium aqueum, Syzygium samarangense and Eugenia uniflora and Their Discrimination Using Chemometric Analysis. Chem. Biodivers. 2016, 13, 1537–1550. [Google Scholar] [CrossRef]
- Sreelakshmi, C.; Datta, K.K.R.; Yadav, J.S.; Reddy, B.V.S. Honey Derivatized Au and Ag Nanoparticles and Evaluation of Its Antimicrobial Activity. J. Nanosci. Nanotechnol. 2011, 11, 6995–7000. [Google Scholar] [CrossRef]
- Shankar, S.; Jaiswal, L.; Aparna, R.S.L.; Prasad, R. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 2014, 137, 75–78. [Google Scholar] [CrossRef]
- Maillard, J.Y.; Hartemann, P. Silver as an antimicrobial: Facts and gaps in knowledge. Crit. Rev. Microbiol. 2013, 39, 373–383. [Google Scholar] [CrossRef]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [Green Version]
- Baptista, P.V.; McCusker, M.P.; Carvalho, A.; Ferreira, D.A.; Mohan, N.M.; Martins, M.; Fernandes, A.R. Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”. Front. Microbiol. 2018, 9, 1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fruits Extract | Medium | Nanoparticles Properties | Microorganisms Tested | Ref. |
---|---|---|---|---|
Nauclea latifolia (African peach) | Methanol and water | AgNPs: 600 nm | C freundii, EC 35218, E. coli 11775, S. aureus 29213, E. coli, C. albicans, Rhizopus, Klebsiella sp., and Staphylococcus sp. | [42] |
P. americana (Butter fruit) | Methanol | AgNPs: 420 nm Size: 20–50 nm | P. vermicola | [43] |
Artocarpus lakoocha | Methanol | AgNPs: 300–700 nm Size: 6.59–25 nm | S. pneumoniae, S. aureus, K. pneumoniae, B. subtilis, E. coli, and S. flexneri | [44] |
Sorbus aucuparia (Rowanberries) | Water | AgNPs: 300–700 nm Size: 20–30 nm Zeta: −28.8 mV AuNPs: 500–600 nm Zeta: −25.6 mV 90–100 nm | E. coli UTI 89 and P. aeruginosa PAO1. | [45] |
Citrus limon | Juice | AuNPs: 575 nm Size: 30 ± 6 nm | K. pneumoniae and Listeria monocytogenes | [46] |
Ripe fruit of Crescentia alata Kunth, Vitex mollis Kunth, and Randia echinocarpa Sessé et Mociño | Water | AgNPs: V. mollis (435 nm), C. alata (416 nm), and R. echinocarpa (412 nm) Size: 13–31 nm AuNPs: V. mollis (510 nm) Size: 2–16 nm | Streptococcus group A-4, S. aureus 3, E. coli A011, E. coli A055, S.aureus ATCC 29213, Shigella dysenteriae, P. aeruginosa ATCC 27853, and E. coli ATCC 25922 | [47] |
A. villosum | Water | AgNPs: 428 nm Size: 5–15 nm, PDI: 0.246 AuNPs: 550 nm Size: 5–10 nm, PDI: 0.237 | S. aureus and E. coli | [48] |
Phoenix dactylifera (Palm tree) | Water | AgNPs: 395–425 nm, Size: 25–60 nm, Zeta: −35 mV | Bacillus cereus, S. aureus, Staphylococcus epidermidis, K. pneumoniae, and E. coli | [49] |
Banana peel | Water | AgNPs: 430 nm | C. albicans BH, Shigella sp., Klebsiella sp., and Citrobacter kosari | [50] |
E. uniflora (Pitanga) | Water | AgNPs: 422 nm Size: ~32 nm Zeta: −22 mV PDI: 0.369 AuNPs: 535 nm Size: ~11 nm Zeta: −14 mV PDI: 0.451 | E. coli ATCC 25922, E. coli O44:H18 EAEC042 (clinical isolate), B. subtilis ATCC 6633, K. pneumoniae ATCC 700603, Pe aeruginosa ATCC 27853, Se Typhimurium ATCC 14028, S. aureus ATCC 25923 and clinical isolates of methicillin-resistant Se aureus (MRSA), and E. faecalis, and C. albicans ATCC 10231 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franzolin, M.R.; Courrol, D.d.S.; de Souza Barreto, S.; Courrol, L.C. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms 2022, 10, 999. https://doi.org/10.3390/microorganisms10050999
Franzolin MR, Courrol DdS, de Souza Barreto S, Courrol LC. Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms. 2022; 10(5):999. https://doi.org/10.3390/microorganisms10050999
Chicago/Turabian StyleFranzolin, Marcia Regina, Daniella dos Santos Courrol, Susana de Souza Barreto, and Lilia Coronato Courrol. 2022. "Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities" Microorganisms 10, no. 5: 999. https://doi.org/10.3390/microorganisms10050999
APA StyleFranzolin, M. R., Courrol, D. d. S., de Souza Barreto, S., & Courrol, L. C. (2022). Eugenia uniflora L. Silver and Gold Nanoparticle Synthesis, Characterization, and Evaluation of the Photoreduction Process in Antimicrobial Activities. Microorganisms, 10(5), 999. https://doi.org/10.3390/microorganisms10050999