Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients, Clinical Specimens, and Design of the Study
2.2. Recollection of Specimens
2.3. Categorization of the Gastric Epithelial Status
2.4. Extraction of Total RNA and Relative Expression of Progranulin by q-PCR
2.5. Isolation and Confirmation of Helicobacter pylori Species
2.6. Detection of Virulence Gene vacA and s/m Alleles, iceA More iceA1, iceA2 Alleles, and cagA, of the Helicobacter pylori Species by PCR and PCR-RFLP
2.7. Statistical Analyses
3. Results
3.1. Sociodemographic Characterization and Clinical Data of Study Group
3.2. Gastric Epithelium Status
3.3. Progranulin and Host Response to H. pylori Colonization and Virsulence
3.4. Genetic Identification of Virulence Factors of Helicobacter pylori
3.5. Expression Levels of GRN mRNA in the Gastric Tissue, According to the Virulence Characteristics of H. pylori Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atherton, J.C. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu. Rev. Pathol. 2006, 1, 63–96. [Google Scholar] [CrossRef] [PubMed]
- Yadegar, A.; Mobarez, A.M.; Alebouyeh, M.; Mirzaei, T.; Kwok, T.; Zali, M.R. Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J. Microbiol. Biotechnol. 2014, 30, 2481–2490. [Google Scholar] [CrossRef] [PubMed]
- Zucca, E.; Copie-Bergman, C.; Ricardi, U.; Thieblemont, C.; Raderer, M.; Ladetto, M. Gastric marginal zone lymphoma of MALT type: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24, vi144–vi148. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0923753419315637 (accessed on 23 March 2022). [CrossRef] [PubMed]
- Baroni, M.R.; Bucci, P.; Giani, R.N.; Giusti, A.; Tedeschi, F.A.; Salvatierra, E.; Barbaglia, Y.; Jimenez, F.; Zalazar, F.E. Usefulness of rapid urease test samples for molecular analysis of clarithromycin resistance in Helicobacter pylori. Rev. Argent. Microbiol. 2018, 50, 359–364. [Google Scholar] [CrossRef]
- Tohidpour, A. CagA-mediated pathogenesis of Helicobacter pylori. Microb. Pathog. 2016, 93, 44–55. Available online: https://www.sciencedirect.com/science/article/pii/S0882401015301121 (accessed on 23 March 2022). [CrossRef]
- López, L.L.G. Patogénesis de la infección por Helicobacter pylori. Rev. Cuba. Med. 2011, 50, 441–452. [Google Scholar]
- Salama, N.R.; Hartung, M.L.; Müller, A. Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 2013, 11, 385–399. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733401/ (accessed on 23 March 2022). [CrossRef]
- Chauhan, N.; Yen Tay, A.C.; Marshall, B.J.; Jain, U. Helicobacter pylori VacA, a distinct toxin exerts diverse functionalities in numerous cells: An overview. Helicobacter 2019, 24, e12544. [Google Scholar] [CrossRef] [Green Version]
- Qian, S.; Golubnitschaja, O.; Zhan, X. Chronic inflammation: Key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019, 10, 365–381. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6882964/ (accessed on 23 March 2022). [CrossRef] [Green Version]
- Gharibi, S.; Falsafi, T.; Alebouyeh, M.; Farzi, N.; Vaziri, F.; Zali, M.R. Relationship between histopathological status of the Helicobacter pylori infected patients and proteases of H. pylori in isolates carrying diverse virulence genotypes. Microb. Pathog. 2017, 110, 100–106. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0882401017301298 (accessed on 23 March 2022). [CrossRef]
- Pathak, S.K.; Tavares, R.; de Klerk, N.; Spetz, A.-L.; Jonsson, A.-B. Helicobacter pylori Protein JHP0290 Binds to Multiple Cell Types and Induces Macrophage Apoptosis via Tumor Necrosis Factor (TNF)-Dependent and Independent Pathways. PLoS ONE 2013, 8, e77872. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815203/ (accessed on 23 March 2022). [CrossRef] [PubMed] [Green Version]
- Ramírez Ramos, A.; Sánchez Sánchez, R. Helicobacter pylori 25 years after (1983–2008): Epidemiology, microbiology, pathogenics, diagnostics and treatment. Rev. Gastroenterol. Peru 2009, 29, 158–170. [Google Scholar] [PubMed]
- Tang, C.-L.; Hao, B.; Zhang, G.-X.; Shi, R.-H.; Cheng, W.-F. Helicobacter pylori tumor necrosis factor-α inducing protein promotes cytokine expression via nuclear factor-κB. World J. Gastroenterol. 2013, 19, 399–403. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3554826/ (accessed on 23 March 2022). [CrossRef] [PubMed]
- Wang, H.; Sun, Y.; Liu, S.; Yu, H.; Li, W.; Zeng, J.; Chen, C.; Jia, J. Upregulation of progranulin by Helicobacter pylori in human gastric epithelial cells via p38MAPK and MEK1/2 signaling pathway: Role in epithelial cell proliferation and migration. FEMS Immunol. Med. Microbiol. 2011, 63, 82–92. Available online: https://academic.oup.com/femspd/article-lookup/doi/10.1111/j.1574-695X.2011.00833.x (accessed on 23 March 2022). [CrossRef] [Green Version]
- Yokota, S.; Okabayashi, T.; Rehli, M.; Fujii, N.; Amano, K. Helicobacter pylori Lipopolysaccharides Upregulate Toll-Like Receptor 4 Expression and Proliferation of Gastric Epithelial Cells via the MEK1/2-ERK1/2 Mitogen-Activated Protein Kinase Pathway. Infect. Immun. 2010, 78, 468–476. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798195/ (accessed on 23 March 2022). [CrossRef] [Green Version]
- Abella, V.; Pino, J.; Scotece, M.; Conde, J.; Lago, F.; Gonzalez-Gay, M.A.; Mera, A.; Gómez, R.; Mobasheri, A.; Gualillo, O. Progranulin as a biomarker and potential therapeutic agent. Drug Discov. Today 2017, 22, 1557–1564. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1359644617301113 (accessed on 23 March 2022). [CrossRef]
- Pan, Y.; Cheung, S.T.; Tong, J.H.M.; Tin, K.Y.; Kang, W.; Lung, R.W.M.; Wu, F.; Li, H.; Ng, S.S.M.; Mak, T.W.C.; et al. Granulin epithelin precursor promotes colorectal carcinogenesis by activating MARK/ERK pathway. J. Transl. Med. 2018, 16, 150. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5987413/ (accessed on 23 March 2022). [CrossRef]
- Bateman, A.; Cheung, S.T.; Bennett, H.P.J. A Brief Overview of Progranulin in Health and Disease. In Progranulin: Methods and Protocols; Springer: New York, NY, USA, 2018; pp. 3–15. [Google Scholar] [CrossRef]
- Liu, C.; Li, J.; Shi, W.; Zhang, L.; Liu, S.; Lian, Y.; Liang, S.; Wang, H. Progranulin Regulates Inflammation and Tumor. Antiinflamm. Antiallergy Agents Med. Chem. 2020, 19, 88–102. [Google Scholar] [CrossRef]
- Jian, J.; Li, G.; Hettinghouse, A.; Liu, C. Progranulin: A key player in autoimmune diseases. Cytokine 2018, 101, 48–55. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5303690/ (accessed on 23 March 2022). [CrossRef]
- He, Z.; Ong, C.H.P.; Halper, J.; Bateman, A. Progranulin is a mediator of the wound response. Nat. Med. 2003, 9, 225–229. Available online: https://www.nature.com/articles/nm816 (accessed on 24 March 2022). [CrossRef]
- Wex, T.; Kuester, D.; Schönberg, C.; Schindele, D.; Treiber, G.; Malfertheiner, P. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression. BMC Gastroenterol. 2011, 11, 63. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115905/ (accessed on 23 March 2022). [CrossRef] [PubMed] [Green Version]
- De Muynck, L.; Van Damme, P. Cellular effects of progranulin in health and disease. J. Mol. Neurosci. 2011, 45, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Karaoz, U.; Volegova, M.; MacKichan, J.; Kato-Maeda, M.; Miller, S.; Nadarajan, R.; Brodie, E.; Lynch, S.V. Use of 16S rRNA Gene for Identification of a Broad Range of Clinically Relevant Bacterial Pathogens. PLoS ONE 2015, 10, e0117617. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319838/ (accessed on 23 March 2022). [CrossRef] [PubMed]
- Vincze, T.; Posfai, J.; Roberts, R.J. NEBcutter: A program to cleave DNA with restriction enzymes. Nucleic Acids Res. 2003, 31, 3688–3691. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168933/ (accessed on 23 March 2022). [CrossRef] [PubMed] [Green Version]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404600/ (accessed on 23 March 2022). [CrossRef] [Green Version]
- Ailloud, F.; Didelot, X.; Woltemate, S.; Pfaffinger, G.; Overmann, J.; Bader, R.C.; Schulz, C.; Malfertheiner, P.; Suerbaum, S. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 2019, 10, 2273. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531487/ (accessed on 23 March 2022). [CrossRef] [PubMed] [Green Version]
- Cook, K.W.; Letley, D.P.; Ingram, R.J.M.; Staples, E.; Skjoldmose, H.; Atherton, J.C.; Robinson, K. CCL20/CCR6-mediated migration of regulatory T cells to the Helicobacter pylori-infected human gastric mucosa. Gut 2014, 63, 1550–1559. Available online: https://gut.bmj.com/lookup/doi/10.1136/gutjnl-2013-306253 (accessed on 24 March 2022). [CrossRef] [Green Version]
- Lima, V.P.; Rabenhorst, S.H.B. Genes Associados à Virulência de Helicobacter Pylori. Rev. Bras. Cancerol. 2009, 55, 389–396. Available online: https://rbc.inca.gov.br/index.php/revista/article/view/1599 (accessed on 23 March 2022). [CrossRef]
- Palframan, S.L.; Kwok, T.; Gabriel, K. Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis. Front. Cell Infect. Microbiol. 2012, 2, 92. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3417644/ (accessed on 23 March 2022). [CrossRef] [Green Version]
- Reddy, K.M.; Chang, J.I.; Shi, J.M.; Wu, B.U. Risk of Gastric Cancer Among Patients With Intestinal Metaplasia of the Stomach in a US Integrated Health Care System. Clin. Gastroenterol. Hepatol. 2016, 14, 1420–1425. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1542356516303147 (accessed on 24 March 2022). [CrossRef] [Green Version]
- Man, S.M. Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 721–737. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M.; Savarino, E.; Sbaraglia, M.; Bricca, L.; Malfertheiner, P. Gastritis: The clinico-pathological spectrum. Dig. Liver Dis. 2021, 53, 1237–1246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; You, P.; Feng, G. Occurrence of gastric cancer in patients with atrophic gastritis during long-term follow-up. Scand. J. Gastroenterol. 2018, 53, 843–848. Available online: https://www.tandfonline.com/doi/full/10.1080/00365521.2018.1477987 (accessed on 24 March 2022). [CrossRef] [PubMed]
- Eichelmann, F.; Rudovich, N.; Pfeiffer, A.F.; Schulze, M.B.; Giuseppe, R.D.; Boeing, H.; Aleksandrova, k. Novel adipokines: Methodological utility in human obesity research. Int. J. Obes. 2017, 41, 976–981. Available online: https://www.nature.com/articles/ijo201768 (accessed on 24 March 2022). [CrossRef] [PubMed]
- Nicoletto, B.B.; Canani, L.H. The role of progranulin in diabetes and kidney disease. Diabetol. Metab. Syndr. 2015, 7, 117. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687133/ (accessed on 23 March 2022). [CrossRef] [PubMed] [Green Version]
- Aksoy, E.K.; Akpınar, M.Y.; Doğan, Ö.; Göktaş, Z.; Sapmaz, F.P.; Şimşek, G.G.; Uzman, M.; Nazlıgül, Y. Clinical Significance of Serum Vascular Endothelial Growth Factor, Pigment Epithelium–Derived Factor, Tumor Necrosis Factor Alpha, and Progranulin Levels in Patients with Gastric Cancer and Gastric Precancerous Lesions. J. Gastrointest. Cancer 2019, 50, 537–542. Available online: https://link.springer.com/10.1007/s12029-019-00251-8 (accessed on 23 March 2022). [CrossRef] [PubMed]
- Oshima, H.; Ishikawa, T.; Yoshida, G.; Naoi, K.; Maeda, Y.; Naka, K.; Ju, X.; Yamada, Y.; Minamoto, T.; Mukaida, N.; et al. TNF-α/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene 2014, 33, 3820–3829. Available online: http://www.nature.com/articles/onc2013356 (accessed on 24 March 2022). [CrossRef]
- Correa, P. The Biological Model of Gastric Carcinogenesis; IARC Scientific Publications: Lyon, France, 2004; Volume 157, pp. 301–310, PMID:15055303. [Google Scholar]
- Kawahara, Y.; Nakase, Y.; Isomoto, Y.; Matsuda, N.; Amagase, K.; Kato, S.; Takeuchi, K. Role of Macrophage Colony-Stimulating Factor (M-CSF)-Dependent Macrophages in Gastric Ulcer Healing in Mice. J. Physiol. Pharmacol. 2011, 62, 441–448. [Google Scholar]
- Sugihara, H.; Miyaji, K.; Yamanouchi, K.; Matsuwaki, T.; Nishihara, M. Progranulin deficiency leads to prolonged persistence of macrophages, accompanied with myofiber hypertrophy in regenerating muscle. J. Vet. Med. Sci. 2018, 80, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [Google Scholar] [CrossRef] [Green Version]
- Serrano, C.; Wright, S.W.; Bimczok, D.; Shaffer, C.; Cover, T.; Venegas, A.; Salazar, M.G.; Smythies, L.E.; Harris, P.R.; Smith, P.D. Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. Mucosal Immunol. 2013, 6, 950–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, R.M.; Blaser, M.J. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2002, 2, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Capurro, M.I.; Greenfield, L.K.; Prashar, A.; Xia, S.; Abdullah, M.; Wong, H.; Zhong, X.Z.; Bertaux-Skeirik, N.; Chakrabarti, J.; Siddiqui, I.; et al. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat. Microbiol. 2019, 4, 1411–1423. [Google Scholar] [CrossRef] [PubMed]
- Yakoob, J.; Abbas, Z.; Khan, R.; Salim, S.A.; Abrar, A.; Awan, S.; Ahmad, Z. Helicobacter pylori: Correlation of the virulence marker iceA allele with clinical outcome in a high prevalence area. Br. J. Biomed. Sci. 2015, 72, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Lamb, A.; Yang, X.D.; Tsang, Y.H.N.; Li, J.D.; Higashi, H.; Hatakeyama, M.; Peek, R.M.; Blanke, S.R.; Chen, L.F. Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep. 2009, 10, 1242–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noto, J.M.; Peek, R.M. The Helicobacter pylori cag Pathogenicity Island. Methods Mol. Biol. 2012, 921, 41–50. [Google Scholar]
- Tserentogtokh, T.; Gantuya, B.; Subsomwong, P.; Oyuntsetseg, K.; Bolor, D.; Erdene-Ochir, Y.; Azzaya, D.; Davaadorj, D.; Uchida, T.; Matsuhisa, T.; et al. Western-Type Helicobacter pylori CagA are the Most Frequent Type in Mongolian Patients. Cancers 2019, 11, E725. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, D.M.; dos Santos Pereira, E.; Rabenhorst, S.H.B. What exists beyond cagA and vacA? Helicobacter pylori genes in gastric diseases. World J. Gastroenterol. 2015, 21, 10563–10572. [Google Scholar] [CrossRef]
- Muhammad, J.S.; Zaidi, S.F.; Zhou, Y.; Sakurai, H.; Sugiyama, T. Novel epidermal growth factor receptor pathway mediates release of human β-defensin 3 from Helicobacter pylori-infected gastric epithelial cells. Pathog. Dis. 2016, 74, ftv128. [Google Scholar] [CrossRef] [Green Version]
- Gobert, A.P.; Wilson, K.T. Induction and Regulation of the Innate Immune Response in Helicobacter pylori Infection. Cell Mol. Gastroenterol. Hepatol. 2022, 13, 1347–1363. [Google Scholar] [CrossRef]
- Paushter, D.H.; Du, H.; Feng, T.; Hu, F. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 2018, 136, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Nathan, C.; Jin, W.; Sim, D.; Ashcroft, G.S.; Wahl, S.M.; Lacomis, L.; Erdjument-Bromage, H.; Tempst, P.; Wright, C.D.; et al. Conversion of proepithelin to epithelins: Roles of SLPI and elastase in host defense and wound repair. Cell 2002, 111, 867–878. [Google Scholar] [CrossRef]
- Ahn, K.S.; Aggarwal, B.B. Transcription factor NF-kappaB: A sensor for smoke and stress signals. Ann. N. Y. Acad. Sci. 2005, 1056, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dhiman, M. Inflammasome activation and regulation during Helicobacter pylori pathogenesis. Microb. Pathog. 2018, 125, 468–474. [Google Scholar] [CrossRef]
Total, n = 150 | Infected (Cases) n = 75 | Non Infected (Controls) n = 75 | ||
---|---|---|---|---|
Background | n (%) | n (%) | n (%) | p Value |
Age (years ± SD) | 48.18 ± 14.26 | 48.23 ± 13.19 | 48.13 ± 15.35 | 0.968 |
Males | 48 (32.00) | 24 (32.00) | 24 (32.00) | 0.999 |
Females | 102 (68.00) | 51 (68.00) | 51 (68.00) | 0.999 |
Ethnicity Mapuche | 46 (30.67) | 23 (30.67) | 23 (30.67) | 0.999 |
Rurality | 32 (21.33) | 16 (21.33) | 16 (21.33) | 0.999 |
Health centers Public | 95 (63.33) | 52 (69.33) | 43 (57.33) | 0.175 |
Education level < 12 years | 86 (57.33) | 44 (58.67) | 42 (56.00) | 0.869 |
Health Insurance National Insurance FONASA | 117 (78.00) | 59 (78.67) | 58 (77.33) | 0.999 |
Household (≥5 members) | 21 (14.00) | 12 (16.00) | 09 (12.00) | 0.640 |
Addictive habits | ||||
-Smoker | 43 (28.67) | 20 (26.67) | 23 (30.66) | 0.590 |
-Drink Alcohol | 72 (48.00) | 37 (49.33) | 35 (46.67) | 0.870 |
-Family history of gastric cancer | 47 (31.33) | 21 (28.00) | 26 (34.67) | 0.482 |
Comorbidity | ||||
-Diabetes | 27 (18.00) | 11 (14.67) | 16 (21.33) | 0.396 |
-Arterial hypertension | 35 (23.33) | 16 (21.33) | 19 (25.33) | 0.700 |
-Hypercholesterolemia | 36 (24.00) | 12 (16.00) | 24 (32.00) | 0.035 * |
-Cardiovascular diseases | 8 (05.33) | 2 (02.67) | 6 (08.00) | 0.276 |
Others ** | 71 (47.33) | 45 (60.00) | 31 (41.33) | 0.033 * |
Without comorbidities | 53 (35.33) | 33 (44.00) | 21 (28.00) | 0.060 * |
Epithelium | Total n = 150 n (%) | Infected n = 75 n (%) | Non-Infected n = 75 n (%) | p Value | Odds Ratio (CI) |
---|---|---|---|---|---|
Non-lesions (NL) | 94 (62.67) | 46 (61.33) | 48 (64.00) | 0.866 | 1.121 (0.474–1.773) |
Lesions (L) | 56 (37.33) | 29 (38.67) | 27 (36.00) | 0.866 | 1.121 (0.564–2.112) |
Erosive (EL) | 35 (23.33) | 14 (18.67) | 21 (28.00) | 0.029 * | 0.267 (0.084–0.828) |
Non-erosive (NEL) | 13 (08.67) | 11 (14.67) | 2 (02.67) | 0.010 * | 7.640 (1.670–36.620) |
Atrophic (AtL) | 6 (04.00) | 3 (04.00) | 3 (04.00) | >0.999 | 0.923 (0.201–4.261) |
Advanced (AdL) | 2 (01.33) | 1 (01.33) | 1 (01.33) | >0.999 | 0.929 (0.047–18.26) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troncoso, C.; Pavez, M.; Cerda, Á.; Manríquez, V.; Prado, A.; Hofmann, E.; Ríos, E.; Sierralta, A.; Copelli, L.; Barrientos, L. Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms 2022, 10, 998. https://doi.org/10.3390/microorganisms10050998
Troncoso C, Pavez M, Cerda Á, Manríquez V, Prado A, Hofmann E, Ríos E, Sierralta A, Copelli L, Barrientos L. Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms. 2022; 10(5):998. https://doi.org/10.3390/microorganisms10050998
Chicago/Turabian StyleTroncoso, Claudia, Mónica Pavez, Álvaro Cerda, Victor Manríquez, Aurora Prado, Edmundo Hofmann, Eddy Ríos, Armando Sierralta, Luis Copelli, and Leticia Barrientos. 2022. "Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model" Microorganisms 10, no. 5: 998. https://doi.org/10.3390/microorganisms10050998
APA StyleTroncoso, C., Pavez, M., Cerda, Á., Manríquez, V., Prado, A., Hofmann, E., Ríos, E., Sierralta, A., Copelli, L., & Barrientos, L. (2022). Association of Progranulin Gene Expression from Dyspeptic Patients with Virulent Helicobacter pylori Strains; In Vivo Model. Microorganisms, 10(5), 998. https://doi.org/10.3390/microorganisms10050998