Small Intestine Bacterial Overgrowth Can Form an Indigenous Proinflammatory Environment in the Duodenum: A Prospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Endpoints
2.3. Statistical Analysis
3. Results
3.1. Primary Endpoint
3.2. Secondary Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sundin, O.H.; Mendoza-Ladd, A.; Morales, E.; Fagan, B.M.; Zeng, M.; Diaz-Arevalo, D.; Ordonez, J.; McCallum, R.W. Does a glucose-based hydrogen and methane breath test detect bacterial overgrowth in the jejunum? Neurogastroenterol. Motil. 2018, 30, e13350. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, E.M.M. The spectrum of small intestinal bacterial overgrowth (SIBO). Curr. Gastroenterol. Rep. 2019, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Giamarellos-Bourboulis, E.J.; Pyleris, E.; Barbatzas, C.; Pistiki, A.; Pimentel, M. Small intestinal bacterial overgrowth is associated with irritable bowel syndrome and is independent of proton pump inhibitor usage. BMC Gastroenterol. 2016, 16, 67. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.C.; Day, L.W.; Somsouk, M.; Sewell, J.L. Meta-analysis: Antibiotic therapy for small intestinal bacterial overgrowth. Aliment. Pharmacol. Ther. 2013, 38, 925–934. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.S.C.; Bhagatwala, J. Small Intestinal Bacterial Overgrowth: Clinical Features and Therapeutic Management. Clin. Transl. Gastroenterol. 2019, 10, e00078. [Google Scholar] [CrossRef]
- Pyleris, E.; Giamarellos-Bourboulis, E.J.; Tzivras, D.; Koussoulas, V.; Barbatzas, C.; Pimentel, M. The prevalence of overgrowth by aerobic bacteria in the small intestine by small bowel culture: Relationship with irritable bowel syndrome. Dig. Dis. Sci. 2012, 57, 1321–1329. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.; Tang, J.; Pyleris, E.; Pistiki, A.; Barbatzas, C.; Brown, J.; Lee, C.C.; Harkins, T.T.; Kim, G.; Weitsman, S.; et al. Molecular assessment of differences in the duodenal microbiome in subjects with irritable bowel syndrome. Scand. J. Gastroenterol. 2015, 50, 1076–1087. [Google Scholar] [CrossRef]
- Mearin, F.; Lacy, B.E.; Chang, L.; Chey, W.D.; Lembo, A.J.; Simren, M.; Spiller, R. Bowel Disorders. Gastroenterology 2016, 150, 1393–1407. [Google Scholar]
- German, A.J.; Helps, C.R.; Hall, E.J.; Day, M.J. Cytokine mRNA expression in mucosal biopsies from German shepherd dogs with small intestinal enteropathies. Dig. Dis. Sci. 2000, 45, 7–17. [Google Scholar] [CrossRef]
- Chen, B.; Zhu, S.; Du, L.; He, H.; Kim, J.J.; Dai, N. Reduced interstitial cells of Cajal and increased intraepithelial lymphocytes are associated with development of small intestinal bacterial overgrowth in post-infectious IBS mouse model. Scand. J. Gastroenterol. 2017, 52, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Kapil, S.; Duseja, A.; Sharma, B.K.; Singla, B.; Chakraborti, A.; Das, A.; Ray, P.; Dhiman, R.K.; Chawla, Y. Small intestinal bacterial overgrowth and toll-like receptor signaling in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016, 31, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.; Sharma, S.; Kaur, J.; Prasad, K.K.; Sinha, S.K.; Kochhar, R.; Malik, A.; Morya, R.K. Relationship of cytokines, oxidative stress and GI motility with bacterial overgrowth in ulcerative colitis patients. J. Crohn’s Colitis 2014, 8, 859–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, J.E.R.; Chebli, L.A.; Ribeiro, T.; Castro, A.C.S.; Gaburri, P.D.; Pace, F.; Barbosa, K.; Ferreira, L.; Passos, M.; Malaguti, C.; et al. Small-Intestinal Bacterial Overgrowth is Associated With Concurrent Intestinal Inflammation But Not With Systemic Inflammation in Crohn’s Disease Patients. J. Clin. Gastroenterol. 2018, 52, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Riordan, S.M.; McIver, C.J.; Wakefield, D.; Duncombe, V.M.; Bolin, T.D.; Thomas, M.C. Mucosal cytokine production in small-intestinal bacterial overgrowth. Scand. J. Gastroenterol. 1996, 31, 977–984. [Google Scholar] [CrossRef]
- Chu, H.; Fox, M.; Zheng, X.; Deng, Y.; Long, Y.; Huang, Z.; Du, L.; Xu, F.; Dai, N. Small Intestinal Bacterial Overgrowth in Patients with Irritable Bowel Syndrome: Clinical Characteristics, Psychological Factors, and Peripheral Cytokines. Gastroenterol. Res. Pract. 2016, 2016, 3230859. [Google Scholar] [CrossRef] [Green Version]
- Gao, J. Correlation between anxiety-depression status and cytokines in diarrhea-predominant irritable bowel syndrome. Exp. Ther. Med. 2013, 6, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Liebregts, T.; Adam, B.; Bredack, C.; Gururatsakul, M.; Pilkington, K.R.; Brierley, S.M.; Blackshaw, L.A.; Gerken, G.; Talley, N.J.; Holtmann, G. Small bowel homing t cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am. J. Gastroenterol. 2011, 106, 1089–1098. [Google Scholar] [CrossRef]
- Liebregts, T.; Adam, B.; Bredack, C.; Roth, A.; Heinzel, S.; Lester, S.; Downie-Doyle, S.; Smith, E.; Drew, P.; Talley, N.J.; et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 2007, 132, 913–920. [Google Scholar] [CrossRef]
- Srivastava, D.; Ghoshal, U.; Mittal, R.D.; Ghoshal, U.C. Associations between IL-1RA polymorphisms and small intestinal bacterial overgrowth among patients with irritable bowel syndrome from India. Neurogastroenterol. Motil. 2014, 26, 1408–1416. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Xiang, F.; Feng, J. Correlation between small intestinal bacterial overgrowth and irritable bowel syndrome and the prognosis of treatment. Ann. Palliat. Med. 2021, 10, 3364–3370. [Google Scholar] [CrossRef]
- Seo, S.U.; Kamada, N.; Munoz-Planillo, R.; Kim, Y.G.; Kim, D.; Koizumi, Y.; Hasegawa, M.; Himpsl, S.D.; Browne, H.P.; Lawley, T.D.; et al. Distinct Commensals Induce Interleukin-1beta via NLRP3 Inflammasome in Inflammatory Monocytes to Promote Intestinal Inflammation in Response to Injury. Immunity 2015, 42, 744–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, M.; Franchi, L.; Araya, D.; Diaz-Jimenez, D.; Olivares, M.; Alvarez-Lobos, M.; Golenbock, D.; Gonzalez, M.J.; Lopez-Kostner, F.; Quera, R.; et al. Escherichia coli isolates from inflammatory bowel diseases patients survive in macrophages and activate NLRP3 inflammasome. Int. J. Med. Microbiol. 2014, 304, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opipari, A.; Franchi, L. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflamm. Bowel Dis. 2015, 21, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Ohama, T.; Hori, M.; Sato, K.; Ozaki, H.; Karaki, H. Chronic treatment with interleukin-1beta attenuates contractions by decreasing the activities of CPI-17 and MYPT-1 in intestinal smooth muscle. J. Biol. Chem. 2003, 278, 48794–48804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, N.T.; Kalff, J.C.; Turler, A.; Speidel, N.; Grandis, J.R.; Billiar, T.R.; Bauer, A.J. Selective jejunal manipulation causes postoperative pan-enteric inflammation and dysmotility. Gastroenterology 2004, 126, 159–169. [Google Scholar] [CrossRef]
- Kinoshita, K.; Hori, M.; Fujisawa, M.; Sato, K.; Ohama, T.; Momotani, E.; Ozaki, H. Role of TNF-alpha in muscularis inflammation and motility disorder in a TNBS-induced colitis model: Clues from TNF-alpha-deficient mice. Neurogastroenterol. Motil. 2006, 18, 578–588. [Google Scholar] [CrossRef]
- Ghoshal, U.C.; Ghoshal, U. Small intestinal bacterial overgrowth and other intestinal disorders. Gastroenterol. Clin. N. Am. 2017, 46, 103–120. [Google Scholar] [CrossRef]
- Jacobs, C.; Coss Adame, E.; Attaluri, A.; Valestin, J.; Rao, S.S. Dysmotility and proton pump inhibitor use are independent risk factors for small intestinal bacterial and/or fungal overgrowth. Aliment. Pharmacol. Ther. 2013, 37, 1103–1111. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, M.; Lin, H.C.; Enayati, P.; van den Burg, B.; Lee, H.R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.V.; Malik, A.; Bhadada, S.K.; Sachdeva, N.; Morya, R.K.; Sharma, G. Malabsorption, orocecal transit time and small intestinal bacterial overgrowth in type 2 diabetic patients: A connection. Indian J. Clin. Biochem. 2017, 32, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triantafyllou, K.; Kalantzis, C.; Papadopoulos, A.A.; Apostolopoulos, P.; Rokkas, T.; Kalantzis, N.; Ladas, S.D. Video-capsule endoscopy gastric and small bowel transit time and completeness of the examination in patients with diabetes mellitus. Dig. Liver Dis. 2007, 39, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Morya, R.K.; Saha, S.; Singh, P.K.; Bhadada, S.K.; Rana, S.V. Oxidative stress and inflammatory markers in type 2 diabetic patients. Eur. J. Clin. Investig. 2020, 50, e13238. [Google Scholar] [CrossRef] [PubMed]
- Ni Chonchubhair, H.M.; Bashir, Y.; Dobson, M.; Ryan, B.M.; Duggan, S.N.; Conlon, K.C. The prevalence of small intestinal bacterial overgrowth in non-surgical patients with chronic pancreatitis and pancreatic exocrine insufficiency (PEI). Pancreatology 2018, 18, 379–385. [Google Scholar] [CrossRef]
- DiBaise, J.K.; Crowell, M.D.; Driver-Dunckley, E.; Mehta, S.H.; Hoffman-Snyder, C.; Lin, T.; Adler, C.H. Weight Loss in Parkinson’s Disease: No Evidence for Role of Small Intestinal Bacterial Overgrowth. J. Parkinson’s Dis. 2018, 8, 571–581. [Google Scholar]
No SIBO (n = 156) | SIBO (n = 68) | p | |
---|---|---|---|
Male (n, %) | 73 (46.8) | 36 (52.9) | 0.397 |
Age ≥ 60 years (n, %) | 93 (59.6) | 55 (80.9) | 0.002 |
BMI ≥ 22 kg/m2 (n, %) | 136 (87.2) | 52 (76.5) | 0.045 |
Presence of IBS (n, %) | 75 (48.1) | 42 (61.8) | 0.059 |
Type of IBS (n, %) | |||
IBS-D | 23 (14.7) | 18 (26.5) | 0.037 |
IBS-C | 13 (8.3) | 3 (4.4) | 0.295 |
Mixed type IBS | 39 (25.0) | 21 (30.9) | 0.361 |
Comorbidities (n, %) | |||
T2DM | 28 (17.9) | 21 (30.9) | 0.036 |
CHF | 36 (23.1) | 20 (29.4) | 0.314 |
COPD | 16 (10.3) | 5 (7.5) | 0.513 |
CRF | 7 (4.5) | 2 (2.9) | 0.588 |
Solid tumor malignancy | 14 (9.0) | 4 (5.9) | 0.434 |
History of drug intake (n, %) | |||
PPIs | 38 (24.4) | 13 (19.1) | 0.390 |
NSAIDs | 9 (5.8) | 2 (2.9) | 0.368 |
Aspirin | 27 (17.3) | 15 (22.1) | 0.402 |
Acenocumarone | 11 (7.1) | 7 (10.3) | 0.412 |
H2-blockers | 2 (1.3) | 1 (1.5) | 0.910 |
Antacids | 5 (3.2) | 1 (1.5) | 0.460 |
Clinical reason for gastroscopy (n, %) | |||
Dyspepsia | 94 (60.3) | 39 (57.4) | 0.684 |
Anemia | 73 (46.8) | 36 (52.9) | 0.397 |
Fever of unknown origin | 7 (4.5) | 2 (2.9) | 0.588 |
Endoscopic findings (n, %) | |||
Gastritis | 69 (44.2) | 25 (36.8) | 0.298 |
Duodenal ulcer | 12 (7.7) | 8 (11.8) | 0.326 |
Gastric ulcer | 2 (1.3) | 1 (1.5) | 0.910 |
OR | 95% Cis | p | |
---|---|---|---|
Male gender | 0.504 | 0.167–1.522 | 0.224 |
Age ≥ 60 years | 16.264 | 2.917–90.684 | 0.001 |
BMI ≥ 22 | 0.269 | 0.059–1.232 | 0.091 |
Obesity | 1.466 | 0.349–6.151 | 0.601 |
IBS | 8.964 | 2.716–29.581 | <0.001 |
T2DM | 2.927 | 0.832–10.295 | 0.094 |
CHF | 0.961 | 0.238–3.869 | 0.955 |
COPD | 0.312 | 0.060–1.632 | 0.168 |
CRF | 0.596 | 0.043–8.243 | 0.700 |
Solid Tumor Malignancy | 0.283 | 0.038–2.105 | 0.218 |
PPIs | 0.382 | 0.098–1.498 | 0.168 |
NSAIDs | 0.682 | 0.031–14.928 | 0.808 |
Aspirin | 1.952 | 0.403–9.452 | 0.406 |
Acenocumarone | 1.236 | 0.168–9.069 | 0.835 |
H2 blockers | n/a | 0.000 | 1.000 |
Antacids | 1.813 | 0.114–28.959 | 0.674 |
Dyspepsia | 0.527 | 0.160–1.732 | 0.291 |
Anemia | 0.641 | 0.160–2.568 | 0.530 |
Fever of unkown origin | 1.354 | 0.109–16.771 | 0.813 |
Gastritis | 1.527 | 0.515–4.526 | 0.445 |
Duodenal Ulcer | 1.471 | 0.242–8.931 | 0.675 |
Gastric Ulcer | <0.001 | 0.000 | 0.999 |
Elevated IL-1β | 3.803 | 0.953–15.171 | 0.058 |
Elevated IL-6 | 2.099 | 0.608–7.252 | 0.241 |
Elevated TNFa | 0.381 | 0.094–1.542 | 0.176 |
OR | 95% Cis | p | |
---|---|---|---|
Age ≥ 60 years | 4.10 | 1.93–8.70 | <0.001 |
BMI ≥ 22 | 0.37 | 0.17–0.83 | 0.016 |
IBS | 2.10 | 1.12–3.96 | 0.021 |
Elevated IL-1β | 2.61 | 1.06–6.43 | 0.037 |
IL-1β (−) | IL-1β (+) | p | IL-6 (−) | IL-6 (+) | p | TNF-α (−) | TNF-α (+) | p | |
---|---|---|---|---|---|---|---|---|---|
Mean Rank | Mean Rank | Mean Rank | Mean Rank | Mean Rank | Mean Rank | ||||
E. coli | 62.4 | 66.5 | 0.603 | 59.2 | 68.3 | 0.118 | 62.4 | 63.3 | 0.883 |
Klebsiella pn. | 62.1 | 68.0 | 0.511 | 54.1 | 75.6 | 0.001 | 50.1 | 68.4 | 0.010 |
M. smithii | 61.0 | 74.0 | 0.044 | 66.7 | 57.7 | 0.053 | 67.4 | 61.2 | 0.217 |
Aeromonas spp. | 63.3 | 61.1 | 0.801 | 65.6 | 59.4 | 0.110 | 67.6 | 61.1 | 0.353 |
Bacterial counts in aerobic cultures | 110.4 | 129.0 | 0.099 | 112.1 | 113.8 | 0.829 | 111.0 | 113.2 | 0.768 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizos, E.; Pyleris, E.; Pimentel, M.; Triantafyllou, K.; Giamarellos-Bourboulis, E.J. Small Intestine Bacterial Overgrowth Can Form an Indigenous Proinflammatory Environment in the Duodenum: A Prospective Study. Microorganisms 2022, 10, 960. https://doi.org/10.3390/microorganisms10050960
Rizos E, Pyleris E, Pimentel M, Triantafyllou K, Giamarellos-Bourboulis EJ. Small Intestine Bacterial Overgrowth Can Form an Indigenous Proinflammatory Environment in the Duodenum: A Prospective Study. Microorganisms. 2022; 10(5):960. https://doi.org/10.3390/microorganisms10050960
Chicago/Turabian StyleRizos, Evripidis, Emmanouel Pyleris, Mark Pimentel, Konstantinos Triantafyllou, and Evangelos J. Giamarellos-Bourboulis. 2022. "Small Intestine Bacterial Overgrowth Can Form an Indigenous Proinflammatory Environment in the Duodenum: A Prospective Study" Microorganisms 10, no. 5: 960. https://doi.org/10.3390/microorganisms10050960
APA StyleRizos, E., Pyleris, E., Pimentel, M., Triantafyllou, K., & Giamarellos-Bourboulis, E. J. (2022). Small Intestine Bacterial Overgrowth Can Form an Indigenous Proinflammatory Environment in the Duodenum: A Prospective Study. Microorganisms, 10(5), 960. https://doi.org/10.3390/microorganisms10050960