Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions and Outcomes
2.2. Search Strategy and Selection Criteria
2.3. Data Extraction and Synthesis
2.4. Study Quality Assessment
3. Results
3.1. Search Outcomes and Study Characteristics
3.2. Quality of Studies Analyzed
3.3. Molecular Epidemiology of Seasonal H1N1 Viruses in Africa
3.3.1. Genomic Diversity of H1N1 Viruses and Their Relatedness to Vaccines
3.3.2. Antiviral Drug Sensitivity among H1N1 Viruses
3.3.3. Phylogenetic Clustering Patterns and Circulating Clades among H1N1 Viruses
3.4. Molecular Epidemiology of Pandemic H1N1pdm09 Viruses in Africa
3.4.1. Genomic Diversity of H1N1pdm09 Viruses and Their Relatedness to Vaccines
3.4.2. Genomic Markers of Disease Severity among H1N1pdm09 Viruses
3.4.3. Antiviral Drugs Sensitivity among H1N1pdm09 Viruses
3.4.4. Phylogenetic Clustering and Circulating Clades among H1N1pdm09 Viruses
3.4.5. Population Dynamics, Evolutionary Rates, Selection, and Reassortment among H1N1pdm09 Viruses
3.5. Molecular Epidemiology of Seasonal H3N2 Viruses in Africa
3.5.1. Genomic Diversity of H3N2 Viruses and Their Relatedness to Vaccines
3.5.2. Antiviral Drugs Sensitivity among H3N2 Viruses
3.5.3. Phylogenetic Clustering and Circulating Clades among H3N2 Viruses
3.5.4. Viral Population Dynamics, Evolutionary Rates, Selection, and Phylogeographic Patterns among H3N2 Viruses
3.6. Reassortment between H1N1pdm09 and H3N2 Viruses and Zoonotic Exchanges
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Taubenberger, J.K.; Morens, D.M. Influenza: The once and future pandemic. Public Health Rep. 2010, 125 (Suppl. 3), 16–26. [Google Scholar] [PubMed] [Green Version]
- McDonald, S.M.; Nelson, M.I.; Turner, P.E.; Patton, J.T. Reassortment in Segmented RNA Viruses: Mechanisms and Outcomes. Nat. Rev. Microbiol. 2016, 14, 448–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [PubMed] [Green Version]
- Zimmer, S.M.; Burke, D.S. Historical Perspective—Emergence of Influenza A (H1N1) Viruses. N. Engl. J. Med. 2009, 361, 279–285. [Google Scholar] [CrossRef]
- Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; et al. Estimates of Global Seasonal Influenza-Associated Respiratory Mortality: A Modelling Study. Lancet 2018, 391, 1285–1300. [Google Scholar] [CrossRef]
- Bouvier, N.M.; Palese, P. The biology of influenza viruses. Vaccine 2008, 26, D49–D53. [Google Scholar]
- Centers for Disease Control and Prevention Types of Influenza Viruses. Available online: https://www.cdc.gov/flu/about/viruses/types.htm (accessed on 28 July 2021).
- Chen, R.; Holmes, E.C. Avian influenza virus exhibits rapid evolutionary dynamics. Mol. Biol. Evol. 2006, 23, 2336–2341. [Google Scholar]
- Boni, M.F.; Zhou, Y.; Taubenberger, J.K.; Holmes, E.C. Homologous Recombination Is Very Rare or Absent in Human Influenza A Virus. J. Virol. 2008, 82, 4807–4811. [Google Scholar] [CrossRef] [Green Version]
- Caton, A.J.; Brownlee, G.G.; Yewdell, J.W.; Gerhard, W. The antigenic structure of the influenza virus A/PR/8/ 34 hemagglutinin (H1 subtype). Cell 1982, 31, 417–427. [Google Scholar]
- Lee, M.S.; Chen, J.S. Predicting Antigenic Variants of Influenza A/H3N2 Viruses. Emerg. Infect. Dis. 2004, 10, 1385. [Google Scholar] [CrossRef]
- Wiley, D.C.; Wilson, I.A.; Skehel, J.J. Structural Identification of the Antibody-Binding Sites of Hong Kong Influenza Haemagglutinin and Their Involvement in Antigenic Variation. Nature 1981, 289, 6162101. [Google Scholar]
- Air, G.M.; Laver, W.G. The Neuraminidase of Influenza Virus. Proteins 1989, 6, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Colman, P.M.; Varghese, J.N.; Laver, W.G. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983, 303, 41–44. [Google Scholar] [PubMed]
- Allen, J.D.; Ross, T.M. H3N2 Influenza Viruses in Humans: Viral Mechanisms, Evolution, and Evaluation. Hum. Vaccines Immunother. 2018, 14, 1840–1847. [Google Scholar] [CrossRef] [Green Version]
- Skehel, J.J.; Wiley, D.C. Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef]
- Belser, J.A.; Maines, T.R.; Tumpey, T.M.; Katz, J.M. Influenza A Virus Transmission: Contributing Factors and Clinical Implications. Expert Rev. Mol. Med. 2010, 12, e39. [Google Scholar] [CrossRef] [Green Version]
- Lyons, D.M.; Lauring, A.S. Mutation and Epistasis in Influenza Virus Evolution. Viruses 2018, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Tscherne, D.M.; Garcia-Sastre, A. Virulence determinants of pandemic influenza viruses. J. Clin. Investig. 2011, 121, 6–13. [Google Scholar]
- Lemey, P.; Suchard, M.; Rambaut, A. Reconstructing the Initial Global Spread of a Human Influenza Pandemic: A Bayesian Spatial-Temporal Model for the Global Spread of H1N1pdm. PLoS Curr. 2009, 1, RRN1031. [Google Scholar] [CrossRef]
- Lemey, P.; Rambaut, A.; Bedford, T.; Faria, N.; Bielejec, F.; Baele, G. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 2014, 10, e1002947. [Google Scholar] [CrossRef] [Green Version]
- Pond, S.; Frost, S.; Muse, S. HyPhy: Hypothesis Testing Using Phylogenies. Bioinformatics 2005, 21, 676–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Bromham, L. Estimating Divergence Dates from Molecular Sequences. Mol. Biol. Evol. 1998, 15, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.J. Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science 2004, 305, 371–376. [Google Scholar] [PubMed] [Green Version]
- Volz, E.M.; Koelle, K.; Bedford, T. Viral Phylodynamics. PLoS Comput. Biol. 2013, 9, e1002947. [Google Scholar] [CrossRef] [Green Version]
- Westgeest, K.B.; Russell, C.A.; Lin, X.; Spronken, M.I.J.; Bestebroer, T.M.; Bahl, J.; van Beek, R.; Skepner, E.; Halpin, R.A.; de Jong, J.C.; et al. Genomewide Analysis of Reassortment and Evolution of Human Influenza A(H3N2) Viruses Circulating between 1968 and 2011. J. Virol. 2014, 88, 2844–2857. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control Influenza Virus Characterisation Reports, Summary Europe. Available online: https://www.ecdc.europa.eu/en/seasonal-influenza/surveillance-and-disease-data/influenza-virus-characterisation (accessed on 23 March 2022).
- Green, A. Progress in Influenza Surveillance in Africa. Lancet 2018, 391, 1345–1346. [Google Scholar] [CrossRef]
- Igboh, L.S.; McMorrow, M.; Tempia, S.; Emukule, G.O.; Talla Nzussouo, N.; McCarron, M.; Williams, T.; Weatherspoon, V.; Moen, A.; Fawzi, D.; et al. Influenza Surveillance Capacity Improvements in Africa during 2011–2017. Influenza Other Respir. Viruses 2021, 15, 495–505. [Google Scholar] [CrossRef]
- Radin, J.M.; Katz, M.A.; Tempia, S.; Talla Nzussouo, N.; Davis, R.; Duque, J.; Adedeji, A.; Adjabeng, M.J.; Ampofo, W.K.; Ayele, W.; et al. Influenza Surveillance in 15 Countries in Africa, 2006–2010. J. Infect. Dis. 2012, 206 (Suppl. 1), S14–S21. [Google Scholar] [CrossRef]
- Han, A.X.; Parker, E.; Scholer, F.; Maurer-Stroh, S.; Russell, C.A. Phylogenetic Clustering by Linear Integer Programming (PhyCLIP). Mol. Biol. Evol. 2019, 36, 1580–1595. [Google Scholar] [CrossRef]
- Hassan, A.S.; Pybus, O.G.; Sanders, E.J.; Albert, J.; Esbjörnsson, J. Defining HIV-1 Transmission Clusters Based on Sequence Data. AIDS 2017, 31, 1211–1222. [Google Scholar] [CrossRef]
- Sagulenko, P.; Puller, V.; Neher, R.A. TreeTime: Maximum-Likelihood Phylodynamic Analysis. Virus Evol. 2018, 4, vex042. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Modesti, P.A.; Reboldi, G.; Cappuccio, F.P.; Agyemang, C.; Remuzzi, G.; Rapi, S.; Perruolo, E.; Parati, G. ESH Working Group on CV Risk in Low Resource Settings Panethnic Differences in Blood Pressure in Europe: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0147601. [Google Scholar] [CrossRef] [Green Version]
- Field, N.; Cohen, T.; Struelens, M.J.; Palm, D.; Cookson, B.; Glynn, J.R.; Gallo, V.; Ramsay, M.; Sonnenberg, P.; Maccannell, D.; et al. Strengthening the Reporting of Molecular Epidemiology for Infectious Diseases (STROME-ID): An Extension of the STROBE Statement. Lancet Infect. Dis. 2014, 14, 341–352. [Google Scholar] [CrossRef]
- Besselaar, T.G.; Naidoo, D.; Buys, A.; Gregory, V.; McAnerney, J.; Manamela, J.M.; Blumberg, L.; Schoub, B.D. Widespread Oseltamivir Resistance in Influenza A Viruses (H1N1), South Africa. Emerg. Infect. Dis. 2008, 14, 1809–1810. [Google Scholar]
- Bulimo, W.D.; Achilla, R.A.; Majanja, J.; Mukunzi, S.; Wadegu, M.; Osunna, F.; Mwangi, J.; Njiri, J.; Wangui, J.; Nyambura, J.; et al. Molecular Characterization and Phylogenetic Analysis of the Hemagglutinin 1 Protein of Human Influenza A Virus Subtype H1N1 Circulating in Kenya During 2007–2008. J. Infect. Dis. 2012, 206, S46–S52. [Google Scholar] [CrossRef] [Green Version]
- Hurt, A.C.; Ernest, J.; Deng, Y.M.; Iannello, P.; Besselaar, T.G.; Birch, C.; Buchy, P.; Chittaganpitch, M.; Chiu, S.C.; Dwyer, D.; et al. Emergence and spread of oseltamivir-resistant A(H1N1) influenza viruses in Oceania, South East Asia and South Africa. Antivir. Res. 2009, 83, 90–93. [Google Scholar]
- Njouom, R.; Mba, S.A.; Noah, D.N.; Gregory, V.; Collins, P.; Cappy, P. Circulation of human influenza viruses and emergence of Oseltamivir-resistant A(H1N1) viruses in Cameroon, Central Africa. BMC Infect. Dis. 2010, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Dia, N.; Niang, M.N.; Diadhiou, S.A.; Goudiaby, D.G.; Faye, A.; Kiori, D.; Bâ, M.; Michel, R.; Diop, O.M. Spread of Influenza A(H1N1) Oseltamivir-Resistant Viruses in Africa in 2008 Confirmed by Multiple Introductions in Senegal. BMC Infect. Dis. 2013, 13, 106. [Google Scholar] [CrossRef] [Green Version]
- Adeola, O.A.; Olugasa, B.O.; Emikpe, B.O.; Folitse, R.D. Syndromic Survey and Molecular Analysis of Influenza Viruses at the Human–Swine Interface in Two West African Cosmopolitan Cities Suggest the Possibility of Bidirectional Interspecies Transmission. Zoonoses Public Health 2019, 66, 232–247. [Google Scholar] [CrossRef]
- Aspinall, S.; Pretorius, B.; Vally, T.; Sebopa, B.; Turner-Babb, C. An Observational Study of Infuenza A(H1N1)Pdm09 Viral Shedding and Resistance under Standard-Duration Oseltamivir Treatment. South. Afr. J. Epidemiol. Infect. 2013, 28, 122–125. [Google Scholar] [CrossRef]
- Ayim-Akonor, M.; Mertens, E.; May, J.; Harder, T. Exposure of Domestic Swine to Influenza A Viruses in Ghana Suggests Unidirectional, Reverse Zoonotic Transmission at the Human–Animal Interface. Zoonoses Public Health 2020, 67, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Ben Hamed, S.; Elargoubi, A.; Harrabi, M.; Srihi, H.; Souiai, O.; Mastouri, M.; Almalki, M.A.; Gharbi, J.; Ben M’hadheb, M. Phylogenetic Analysis of the Neuraminidase Segment Gene of Influenza A/H1N1 Strains Isolated from Monastir Region (Tunisia) during the 2017–2018 Outbreak. Biologia 2021, 76, 1797–1806. [Google Scholar] [CrossRef]
- Bonney, J.H.; Kronmann, K.C.; Lindan, C.P. Virological Surveillance of Influenza-like Illness among Children in Ghana, 2008–2010. J. Infect. Dis. 2012, 206, S108–S113. [Google Scholar]
- Byarugaba, D.K.; Erima, B.; Millard, M.; Kibuuka, H.; Lkwago, L.; Bwogi, J.; Mimbe, D.; Kiconco, J.B.; Tugume, T.; Mworozi, E.A.; et al. Whole-Genome Analysis of Influenza A(H1N1)Pdm09 Viruses Isolated in Uganda from 2009 to 2011. Influenza Other Respir. Viruses 2016, 10, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Dia, N.; Ndiaye, M.N.; de Lourdes Monteiro, M.; Koivogui, L.; Bara, M.O.; Diop, O.M. A Subregional Analysis of Epidemiologic and Genetic Characteristics of Influenza A(H1N1)Pdm09 in Africa: Senegal, Cape Verde, Mauritania, and Guinea, 2009–2010. Am. J. Trop. Med. Hyg. 2013, 88, 946. [Google Scholar] [CrossRef] [Green Version]
- El Moussi, A.; Kacem, M.A.B.H.; Pozo, F.; Ledesma, J.; Cuevas, M.T.; Casas, I.; Slim, A. Frequency of D222G Haemagglutinin Mutant of Pandemic (H1N1) Pdm09 Influenza Virus in Tunisia between 2009 and 2011. Diagn. Pathol. 2013, 8, 124. [Google Scholar]
- El Moussi, A.; Ben Hadj Kacem, M.A.; Pozo, F.; Ledesma, J.; Cuevas, M.T.; Casas, I.; Slim, A. Genetic Diversity of HA1 Domain of Heammaglutinin Gene of Influenza A(H1N1)Pdm09 in Tunisia. Virol. J. 2013, 10, 150. [Google Scholar] [CrossRef] [Green Version]
- El Moussi, A.; Pozo, F.; Kacem, M.A.B.H.; Ledesma, J.; Cuevas, M.T.; Casas, I.; Slim, A. Virological Surveillance of Influenza Viruses during the 2008–09, 2009–2010 and 2010–11 Seasons in Tunisia. PLoS ONE 2013, 8, e74064. [Google Scholar]
- El Rhaffouli, H.; Fahime, E.; Laraqui, A.; Bajjou, T.; Melloul, M.; Obeid, S.; Fathallah, L.; Lahlou Amine, I. Evolution of the Hemagglutinin Gene of the Influenza A(H1N1)Pdm09 Virus in Morocco during Two Influenza Seasons 2009–2011. Curr. Microbiol. 2013, 68, 372–380. [Google Scholar] [CrossRef]
- Gachara, G.; Symekher, S.; Mbithi, J.N.; Simwa, J.; Ng’ayo, M.; Magana, J.; Bulimo, W.D. Amino Acid Sequence Analysis and Identification of Mutations in the NS Gene of 2009 Influenza A (H1N1) Isolates from Kenya. Virus Genes 2011, 43, 27–32. [Google Scholar]
- Gachara, G.M. Molecular Epidemiology and Evolution of Influenza A(H1N1) Pdm09 Virus in Kenya. Master’s Thesis, Kenyatta University, Nairobi, Kenya, 2014. Available online: https://ir-library.ku.ac.ke (accessed on 21 March 2022).
- Gachara, G.; Symekher, S.; Otieno, M.; Magana, J.; Opot, B.; Bulimo, W. Whole Genome Characterization of Human Influenza A(H1N1)Pdm09 Viruses Isolated from Kenya during the 2009 Pandemic. Infect. Genet. Evol. 2016, 40, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Meseko, C.A.; Odurinde, O.O.; Olaniran, B.O.; Heidari, A.; Oluwayelu, D.O. Pandemic Influenza A/H1N1 Virus Incursion into Africa: Countries, Hosts and Phylogenetic Analysis. Niger. Vet. J. 2015, 36, 1251–1261. [Google Scholar]
- Meseko, C.A.; Heidari, A.; Odaibo, G.N.; Olaleye, D.O. Complete Genome Sequencing of H1N1pdm09 Swine Influenza Isolates from Nigeria Reveals Likely Reverse Zoonotic Transmission at the Human-Animal Interface in Intensive Piggery. Infect. Ecol. Epidemiol. 2019, 9, 1696632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monamele, C.G.; Njifon, H.L.M.; Vernet, M.-A.; Njankouo, M.R.; Kenmoe, S.; Yahaya, A.A. Molecular Characterization of Influenza A (H1N1) Pdm09 in Cameroon during the 2014–2016 Influenza Seasons. PLoS ONE 2019, 14, e0210119. [Google Scholar] [CrossRef] [Green Version]
- Nakouné, E.; Tricou, V.; Manirakiza, A.; Komoyo, F.; Selekon, B.; Gody, J.C.; Victoir, K.; Buchy, P.; Kazanji, M. First Introduction of Pandemic Influenza A/H1N1 and Detection of Respiratory Viruses in Pediatric Patients in Central African Republic. Virol. J. 2013, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.I.; Njouom, R.; Viboud, C.; Niang, M.N.; Kadjo, H.; Ampofo, W. Multiyear Persistence of 2 Pandemic A/H1N1 Influenza Virus Lineages in West Africa. J. Infect. Dis. 2014, 210, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Opanda, S.; Bulimo, W.; Gachara, G.; Ekuttan, C.; Amukoye, E. Assessing Antigenic Drift and Phylogeny of Influenza A (H1N1) Pdm09 Virus in Kenya Using HA1 Sub-Unit of the Hemagglutinin Gene. PLoS ONE 2020, 15, e0228029. [Google Scholar] [CrossRef] [Green Version]
- Orelle, A.; Razanajatovo, N.H.; Rajatonirina, S.; Hoffmann, J.; Randrianasolo, L.; Razafitrimo, G.M.; Naidoo, D.; Richard, V.; Heraud, J.-M. Epidemiological and Virological Characterization of 2009 Pandemic Influenza A Virus Subtype H1N1 in Madagascar. J. Infect. Dis. 2012, 206, S140–S147. [Google Scholar] [CrossRef]
- Pascalis, H.; Temmam, S.; DA, W. Molecular Evolutionary Analysis of PH1N1 2009 Influenza Virus in Reunion Island, South West Indian Ocean Region: A Cohort Study. PLoS ONE 2012, 7, e43742. [Google Scholar]
- Quiliano, M.; Valdivia-Olarte, H.; Olivares, C.; Requena, D.; Gutiérrez, A.H.; Reyes-Loyola, P.; Tolentino-Lopez, L.E.; Sheen, P.; Briz, V.; Muñoz-Fernández, M.A.; et al. Molecular Distribution of Amino Acid Substitutions on Neuraminidase from the 2009 (H1N1) Human Influenza Pandemic Virus. Bioinformation 2013, 9, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Valley-Omar, Z.; Nindo, F.; Mudau, M.; Hsiao, M.; Martin, D.P. Phylogenetic Exploration of Nosocomial Transmission Chains of 2009 Influenza A/H1N1 among Children Admitted at Red Cross War Memorial Children’s Hospital, Cape Town, South Africa in 2011. PLoS ONE 2015, 10, e0141744. [Google Scholar] [CrossRef] [Green Version]
- Venter, M.; Naidoo, D.; Pretorius, M.; Buys, A.; McAnerney, J.; Blumberg, L.; Madhi, S.A.; Cohen, C.; Schoub, B. Evolutionary Dynamics of 2009 Pandemic Influenza A Virus Subtype H1N1 in South Africa during 2009–2010. J. Infect. Dis. 2012, 206 (Suppl. 1), 166–172. [Google Scholar]
- Aboualy, M.; Mohareb, E.; Fahim, M.; Roshdy, W.; Younan, M.; Said, M.; Imam, M.; Abdelsalam, E.T. Identification of Non-Haemagglutinating Influenza A/H3 Virus and Characterization of Haemagglutinin (HA) and Neuraminidase (NA) Strain Mutations in Influenza-Like-Illness Cases in Egypt on MDCK Cell Line. Egypt. Acad. J. Biol. Sci. G. Microbiol. 2018, 10, 1–8. [Google Scholar] [CrossRef]
- Besselaar, T.G.; Blackburn, N.K.; Schoub, B.D. The Molecular Characterization of Influenza Virus Strains Isolated in South Africa during 1993 and 1994. Res. Virol. 1996, 147, 239–245. [Google Scholar]
- Besselaar, T.G.; Schoub, B.D.; Blackburn, N.K. Impact of the Introduction of A/Sydney/5/97 H3N2 Influenza Virus into South Africa. J. Med. Virol. 1999, 59, 561–568. [Google Scholar] [CrossRef]
- Besselaar, T.G.; Botha, L.; McAnerney, J.M.; Schoub, B.D. Antigenic and Molecular Analysis of Influenza A (H3N2) Virus Strains Isolated from a Localised Influenza Outbreak in South Africa in 2003. J. Med. Virol. 2004, 73, 71–78. [Google Scholar]
- Bulimo, W.D.; Garner, J.L.; Schnabel, D.C.; Bedno, S.A.; Njenga, M.K.; Ochieng, W.O.; Amukoye, E.; Magana, J.M.; Simwa, J.M.; Ofula, V.O.; et al. Genetic Analysis of H3N2 Influenza A Viruses Isolated in 2006–2007 in Nairobi, Kenya. Influenza Other Respir. Viruses 2008, 2, 107–113. [Google Scholar]
- Bulimo, W.D.; Gachara, G.; Opot, B.H.; MW, M.; Wurapa, E.K. Evidence in Kenya of Reassortment Between Seasonal Influenza A(H3N2) and Influenza A(H1N1)Pdm09 to Yield A(H3N2) Variants With the Matrix Gene Segment of A(H1N1)Pdm09. Afr. J. Pharmacol. Ther 2012, 1, 1–7. [Google Scholar]
- Byarugaba, D.K.; Ducatez, M.F.; Erima, B.; Mworozi, E.A.; Millard, M.; Kibuuka, H.; Lukwago, L.; Bwogi, J.; Kaira, B.B.; Mimbe, D.; et al. Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Uganda. PLoS ONE 2011, 6, e27803. [Google Scholar] [CrossRef] [Green Version]
- El Moussi, A.; Kacem, M.A.B.H.; Slim, A. Loss and Gain of N-Linked Glycosylation Sites in Globular Head and Stem of HA Found in A/H3N2 Flu Fatal and Severe Cases during 2013 Tunisia Flu Seasonal Survey. Virus Genes 2014, 48, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Kaira, B.B. Detection and Characterization of Human Influenza a Virus Isolates from Patients Attending Kayunga and Mulago Hospitals in Uganda. Master’s Thesis, Makerere University, Kampala, Uganda, 2011. Available online: http://makir.mak.ac.ug (accessed on 21 March 2022).
- Kleynhans, J.; Treurnicht, F.K.; Cohen, C.; Vedan, T.; Seleka, M.; Maki, L.; von Gottberg, A.; McCarthy, K.; Ramkrishna, W.; McMorrow, M. Outbreak of Influenza A in a Boarding School in South Africa, 2016. Pan Afr. Med. J. 2019, 33. [Google Scholar]
- McAnerney, J.M.; Treurnicht, F.; Walaza, S.; Cohen, A.L.; Tempia, S.; Mtshali, S. Evaluation of Influenza Vaccine Effectiveness and Description of Circulating Strains in Outpatient Settings in South Africa, 2014. Influenza Other Respir. Viruses 2015, 9. [Google Scholar] [CrossRef]
- Monamele, G.C.; Torre, J.C.; Vernet, M.-A. Genetic and Antigenic Characterization of Influenza A(H3N2) in Cameroon during the 2014–2016 Influenza Seasons. PLoS ONE 2017, 12, 0184411. [Google Scholar]
- Njifon, H.L.M.; Monamele, C.G.; Vernet, M.-A.; Njankouo, M.R.; Deweerdt, L.; Nono, R.; Kenmoe, S.; Mbacham, W.; Njouom, R. Genetic Diversity of Influenza A(H3N2) Viruses in Northern Cameroon during the 2014–2016 Influenza Seasons. J. Med. Virol. 2019, 91, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Nyang’au, E.M.; Bulimo, W.D.; Mobegi, V.; Opanda, S.; Magiri, E. Genetic Analysis of HA1 Domain of Influenza A/H3N2 Viruses Isolated in Kenya During the 2007 to 2013 Seasons Reveal Significant Divergence from WHO-Recommended Vaccine Strains. Int. J. Infect. Dis. 2020, 95, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Owuor, D.C.; Ngoi, J.M.; Otieno, J.R.; Otieno, G.P.; Nyasimi, F.M.; Nyiro, J.U.; Agoti, C.N.; Chaves, S.S.; Nokes, D.J. Genetic Characterization of Influenza A(H3N2) Viruses Circulating in Coastal Kenya, 2009–2017. Influenza Other Respir. Viruses 2020. [Google Scholar] [CrossRef]
- WHO. Influenza Outbreak in the District of Bosobolo, Democratic Republic of the Congo, November—December 2002: Epidemiological Report = Flambée de Grippe Dans Le District de Bosobolo, République Démocratique Du Congo, Novembre-Décembre 2002: Epidémiologie. Wkly. Epidemiol. Rec. 2003, 78, 94–96. [Google Scholar]
- Barakat, A.; Benjouad, A.; Manuguerra, J.C.; El Aouad, R.; Werf, S. Virological Surveillance in Africa Can Contribute to Early Detection of New Genetic and Antigenic Lineages of Influenza Viruses. J. Infect. Dev. Ctries. 2011, 5, 270–277. [Google Scholar]
- Barr, I.G.; McCauley, J.; Cox, N.; Daniels, R.; Engelhardt, O.G.; Fukuda, K.; Grohmann, G.; Hay, A.; Kelso, A.; Klimov, A.; et al. Epidemiological, Antigenic and Genetic Characteristics of Seasonal Influenza A(H1N1), A(H3N2) and B Influenza Viruses: Basis for the WHO Recommendation on the Composition of Influenza Vaccines for Use in the 2009–2010 Northern Hemisphere Season. Vaccine 2010, 28, 1156–1167. [Google Scholar]
- Besselaar, T.G.; Schoub, B.D.; McAnerney, J.M. Phylogenetic Studies of South African Influenza A Viruses: 1997–1999. In Options for the Control of Influenza IV; Osterhaus, A., Cox, N., Hampson, A., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 139–145. [Google Scholar]
- Chan, J.; Holmes, A.; Rabadan, R. Network Analysis of Global Influenza Spread. PLoS Comput. Biol. 2010, 6, e1001005. [Google Scholar] [CrossRef] [Green Version]
- Deyde, V.M.; Xu, X.; Bright, R.A.; Shaw, M.; Smith, C.B.; Zhang, Y.; Shu, Y.; Gubareva, L.V.; NJ, C.; Klimov, A.I. Surveillance of Resistance to Adamantanes among Influenza A (H3N2) and A (H1N1) Viruses Isolated Worldwide. Am. J. Infect. Dis 2007, 196, 249–257. [Google Scholar]
- Heraud, J.M.; Njouom, R.; Rousset, D. Spatiotemporal Circulation of Influenza Viruses in 5 African Countries during 2008–2009: A Collaborative Study of the Institut Pasteur International Network. J. Infect. Dis 2012, 206, S5–S13. [Google Scholar] [PubMed]
- Niang, M.N.; Dosseh, A.; Ndiaye, K.; Sagna, M.; Gregory, V.; Goudiaby, D.; Hay, A.; Diop, O.M. Sentinel Surveillance for Influenza in Senegal, 1996–2009. J. Infect. Dis. 2012, 206 (Suppl. 1), S129–S135. [Google Scholar] [CrossRef] [PubMed]
- Ait-Aissa, A.; Derrar, F.; Hanoun, D.; Gradi, E.-A.; Scaravelli, D.; Bouslama, Z. Surveillance for Antiviral Resistance among Influenza Viruses Circulating in Algeria during Five Consecutive Influenza Seasons (2009 to 2014). J. Med. Virol. 2018, 90, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Al Khatib, H.A.; Al Thani, A.A.; Gallouzi, I.; Yassine, H.M. Epidemiological and Genetic Characterization of PH1N1 and H3N2 Influenza Viruses Circulated in MENA Region during 2009–2017. BMC Infect. Dis. 2019, 19, 314. [Google Scholar] [CrossRef]
- Barr, I.G.; Russell, C.; Besselaar, T.G.; Cox, N.J.; Daniels, R.S.; Donis, R.; Engelhardt, O.G.; Grohmann, G.; Itamura, S.; Kelso, A.; et al. WHO Recommendations for the Viruses Used in the 2013–2014 Northern Hemisphere Influenza Vaccine: Epidemiology, Antigenic and Genetic Characteristics of Influenza A(H1N1)Pdm09, A(H3N2) and B Influenza Viruses Collected from October 2012 to January 2013. Vaccine 2014, 32, 4713–4725. [Google Scholar] [CrossRef] [Green Version]
- Bulimo, W.D.; Mukunzi, S.; Achilla, R.; Opot, B.; Osuna, F.; Majanja, J. Were the WHO-Recommended Human Influenza Vaccine Formulations Appropriate for Kenya During the 2010–2011 Season? Inferences from the HA1 Gene Analysis. Afr. J. Pharmacol. Ther. 2012, 1, 46–54. [Google Scholar]
- Kavunga-Membo, H.; Nkwembe, E.; Simulundu, E.; Karhemere, S.; Babakazo, P.; Manya, L.; Kabamba, J.; Okitolonda, E.; Ahuka-Mundeke, S.; Muyembe, J.J. Epidemiology of Circulating Human Influenza Viruses from the Democratic Republic of Congo, 2015. PLoS ONE 2018, 13, e0203995. [Google Scholar] [CrossRef]
- Klimov, A.I.; Garten, R.; Russell, C.; Barr, I.G.; Besselaar, T.G.; Daniels, R.; Engelhardt, O.G.; Grohmann, G.; Itamura, S.; Kelso, A.; et al. WHO Recommendations for the Viruses to Be Used in the 2012 Southern Hemisphere Influenza Vaccine: Epidemiology, Antigenic and Genetic Characteristics of Influenza A(H1N1)Pdm09, A(H3N2) and B Influenza Viruses Collected from February to September 2011. Vaccine 2012, 30, 6461–6471. [Google Scholar] [CrossRef]
- Mackenzie, G.A.; Vilane, A.; Salaudeen, R.; Hogerwerf, L.; van den Brink, S.; Wijsman, L.A.; Overduin, P.; Janssens, T.K.; de Silva, T.I.; van der Sande, M.A. Respiratory Syncytial, Parainfluenza and Influenza Virus Infection in Young Children with Acute Lower Respiratory Infection in Rural Gambia. Sci. Rep. 2019, 9, 17965. [Google Scholar] [PubMed] [Green Version]
- Nkwembe, E.; Cintron, R.; Sessions, W.; Kavunga, H.; Babakazo, P.; Manya, L.; Muyembe, J.J. Molecular Analysis of Influenza A(H3N2) and A(H1N1)Pdm09 Viruses Circulating in the Democratic Republic of Congo, 2014. J. Harmon. Res. Med. Health Sci. 2016, 3, 247–264. [Google Scholar] [PubMed]
- Owuor, D.C. Sequence Diversity, Evolution and Transmission of Influenza A(H1N1)Pdm09 and A(H3N2) Viruses in Kenya, 2009–2018. Ph.D. Thesis, The Open University, Milton Keynes, UK, 2021. Available online: https://doi.org/10.21954/ou.ro.000126d0 (accessed on 21 March 2022).
- Sanou, A.M.; Wandaogo, S.C.M.; Poda, A.; Tamini, L.; Kyere, A.E.; Sagna, T. Epidemiology and Molecular Characterization of Influenza Viruses in Burkina Faso, Sub-Saharan Africa. Influenza Other Respir. Viruses 2018, 12, 490–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soli, R.; Kaabi, B.; Barhoumi, M.; Maktouf, C.; Ahmed, S.B.-H. Bayesian Phylogenetic Analysis of the Influenza-A Virus Genomes Isolated in Tunisia, and Determination of Potential Recombination Events. Mol. Phylogenetics Evol. 2019, 134, 253–268. [Google Scholar] [CrossRef]
- Soliman, M.S.; El-Kholy, A.A.; Kamel, M.M.; Alorabi, J.A.; Mohamed, N.M.; Abdel-Moneim, A.S. Characterization and Mutational Analysis of Haemagglutinin and Neuraminidase of H3N2 and H1N1pdm09 Human Influenza A Viruses in Egypt. Virus Dis. 2020, 31, 262–269. [Google Scholar] [CrossRef]
- Tivane, A.; Daniels, R.; Nguenha, N. Antigenic and Genetic Characterization of Influenza Viruses Isolated in Mozambique during the 2015 Season. PLoS ONE 2018, 13, e0201248. [Google Scholar]
- Valley-Omar, Z.; Iyengar, P.; von Mollendorf, C.; Tempia, S.; Moerdyk, A.; Hellferscee, O.; Martinson, N.; McMorrow, M.; Variava, E.; Masonoke, K.; et al. Intra-Host and Intra-Household Diversity of Influenza A Viruses during Household Transmissions in the 2013 Season in 2 Peri-Urban Communities of South Africa. PLoS ONE 2018, 13, e0198101. [Google Scholar] [CrossRef] [Green Version]
- Treurnicht, F.K.; Buys, A.; Tempia, S.; Seleka, M.; Cohen, A.L.; Walaza, S.; Glass, A.J.; Rossouw, I.; McAnerney, J.; Blumberg, L.; et al. Replacement of Neuraminidase Inhibitor-Susceptible Influenza A(H1N1) with Resistant Phenotype in 2008 and Circulation of Susceptible Influenza A and B Viruses during 2009–2013, South Africa. Influenza Other Respir. Viruses 2019, 13, 54–63. [Google Scholar] [CrossRef]
- Wadegu, M.; Wamunyokoli, F.; Osanjo, G.; Opanda, S.; Majanja, J.; Coldren, R.; Bulimo, W. Molecular Surveillance of Adamantane Resistance among Human Influenza A Viruses Isolated in Four Epidemic Seasons in Kenya. Afr. J. Pharmacol. Ther. 2016, 5, 181–192. [Google Scholar]
- World Health Organization. World Health Organization: Preliminary review of D222G amino acid substitution in the haemagglutinin of pandemic influenza A(H1N1) 2009 viruses. Wkly. Epidemiol. Rec. 2010, 16, 23. [Google Scholar]
- Lu, G.; Rowley, T.; Garten, R.; Donis, R.O. FluGenome: A Web Tool for Genotyping Influenza A Virus. Nucleic Acids Res. 2007, 35, W275–W279. [Google Scholar] [CrossRef] [PubMed]
- Heath, L.; Walt, E.; Varsani, A.; Martin, D.P. Recombination Patterns in Aphthoviruses Mirror Those Found in Other Picornaviruses. J. Virol. 2006, 80, 11827–11832. [Google Scholar] [PubMed] [Green Version]
- Pica, N.; Hai, R.; Krammer, F.; Wang, T.T.; Maamary, J.; Eggink, D.; Tan, G.S.; Krause, J.C.; Moran, T.; Stein, C.R.; et al. Hemagglutinin Stalk Antibodies Elicited by the 2009 Pandemic Influenza Virus as a Mechanism for the Extinction of Seasonal H1N1 Viruses. Proc. Natl. Acad. Sci. USA 2012, 109, 2573–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikonen, N.; Haanpaa, M.; Ronkko, E.; Lyytikainen, O.; Kuusi, M.; Ruutu, P.; KallioKokko, H.; Mannonen, L.; Lappalainen, M.; Ziegler, T.; et al. Genetic Diversity of the 2009 Pandemic Influenza A(H1N1) Viruses in Finland. PLoS ONE 2010, 5, e13329. [Google Scholar]
- Strengell, M.; Ikonen, N.; Ziegler, T.; Julkunen, I. Minor Changes in the Hemagglutinin of Influenza A(H1N1)2009 Virus Alter Its Antigenic Properties. PLoS ONE 2011, 6, e25848. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.C.F.; Bahl, J.; Joseph, U.; Butt, K.M.; Peck, H.A.; Koay, E.S.C.; Oon, L.L.E.; Barr, I.G.; Vijaykrishna, D.; Smith, G.J.D. Phylodynamics of H1N1/2009 Influenza Reveals the Transition from Host Adaptation to Immune-Driven Selection. Nat. Commun. 2015, 6, 7952. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Liu, K.; Yin, Y.; Qin, J.; Zhou, Y.-H.; Yang, J.; Li, S.; Poon, L.L.M.; Zhang, C. The Phylodynamics of Seasonal Influenza A/H1N1pdm Virus in China Between 2009 and 2019. Front. Microbiol. 2020, 11, 735. [Google Scholar] [CrossRef]
- Nelson, M.; Spiro, D.; Wentworth, D.; Fan, J.; Beck, E.; George, K.S. The Early Diversification of Influenza A/H1N1pdm. PLoS Curr. 2009, 1, RRN1126. [Google Scholar] [CrossRef]
- Koel, B.F.; Burke, D.F.; Bestebroer, T.M.; van der Vliet, S.; Zondag, G.C.M.; Vervaet, G.; Skepner, E.; Lewis, N.S.; Spronken, M.I.J.; Russell, C.A.; et al. Substitutions near the Receptor Binding Site Determine Major Antigenic Change during Influenza Virus Evolution. Science 2013, 342, 976–979. [Google Scholar] [CrossRef]
- Koelle, K.; Rasmussen, D.A. The Effects of a Deleterious Mutation Load on Patterns of Influenza A/H3N2′s Antigenic Evolution in Humans. eLife 2015, 4, e07361. [Google Scholar] [CrossRef]
- Petrova, V.N.; Russell, C.A. The Evolution of Seasonal Influenza Viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.C.; Otwinowski, J.; Thompson, A.J.; Nycholat, C.M.; Nourmohammad, A.; Wilson, I.A. Major Antigenic Site B of Human Influenza H3N2 Viruses Has an Evolving Local Fitness Landscape. Nat. Commun. 2020, 11, 1233. [Google Scholar] [CrossRef] [PubMed]
- Skehel, J.J.; Stevens, D.J.; Daniels, R.S.; Douglas, A.R.; Knossow, M.; Wilson, I.A.; Wiley, D.C. A Carbohydrate Side Chain on Hemagglutinins of Hong Kong Influenza Viruses Inhibits Recognition by a Monoclonal Antibody. Proc. Natl. Acad. Sci. USA 1984, 81, 1779–1783. [Google Scholar] [PubMed] [Green Version]
- Maurer-Stroh, S.; Ma, J.; Lee, R.T.; Sirota, F.L.; Eisenhaber, F. Mapping the Sequence Mutations of the 2009 H1N1 Influenza A Virus Neuraminidase Relative to Drug and Antibody Binding Sites. Biol. Direct. 2009, 4, 18. [Google Scholar]
- Duque, J.; McMorrow, M.L.; Cohen, A.L. Influenza Vaccines and Influenza Antiviral Drugs in Africa: Are They Available and Do Guidelines for Their Use Exist? BMC Public Health 2014, 14, 41. [Google Scholar]
- Hussain, M.; Galvin, H.D.; Haw, T.Y.; Nutsford, A.N.; Husain, M. Drug Resistance in Influenza A Virus: The Epidemiology and Management. Infect. Drug Resist. 2017, 10, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Badar, N.; Salman, M.; Aamir, U.B.; Ansari, J.; Ranjha, M.A.; Khan, M.A.; Ikram, A.; Nisar, N.; Mushtaq, N.; Mirza, H.A. Evolutionary Analysis of Influenza A(H1N1)Pdm09 during the Pandemic and Post-Pandemic Period in Pakistan. J. Infect. Public Health 2020, 13, 407–413. [Google Scholar] [CrossRef]
- Jones, S.; Nelson-Sathi, S.; Wang, Y.; Prasad, R.; Rayen, S.; Nandel, V.; Hu, Y.; Zhang, W.; Nair, R.; Dharmaseelan, S.; et al. Evolutionary, Genetic, Structural Characterization and Its Functional Implications for the Influenza A (H1N1) Infection Outbreak in India from 2009 to 2017. Sci. Rep. 2019, 9, 14690. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Biswas, M.; Gupta, R.; Majumdar, A.; Mitra, S.; Banerjee, A.; Mukherjee, A.; Dutta, S.; Chawla-Sarkar, M. Molecular Characterization of Influenza A Pandemic H1N1 Viruses Circulating in Eastern India during 2017–19: Antigenic Diversity in Comparison to the Vaccine Strains. Infect. Genet. Evol. 2020, 81, 104270. [Google Scholar] [CrossRef]
- Dong, G.; Peng, C.; Luo, J.; Wang, C.; Han, L.; Wu, B.; Ji, G.; He, H. Adamantane-Resistant Influenza a Viruses in the World (1902–2013): Frequency and Distribution of M2 Gene Mutations. PLoS ONE 2015, 10, e0119115. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Zhang, W.; Yan, H.; Xu, H.; Xie, Y.; Wu, Q.; Wang, C.; Dong, G. Distribution and Evolution of H1N1 Influenza A Viruses with Adamantanes-Resistant Mutations Worldwide from 1918 to 2019. J. Med. Virol. 2021, 93, 3473–3483. [Google Scholar] [CrossRef] [PubMed]
- Escuret, V.; Frobert, E.; Bouscambert-Duchamp, M. Detection of Human Influenza A (H1N1) and B Strains with Reduced Sensitivity to Neuraminidase Inhibitors. J. Clin. Virol. 2008, 41, 25–28. [Google Scholar] [PubMed]
- Kyaw Win, S.M.; Saito, R.; Win, N.C.; Lasham, D.J.; Kyaw, Y.; Lin, N.; Thein, K.N.; Chon, I.; Odagiri, T.; Thein, W.; et al. Epidemic of Influenza A(H1N1)Pdm09 Analyzed by Full Genome Sequences and the First Case of Oseltamivir-Resistant Strain in Myanmar 2017. PLoS ONE 2020, 15, e0229601. [Google Scholar] [CrossRef]
- Shen, J.; Ma, J.; Wang, Q. Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918. PLoS ONE 2009, 4, 7789. [Google Scholar]
- Nelson, M.N.; Edelman, L.; Spiro, D.J.; Boyne, A.R.; Bera, J.; Halpin, R.; Ghedin, E.; Miller, M.A.; Simonsen, L.; Viboud, C.; et al. Molecular Epidemiology of A/H3N2 and A/H1N1 Influenza Virus during a Single Epidemic Season in the United States. PLoS Pathog. 2008, 4, e1000133. [Google Scholar]
- Baillie, G.J.; Galiano, M.; Agapow, P.M.; Myers, R.; Chiam, R.; Gall, A.; Palser, A.L.; Watson, S.J.; Hedge, J.; Underwood, A.; et al. Evolutionary Dynamics of Local Pandemic H1N1/2009 Influenza Virus Lineages Revealed by Whole-Genome Analysis. J. Virol. 2012, 86, 11–18. [Google Scholar]
- Bedford, T.; Riley, S.; Barr, I.G.; Broor, S.; Chadha, M.; Cox, N.J. Global Circulation Patterns of Seasonal Influenza Viruses Vary with Antigenic Drift. Nature 2015, 523, 26053121. [Google Scholar] [CrossRef] [Green Version]
- Viboud, C.; Nelson, M.I.; Tan, Y.; Holmes, E.C. Contrasting the epidemiological and evolutionary dynamics of influenza spatial transmission. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120199. [Google Scholar]
- CDC. Outbreak of Swine-Origin Influenza A (H1N1) Virus Infection-Mexico, March-April 2009. MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 19444150. [Google Scholar]
- CDC. 2009 H1N1 Flu Pandemic Timeline. Available online: https://www.cdc.gov/flu/pandemic-resources/2009-pandemic-timeline.html (accessed on 21 July 2021).
- Bedford, T.; Cobey, S.; Pascual, M. Strength and Tempo of Selection Revealed in Viral Gene Genealogies. BMC Evol. Biol. 2011, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Nelson, M.I.; Holmes, E.C. The Evolution of Epidemic Influenza. Nat. Rev. Genet. 2007, 26, 32. [Google Scholar]
- Christman, M.C.; Kedwaii, A.; Xu, J.; Donis, R.O.; Lu, G. Pandemic (H1N1) 2009 Virus Revisited: An Evolutionary Retrospective. Infect. Genet. Evol. 2011, 11, 803–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahl, J.; Nelson, M.I.; Chan, K.H. Temporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc. Natl. Acad. Sci. USA 2011, 108, 19359–19364. [Google Scholar] [PubMed] [Green Version]
- Ebranati, E.; Pariani, E.; Piralla, A.; Gozalo-Margüello, M.; Veo, C.; Bubba, L.; Amendola, A.; Ciccozzi, M.; Galli, M.; Zanetti, A.R.; et al. Reconstruction of the Evolutionary Dynamics of A(H3N2) Influenza Viruses Circulating in Italy from 2004 to 2012. PLoS ONE 2015, 10, e0137099. [Google Scholar] [CrossRef]
- Gong, Y.-N.; Tsao, K.-C.; Chen, G.-W. Inferring the Global Phylodynamics of Influenza A/H3N2 Viruses in Taiwan. J. Formos. Med. Assoc. 2019, 118, 116–124. [Google Scholar] [CrossRef]
- Yang, J.R.; Lin, Y.C.; Huang, Y.P.; Su, C.H.; Lo, J.; Ho, Y.L.; Yao, C.Y.; Hsu, L.C.; Wu, H.S.; Liu, M.T. Reassortment and Mutations Associated with Emergence and Spread of Oseltamivirresistant Seasonal Influenza A/H1N1 Viruses in 2005–2009. PLoS ONE 2011, 6, e18177. [Google Scholar]
- Bragstad, K.; Nielsen, L.P.; Fomsgaard, A. The Evolution of Human Influenza A Viruses from 1999 to 2006: A Complete Genome Study. Virol. J. 2008, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Komadina, N.; McVernon, J.; Hall, R.; Leder, K. A Historical Perspective of Influenza A(H1N2) Virus. Emerg. Infect. Dis. 2014, 20, 6–12. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Recommended Composition of Influenza Virus Vaccines for Use in the 2002–2003 Season = Composition Recommandée Des Vaccins Antigrippaux Pour La Saison 2002–2003. Wkly. Epidemiol. Rec. 2002, 77, 62–66. [Google Scholar]
- Ledesma, J.; Pozo, F.; Reina, G.; Blasco, M.; Rodríguez, G.; Montes, M.; López-Miragaya, I.; Salvador, C.; Reina, J.; Ortíz de Lejarazu, R.; et al. Genetic Diversity of Influenza A(H1N1)2009 Virus Circulating during the Season 2010–2011 in Spain. J. Clin. Virol. 2012, 53, 16–21. [Google Scholar] [CrossRef]
- Kyncl, J.; Havlickova, M.; Nagy, A.; Jirincova, H.; Piskova, I. Early and Unexpectedly Severe Start of Influenza Epidemic in the Czech Republic during Influenza Season 2012–13. Eurosurveillance 2013, 18, 20396. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Ghedin, E.; Miller, N.; Taylor, J.; Bao, Y. Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol. 2005, 3, 300. [Google Scholar]
- Maljkovic Berry, I.; Melendrez, M.C.; Li, T.; Hawksworth, A.W.; Brice, G.T.; Blair, P.J.; Halsey, E.S.; Williams, M.; Fernandez, S.; Yoon, I.-K.; et al. Frequency of Influenza H3N2 Intra-Subtype Reassortment: Attributes and Implications of Reassortant Spread. BMC Biol. 2016, 14, 117. [Google Scholar] [CrossRef] [Green Version]
- Müller, N.F.; Stolz, U.; Dudas, G.; Stadler, T.; Vaughan, T.G. Bayesian Inference of Reassortment Networks Reveals Fitness Benefits of Reassortment in Human Influenza Viruses. Proc. Natl. Acad. Sci. USA 2020, 117, 17104–17111. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Pybus, O.G.; Nelson, M.I.; Viboud, C.; Taubenberger, J.K.; Holmes, E.C. The genomic and epidemiological dynamics of human influenza A virus. Nature 2008, 453, 615–619. [Google Scholar]
- Simonsen, L.; Viboud, C.; Grenfell, B.; Dushoff, J.; Jennings, L.; Smit, M.; Hata, M.; Macken, C.; Gog, J.; Miller, M.A.; et al. The genesis and spread of reassortment human influenza A/H3N2 viruses conferring adamantane resistance. Mol. Biol. Evol. 2007, 24, 24. [Google Scholar]
- Nabakooza, G.; Pastusiak, A.; Kateete, D.P.; Lutwama, J.J.; Kitayimbwa, J.M.; Frost, S.D.W. Whole-Genome Analysis to Determine the Rate and Patterns of Intra-Subtype Reassortment among Influenza Type-A Viruses in Africa. Virus Evol. 2022, 8, veac005. [Google Scholar] [CrossRef]
- Phipps, K.L.; Marshall, N.; Tao, H.; Danzy, S.; Onuoha, N.; Steel, J.; Lowen, A.C. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny. J. Virol. 2017, 91, e00830-17. [Google Scholar] [CrossRef] [Green Version]
Study (Reference) | Study Type | Location | Sampling Dates | Population; Setting; Viral Detection Method | Sample Selection Criteria for Sequencing or Analysis | No. of Samples Sequenced; Sequencing Technology and Location | Gene/s Sequenced and Analyzed | Analysis Type | Patient’s Variables Collected |
---|---|---|---|---|---|---|---|---|---|
H1N1 viruses | |||||||||
Besselaar (2008) [37] | Observational study nested in an active national sentinel surveillance program | South Africa | May–July 2008 | ARI patients of all ages; sentinel site surveillance program; shell vial assay or cell culture | All isolated viruses were sequenced | 45; sequencing technology and location not described | HA, NA | Mutations; drug sensitivity; genomic variation | 3, 4 |
Bulimo (2012) [38] | Observational study nested in a sentinel surveillance program | Kenya | January 2007–November 2008 | ILI outpatients aged >2 months; sentinel site surveillance system; RT-PCR | Randomly selected virus isolates based on the month and location of sampling and sequenced all those that were positive for H1N1; included online HA1 sequences from South Africa, Malaysia, and Thailand | 42; Sanger; Texas, USA (abroad) | HA1 | Mutations; genomic variation; phylogenetics (Bayesian) | 3, 4 |
Hurt (2009) [39] | Observational study nested in the WHO global influenza surveillance network | Global; Australia, South East Asia, Oceania, and South Africa | October 2007–November 2008 | Populations not described; viruses sampled through influenza surveillance networks in 10 countries, subtyped, and submitted to the WHO Influenza Centre, Melbourne; viral detection method not described | Selected viruses with reduced susceptibility to oseltamivir (high IC50 values) | 264; inclusive of 26 viruses from South Africa; pyrosequencing; Melbourne (abroad) | HA, NA | Mutations: drug sensitivity; phylogenetics (ML) | 3, 4 |
Njouom (2010) [40] | Observational study nested in the national influenza surveillance network | Yaounde, Cameroon | November 2007–October 2008 | ILI outpatients of all ages; national influenza surveillance network sampled 7 sentinel sites across Younde (Cameroon); RT-PCR and HAI on cell culture | All viruses successfully isolated in cell cultures were sequenced | 10; technology not described; London, U.K. (abroad) | HA, NA, MP | Mutations: drug sensitivity; antigenic inhibition assay; phylogenetics | 3, 4 |
Dia (2013) [41] | Observational study nested in an influenza surveillance network | Senegal | July–September 2008 | ILI outpatients aged 2 months to 48 years; sentinel surveillance system; HAI on cell culture | Randomly selected; included 27 viruses isolated earlier in 2007 | 15; Sanger; London, U.K. (abroad) | HA1, NA, M2 | Mutations; drug sensitivity; antigenic analysis; phylogenetics (ML) | 3, 4 |
H1N1pdm09 viruses | |||||||||
Adeola (2019) [42] | Independent syndromic survey | Nigeria and Ghana | January 2014–March 2015 (swine) and December 2015–March 2016 (human) | Swine handlers with ILI and asymptomatic swine in pig farms and Abattoirs in Ibadan (Nigeria) and Kumasi (Ghana); RT-PCR | Sequenced all (3) H1N1pdm09-positive samples observed among the 32 swine handlers that consented to test for influenza | 3 Human (Ghana (2), Nigeria (1)) and 3 Swine (Ghana); Sanger; Nigeria (local); included Africa and global human (2009–2014) and swine (2011–2018) viral MP sequences from GenBank | MP | Phylogenetics (ML); zoonosis | 1, 2, 3, 4 |
Aspinall (2013)[43] | Independent longitudinal observational trial | South Africa | 2009–2010 | Patients with fever and positive influenza rapid antigen tests of one year and older (1–64 years); community-based trial; RT-PCR | All H1N1pdm09 positives were sequenced | 44; technology not described; South Africa (local) | NA | Mutations: drug sensitivity; neuraminidase inhibition assay (NAI) | 1, 2, 3, 4, 5, 6, 8, 10, 11, 13 |
Ayim-Akonor (2020) [44] | Independent active cross-sectional study | Ghana | April–July 2016 and December 2016–February 2017 | Asymptomatic farmers and apparently healthy swine aged 6–24 weeks at piggery farms in Ashanti region of Ghana; RT-PCR | Sequenced all H1N1pdm09 influenza-positive swine samples with PCR CT value <25 | 8; Sanger; Germany (abroad); included Africa and global human and swine viral sequences from GISAID sampled in 2016–2017 | 3 WGs and 11 PGs (HA and NA) | Antigenic analysis; phylogenetics (ML); zoonosis | 1, 2, 3, 4 |
Ben Hamed (2021) [45] | Independent observational study | Tunisia | 2017–2018 | SARI patients aged (3 months-80 years) in the Sahel region (Monastir) of Tunisia; RT-PCR | Sequenced viral samples for patients with fatal and severe cases with ≤5 days of infection and the best PCR bands | 7; Sanger; Tunisia (local); included global N1 sequences sampled in 2010–2011 | NA | Phylogenetics (ML) | 1, 2, 3, 4, 6, 8, 13 |
Bonney (2012) [46] | Observational study nested in the national influenza surveillance system | Ghana | January 2008–December 2010 | 0–10-years-old children with ILI; influenza surveillance system; RT-PCR | Selection criteria not described | 13; technology not described; London, U.K. (abroad) | NA | Drug sensitivity (sialidase inhibition assay); antigenic analysis (HAI); phylogenetics | 1, 2, 3, 4, 8 |
Byarugaba (2016) [47] | Observational study nested in a sentinel surveillance program | Uganda | July 2009–May 2011 | ILI outpatients for all ages; hospital-based sentinel surveillance system (Mulago, Jinja, Bugiri, and Gulu); RT-PCR | Not described | 19; Sanger; Memphis, TN, USA (abroad) | WGs | Mutations; drug sensitivity; antigenic analysis (HAI); phylogenetics | 1, 2, 3, 4 |
Dia (2013) [48] | Prospective observational study nested in a surveillance program in Senegal | West Africa; (Cape Verde, Guinea, Mauritania, and Senegal) | June 2009–October 2010 | ILI patients of all ages; surveillance program in Senegal and for other countries samples were collected in the context of the pandemic mostly from health centers in capital cities; RT-PCR | Selected samples based on time and country, and with PCR Ct ≤ 30 | 14; Senegal (7), Mauritania (6), Cape Verde (1) Sanger; London, U.K. (abroad) | HA, NA | Mutations; drug sensitivity; phylogenetics (ML) | 1, 2, 3, 4, 8 |
El Moussi (2013) [49] | Observational study nested in a viroloigcal surveillance network | Tunisia | 2009–2011 | ILI and SARI patients of all ages; Virological surveillance network; RT-PCR | Selected samples based on clinical symptoms (42 severe and fatal and 8 mild) | 50; targeted hemagglutinin analysis and Sanger; Tunisia (local) | HA (931 bps) | Mutations | 1, 2, 3, 4, 8 |
El Moussi (2013) [50] | Observational study nested in a sentinel centre and hospital surveillance | Tunisia | May 2009–December 2011 | ILI patients of all ages; sentinel centre and a hospital surveillance; RT-PCR | Selection criteria not described | 50; Sanger, Tunisia (local) | HA (931 bps) | Mutations; phylogenetic analysis (ML) | 1,3, 4, 8, 10 |
El Moussi (2013) [51] | Observational study nested in an influenza surveillance program | Tunisia | 2008–2011 | ILI and SARI patients of all ages; surveillance system; RT-PCR | Randomly selected regardless of the clinical symptoms | 50; technology not described; London, U.K. (abroad) | HA (931 bps), NA (836 bps) | Mutations; drug sensitivity; phylogenetics | 1, 2, 3, 4, 8 |
El Rhaffouli (2013) [52] | Independent observational surveillance | Morocco | June 2009–May 2011 | ILI patients of all ages; independent surveillance at a military hospital; RT-PCR | Samples selected based on patient’s region and epidemic phase; included 14 HA1 sequences from GenBank sampled from Casablanca | 22; Sanger; Morocco (local) | HA1 | Mutations; phylogenetics (NJ) | 1, 2, 3, 4, 8, 9, 13 |
Gachara (2011) [53] | Independent observational study | Kenya | July–December 2009 | Patients of all ages that met the case definition criteria for pandemic flu developed by the Ministry of Public Health; RT-PCR | Viruses selected based on the Kenya’s provinces; included 10 GenBank sequences (Nigeria (3), Senegal (4), Ethiopia (2), and Mali (1)) | 31; technology not described; Kenya (local) | NS; (NS1 (219 bps), NS2 (121 bps)) | Mutations; phylogenetics (NJ) | 3, 4 |
Gachara (2014) [54] | Cross-sectional retrospective study nested in the national pandemic outbreak surveillance system; PhD thesis | Kenya | July 2009–August 2010 | ARI Patients of all ages; global influenza pandemic surveillance system; RT-PCR | Samples selected based on time (week) and geographical region; included 320 global sequences from IRD | 40; Sanger; Kenya (local) | WGs; Concatenated all eight genes (concat-8) | Mutations; drug sensitivity; phylogenetics (Bayesian); phylodynamics; population dynamics | 1, 2, 3, 4 |
Gachara (2016) [55] | Observational study nested in the global influenza pandemic response system | Kenya | July 2009–August 2010 | ILI patients of all ages; global influenza pandemic surveillance system; RT-PCR | Selected samples based on time and site (not more than 2 isolates per site per week) | 40, Sanger, Kenya (local) | WGs (concat-8) | Mutations; drug sensitivity; reassortment; phylogenetics (Bayesian); phylodynamics | 3, 4 |
Meseko (2015) [56] | Independent observational study | Africa; (Tunisia Nigeria, South Africa, Cameroon, Angola, Uganda, Ghana, Algeria, Djibouti, Egypt, Ethiopia, Ivory Coast, Zambia, Mali, and Togo) | 2009–2013 | Online data | Downloaded Africa H1N1pdm09 viral sequences from GenBank and GISAID | Downloaded 115 HA and 75 NA human viral sequences; included 4 swine H1N1pdm09 viral sequences (2010–2013) | HA, NA | Mutations; phylogenetics (NJ); zoonosis | 3, 4 |
Meseko (2019) [57] | Independent observational study | Nigeria | July 2010–June 2012 | Swine with influenza-like signs sampled in a multi-complex commercial piggery in Lagos; RT-PCR | Sequenced swine H1N1pdm09 viruses that were successfully cultured; included Africa and global human, swine, and avian viral sequences from GISAID and GenBank | Sequenced 12 swine viruses; Sanger (local) | WGs (n = 3) and PGs (n = 12) | Mutations; phylogenetics (ML); zoonosis | 3, 4 |
Monamele (2019) [58] | Observational study nested in an influenza surveillance system | Cameroon | January 2014–June 2016 | ILI and SARI patients for all ages; influenza surveillance system; RT-PCR | Randomly selected 23 samples with PCR CT < 30; Included 22 Cameroon sequences from GISAID collected in the same period | 17 successfully sequenced (2014 (2), 2015 (30), and 2016 (7)); sequencing technology not described; GENEWIZ, U.K. (abroad) | HA, NA, MP | Mutations; N-glycosylation site prediction; vaccine efficacy using Pepitome model; drug sensitivity; phylogenetics (ML) | 3, 4 |
Nakoune (2013) [59] | Independent prospective surveillance study | Central African Republic (CAR) | January–December 2010 | ILI and SARI children aged 0–15 years; sentinel site surveillance network; RT-PCR | Sequenced all H1N1pdm09 positives | 5; technology not described; Germany (abroad) | HA (253 bps) | Sequence homology | 1, 2, 3, 4, 6 |
Nelson (2014) [60] | Independent observational study | Global; inclusive of 18 African countries (Algeria, Morocco, Egypt, Burkina Faso, Cameroon, Ivory Coast, Ghana, Niger, Nigeria, Senegal, Djibouti, Ethiopia, Kenya, Madagascar, Tanzania, Uganda, Zambia, South Africa) | 2009–2013 | Online sequences from GISAID; online | Downloaded only full-length HA and NA sequences | 299; online sequences; GISAID | HA, NA | Phylogenetics (ML) | 3, 4 |
Opanda (2020) [61] | Observational study nested in a country-wide human respiratory viruses sentinel surveillance network | Kenya | 2015–2018 | ILI and SARI patients of all ages; hospital-based sentinel surveillance network; RT-PCR | Sequenced all viruses successfully isolated; (2015 (5), 2016 (2), 2017 (2), 2018 (29)) | 38; Sanger; Kenya (local) | HA1 | Mutations; N-glycosylation site and vaccine efficacy prediction; antigenic analysis (HAI); phylogenetics (Bayesian); phylodynamics: natural selection pressure | 3, 4 |
Orelle (2012) [62] | Observational study nested in the national sentinel surveillance network | Madagascar | August 2009–February 2010 | ILI patients of all ages; national sentinel site surveillance network; RT-PCR | Selection criteria not described; included online viral sequences from Madagascar (2011, n = 5) and the global (2009–2010) | 26 HA and 11 NA; technology not described; South Africa (local) and London, U.K. (abroad) | HA1, NA | Mutations; drug sensitivity (sialidase inhibition assay); antigenic analysis (HAI); phylogenetics (NJ) | 1, 2, 3, 4, 8 |
Pascalis (2012) [63] | Independent prospective community household-based cohort study | Reunion | July–October 2009 | ILI patients of all ages sampled from 772 households of 2,164 healthy individuals across the island; cohort study; RT-PCR | Selected samples to reflect epidemiological and temporal dynamics of the pandemic (during and post) in the cohort; included global WGs from GenBank and GISAID | 28; technology not described; Reunion (local) | 15 WGs (concat-8); 13 PGs (concat-6: PA, HA, NP, NA, M and NS) | Mutations; drug sensitivity; phylogenetic analysis (ML and Bayesian); phylodynamics; molecular dating | 1, 2, 3, 4, 8, 12 |
Quiliano (2013) [64] | Independent observational study | Global; (America, Asia, Oceania, Europa, Africa, and Mexico) | 2009–April 2011 | Online sequences from Influenza virus sequence database; online | Complete gene or protein sequences | 3740 (Africa (59), America (2298), Asia (521), Oceania (89), Europe (772)) complete NA genes | NA | Mutations; drug sensitivity; statistical analysis | 3, 4 |
Valley-Omar (2015) [65] | Independent hospital-based observational study | Cape Town, South Africa | 1 April–31 July 2011 | Frozen influenza-positive swabs sampled by the national health laboratory from children admitted in 4 Cape Town hospitals; PCR | Sequenced all viral samples collected in the 4-month; included 105 South Africa and globe sequences sampled in 2011 from GenBank | 18; Sanger; South Africa (local) | HA (379 to 1204 nts) | Phylogenetics (ML and Bayesian); phylodynamics | 1, 2,3,4, 8 |
Venter (2012) [66] | Observational study nested in multiple (3) influenza surveillance systems | South Africa | July 2009–December 2010 | ILI and SARI patients of all ages; multiple (3) influenza surveillance systems; RT-PCR | Sequenced viruses selected based on the geographical location and year of sampling | 72 HA, 118 NA, 30 PB2; Sanger; South Africa (local) | PB2, HA, NA | Mutations; drug sensitivity; antigenic analysis (HAI); phylogenetics (NJ and ML); phylodynamics; natural selection pressure; molecular dating; evolutionary rates | 3, 4, 8 |
H3N2 viruses | |||||||||
Aboualy (2018) [67] | Observational study nested in a national influenza surveillance program | Egypt | October–December 2014 | ILI outpatients of all ages; national influenza surveillance program; RT-PCR | Sequenced all viruses that were non-agglutinating in the cell cultures | 4; Sanger; Egypt (local) | HA, NA | Mutations | 3, 4 |
Besselaar (1996) [68] | Observational study nested in a viral watch program | South Africa | June 1993–September 1994 | Archived viral samples from ARI patients of all ages (white and black); Witwatersrand Viral Watch Program; HAI on cell culture | Selected viruses based on the time of collection: beginning, middle, and end of each influenza season | 9; Sanger; South Africa (local) | HA1 (500 bps) spanning the receptor binding and antigenic sites | Mutations | 3, 4 |
Besselaar (1999) [69] | Observational study nested in an active surveillance program and routine diagnosis system | South Africa | 1997–1998 | ARI patients of all ages and infants with SARI; both surveillance and routine diagnosis programs; shell vial method or cell culture | Selected viruses based on the time of collection: beginning, middle, and end of influenza seasons | Sanger; South Africa (local) | HA1 | Mutations; antigenic analysis (HAI) | 2, 3, 4, 8, 9 |
Besselaar (2004) [70] | Observational study nested in an active surveillance program | Pretoria and surrounding areas, South Africa | 25 May–7 June 2003 | Patients of all ages with Acute febrile illnesses living in a police residential college in Pretoria and active surveillance program in Johannesburg, Middleburg, and Vanderbijlpark; RT-PCR | Selected 20 (Pretoria) and 30 sporadic (surrounding areas) H3N2-positive samples for sequencing; selection criteria not described; included South Africa viral sequences sampled in 2002 | 50; Sanger; South Africa (local) | HA1 (1,073 bps) | Mutation: antigenic analysis (HAI); phylogenetics (NJ) | 3, 4 |
Bulimo (2008) [71] | Observational study nested in an active multiple-institute influenza surveillance system | Kenya | July 2006–April 2007 | ILI outpatients older than 2 months; influenza surveillance system; HAI on cell culture | Sequenced all H3N2 positives | 9 (2006 (4), 2007 (5)): Sanger; Texas, USA (abroad) | HA1 | Mutations; antigenic analysis (HAI); phylogenetic analysis (NJ) | 1, 2, 3, 4, 8, 9, 12, 13, 14 |
Bulimo (2012) [72] | Observational study nested in a hospital surveillance system | Kenya | October–December 2010 | ILI patients of > 2 months of ages; hospital surveillance system; RT-PCR | Sequenced all the H3N2 positives confirmed by RT-PCR | 32; Sanger; Kenya (local) | HA, NA, MP | Antigenic analysis (HAI); phylogenetics (Bayesian); reassortment | 3, 4 |
Byarugaba(2011) [73] | Observational study nested in a routine hospital-based influenza surveillance system | Mulago and Kayunga, Uganda | 1 October 2008–30 September 2009 | ILI outpatients aged 6 months and above; hospital-based influenza surveillance system; RT-PCR | Sequenced all the H3N2 positives confirmed by RT-PCR | 59 (Mulago (54) and Kayunga (5)); NGS Illumina and Sanger; Memphis, Tennessee, USA (abroad) | WGs | Mutations; homology; drug sensitivity; phylogenetics (ML) | 3, 4 |
El Moussi (2014) [74] | Independent observational study | Tunisia | 29 January–February 2013 | H3N2-positive patients of all ages with mild, severe, and fatal cases; sampling setting not described; RT-PCR | Selection criteria not described | 5; Sanger; Tunisia (local) | HA | N-glycosylation site prediction | 1, 2, 3, 4, 8 |
Kaira (2011) [75] | Cross-sectional Observational study nested in a routine hospital-based influenza surveillance system; MSc thesis | Mulago and Kayunga, Uganda | October–December 2008 | ILI outpatients aged 6 months and above; routine hospital-based influenza surveillance system; RT-PCR | Sequenced all the H3N2 positives confirmed by RT-PCR | 50 (Mulago (45) and Kayunga (6)); NGS Illumina; Memphis, Tennessee, USA (abroad) | WGs | Mutations; population genetics analysis using Arlequin software; phylogenetics (ML) | 1, 2, 3, 4 |
Kleynhans (2019) [76] | Independent retrospective cohort combined with a questionnaire-based cross-sectional study | Eastern Cape province (ECP), South Africa | 13–29 July 2016 | Students with ILI in grade 8–12 and bridge year; included 42 South Africa viruses from GISAID collected on 19 May–8 August 2016; RT-PCR | Selected 19 out of the 27 H3N2 positives for sequencing; no selection criteria described | 19; NGS Illumina; South Africa (local) | HA | Phylogenetics (ML) | 1, 2, 3, 4, 9, 13 |
Lemey (2014) [21] | Independent observational study | Global; (Europe, Asia, Oceania USA and Africa (Algeria, Egypt, Madagascar, South Africa, and Saudi Arabia)) | 2002–2007 | Online sequences; online | Downloaded available sequences based on location and year of collection | 1529 (Africa (31), Rest of the world (1498)) | HA | Generalized linear model (GLM); phylogenetics (Bayesian); phylogeography | 3, 4 |
McAnerney (2015) [77] | Case-control study nested in a sentinel surveillance program | South Africa | May–September 2014 | ILI outpatients of all ages with and without PCR-confirmed influenza; sentinel surveillance program; RT-PCR | Selected samples based on phase of the season (beginning, mid, and end) | 34 (vaccinated (10) and unvaccinated (24)); technology not described; South Africa (local) | HA1 (850 bps) | Mutations; homology; N-glycosylation sites prediction; antigenic analysis (HAI); phylogenetics (ML) | 1, 2, 3, 4, 8, 13 |
Monamele (2017) [78] | Observational study nested in an influenza surveillance system | Cameroon (Southern regions) | January 2014–June 2016 | ILI outpatients of all ages; influenza surveillance system; RT-PCR | Randomly selected H3N2 positives clinical samples with PCR CT < 30 based on their geographical origin and distribution over the sampling period | 35 (2014 (6) 2015 (17) and 2016 (12)); sequenced technology not described; GENEWIZ, United Kingdom (abroad) | HA, NA, MP | Mutations; drug sensitivity; N-glycosylation site predication using NetNGlyc 1.0; vaccine efficacy prediction using P-epitope model; phylogenetics (NJ) | 3, 4 |
Njifon (2019) [79] | Observational study nested in an influenza surveillance system | Cameroon (Northern region) | January 2014–June 2016 | ILI outpatients of all ages; influenza surveillance system; RT-PCR | Randomly selected H3N2 positives clinical samples with PCR CT < 30 based on their geographical origin and distribution over the sampling period; included 35 sequences from Southern Cameroon sampled in 2014–2016 | 16; Sanger; GENEWIZ U.K., United Kingdom (abroad) | HA, NA, MP | Mutations; drug sensitivity; vaccine efficacy prediction using P-epitope model; phylogenetics analysis (NJ) | 3, 4 |
Nyang’au (2020) [80] | Independent observational study | Kenya | 2007–2013 | Online sequences; online | Kenya HA1 sequences from GenBank and GISAID sampled by the National Influenza Centre (NIC); included 56 global viral sequences | 115; online sequences | HA (HA1) | Mutations; N-glycosylation site predication; vaccine efficacy predication using the P-epitope model; phylogenetics (Bayesian); phylodynamics: molecular dating, natural selection analysis; evolutionary rates | 3, 4 |
Owuor (2020) [81] | Observational study nested in two hospital-based surveillance systems | Kilifi, Kenya | January 2009–March 2017 | Inpatients aged below 5 years and outpatients of all ages sampled in Jan 2009–Dec 2015 through a viral pneumonia surveillance and Dec 2015–March 2017 through an influenza surveillance system, respectively; RT-PCR | Selected 186 of the 292 influenza positives with sufficient RNA for sequencing | 142 (H3N2 (101), H1N1pdm09 (41)); NGS (Illumina MiSeq); Kilifi Kenya (local) | 142 WGs sequenced but analyzed only complete HA genes | Mutations; N-linked glycosylation site prediction; phylogenetics analysis (ML) | 1, 2, 3, 4, 8 |
Westgeest (2014) [26] | Observational study nested in the global WHO influenza surveillance network | Global (Asia, Europe, America, and South Africa) | 1968–2011 | Viral samples collected through the WHO Collaborating national influenza surveillance centers; viral detection method not described | Sequenced viruses successfully cultured in chicken eggs by a previous study; included online global sequences inclusive of 3 viruses from South Africa (1 WG and 2 PGs) | 284; Sanger and NGS; United States (abroad) | WGs and PGs | Phylogenetics; phylodynamics; molecular dating; reassortment | 3, 4 |
WHO (2003) [82] | Retrospective observational study nested in the WHO surveillance system | Bosobolo, CONGO | November–December 2002 | ARI patients of all ages; influenza surveillance system and retrospective morbidity survey; RT-PCR and ELISA immunocapture assay (for swabs), and HAI on blood samples | Selected 6 of the 792 ARI samples for analysis; selection criteria not described; 4 of the 6 were H3N2-positive and were sequenced | 4; technology and location not described | HA (HA1), NA | Antigenic analysis (HAI); phylogenetics | 3, 4, 8 |
H1N1 and H3N2 viruses | |||||||||
Barakat (2011) [83] | Observational study nested in the national sentinel influenza surveillance system | Morocco | 1996–1998 | ILI patients of all ages; national sentinel influenza surveillance system; HAI on cell culture | Viral samples selected based on time and location of sampling | 29 (21 H3N2, 5 H1N1, and 3 B); Sanger; Morocco (local) | HA1 (980 bps) | Mutations; antigenic analysis (HAI and NAI); phylogenetics (NJ) | 1, 2, 3, 4, 6, 8 |
Barr (2010) [84] | Retrospective observational study nested in the WHO surveillance system | Global; included Kenya, South Africa | September 2008–February 2009 | Viral isolates collected through the WHO Collaborating national influenza surveillance centers; | Not described | Number of sequences not described but included 3 Africa strains (1 H1N1, 2 H3N2, and 1 B); technology and location not described | HA, NA, MP, and for some WG | Mutations; drug sensitivity; antigenic analysis (HAI); phylogenetics (ML) | 3, 4 |
Besselaar (2001) [85] | Observational study nested in an active surveillance program and routine diagnosis systems | South Africa | 1997–1999 | ILI and SARI patients of all ages; surveillance and routine diagnosis programs; shell vial method or cell culture | Selected based on phase (start, middle, and end) of each year’s influenza season | 26 (7 H1N1 and 19) H3N2; Sanger; South Africa (local) | HA1 | Phylogenetic analysis (NJ) | 3, 4 |
Chan (2010) [86] | Independent observational and modeling study | Global; (Asia, Europe, America, Oceania, and Africa (Kenya)) | 2004–2009 | Online sequences; all H1N1 and H3N2 viral sequences available on NCBI | All H1N1 and H3N2 viral sequences available on NCBI | >6000 online HA, NA, and HA1; inclusive of ~100 Kenya H3N2 and H1N1 viral HA1 sequences | HA, NA | Probabilistic modeling; network analysis | 3, 4 |
Deyde (2007) [87] | Observational study nested in the WHO global influenza surveillance network | Global; Asia, Europe, North and South America, Oceania, and Africa (Egypt and South Africa) | October 2004–September 2006 | Viruses sampled through surveillance programs and laboratories globally and submitted to the WHO Influenza Center at the CDC (Atlanta); HAI on cell culture and RT-PCR | All submitted viruses were screened for adamantane resistance using pyrosequencing; selection criteria for viruses sequenced not described | 57 M2 and 72 HA1 genes (H1N1 and H3N2); pyrosequencing and Sanger; Atlanta, USA (abroad) | (HA) HA1 and MP (M2) (44 bps) | Mutations; drug sensitivity; phylogenetics (ML) | 3, 4 |
Heraud (2012) [88] | Observational study nested in a national sentinel surveillance system | Africa; (Cameroon, Ivory Coast, Madagascar, Niger, Seychelles, and Senegal) | 2008–2010 | ILI outpatients of all ages; national sentinel surveillance systems; RT-PCR and cell culture (virus isolation) | Viruses sequenced were selected based on country | 113 H1N1 and 151 H3N2; Sanger; both in Madagascar (local) and London, U.K. (abroad) | HA (HA1, 886 bps), NA | Mutations: drug sensitivity; antigenic analysis (HAI); phylogenetics (Bayesian) | 3, 4 |
Niang (2012) [89] | Observational study nested in the national influenza surveillance network | Dakar, Senegal | January 1996–December 2009 | ILI outpatients of all ages; national Influenza surveillance network; RT-PCR and cell culture | Not described | 36 (24 H3N2, 9 H1N1, 3 H1N2); Sanger; London, U.K. (abroad) | HA (H3 (160–971 bps), H1 (52–964 bps)), NA | Antigenic analysis (HAI); phylogenetics | 1, 2, 3, 4, 8 |
H1N1pdm09 and H3N2 viruses | |||||||||
Ait-Aissa (2018) [90] | Retrospective observational study nested in the national sentinel surveillance network | Algeria | 2009–2014 | ILI patients of all ages; sentinel surveillance network; RT-PCR | Selected viruses with high IC50 values compared to normal ranges | 11 (3 H1N1pdm09, 6 H3N2, and 2 B); technology not described; London (abroad) | NA | Mutations: drug sensitivity; antigenic analysis (NAI); PCR allelic discrimination and sequence analysis to detect H275Y | 1, 2, 3, 4, 8 |
Al Khatib (2019) [91] | Independent observational study | Global; Middle East and North Africa (Tunisia, Egypt) | 2009–2017 | Online sequences; online | Downloaded all available sequences from MENA region through the Influenza Research Database (IRD); no data were available from Saudi Arabia, Yemen, or Libya | 1226 online sequences (512 H1, 239 H3, 343 N1, and 132 N2) were analyzed | HA, NA | Mutations: phylogenetics (ML); phylodynamics: evolutionary rates; selection pressure analysis | 3, 4 |
Barr (2014) [92] | Retrospective observational study nested in the WHO surveillance system | Global; included Egypt, Kenya, Tanzania, Tunisia, Mauritius, Senegal, South Africa | September 2012–February 2013 | Clinical specimens or virus isolates collected through the WHO Collaborating national influenza surveillance centers | Not described | 379 H1N1pdm09 and 872 H3N2 included 226 Africa strains (35 H1N1pdm09, 115 H3N2, and 76 B); technology and location not described | HA, NA, MP, and for some WG | Mutations; drug sensitivity; antigenic analysis (HAI); phylogenetics (ML) | 3, 4 |
Bulimo (2012) [93] | Observational study nested in the national influenza surveillance network | Kenya | 2010–2011 | ARI Patients of 2 months and above; national influenza surveillance network; RT-PCR | All influenza positives were analyzed genetically | 62 (27 H1N1pdm09, 19 H3N2 and 16 B); Sanger; Kenya (local) | HA1 | Mutations; phylogenetics (Bayesian) | 3, 4 |
Kavunga-Membo (2018) [94] | Observational study nested in an influenza sentinel surveillance system | CONGO | January–December 2015 | ILI and SARI patients of all ages; influenza sentinel surveillance; RT-PCR | Selection criteria not described | Number of samples shipped for sequencing not reported; technology not clear (Sanger or NGS?); Atlanta, USA (abroad) | HA | Antigenic analysis (NAI); phylogenetics (ML and NJ) | 2, 3, 4, 8 |
Klimov (2012) [95] | Observational study nested in the WHO global influenza surveillance network | Global; inclusive of Africa (Algeria, Cameroon, Ivory Coast, Egypt, Ethiopia, Ghana, Kenya, Madagascar, Niger, Nigeria, Senegal, South Africa, Tanzania, Uganda, Morocco, Tunisia), Asia, America, Europe, and Oceania | February–September 2011 | Online sequences; viruses were sequenced from clinical samples and viral isolates from patients of all ages sampled through the global WHO national influenza centers and laboratories within and outside of GISRS | Antigenic analysis (HAI) performed on all 4400 viruses, but selection criteria for viral WGs and PGs chosen for genomic analysis not described | Downloaded > 1600 global H1N1pdm09 and >1000 global H3N2 viral sequences inclusive of 114 H1N1pdm09 and 112 H3N2 from Africa | WGs and PGs (HA or HA1 and NA) | Mutations; drug sensitivity; antigenic analysis (HAI); phylogenetics (ML); vaccine efficacy; phylodynamics; reassortment | 3, 4 |
Mackenzie (2019) [96] | Observational study nested in a population-based surveillance | Gambia | 10 February–31 December 2015 | In- and out patients with ALRI and suspected pneumonia aged 2–23 months; surveillance system; RT-PCR | Samples selected based on viral load (PCR Ct <30) and distribution across the 11 months of sampling | 16 (4 H1N1pdm09, 4 H3N2, and 8 B); Sanger; Gambia (local) | HA | Mutations; N-glycosylation site prediction; phylogenetics | 1, 2, 3, 4, 6, 8 |
Nkwembe (2016) [97] | Observational study nested in the National influenza surveillance system | CONGO | August–December 2014 | ILI and SARI patients of all ages; national public health Influenza surveillance system; RT-PCR | Selected samples with PCR cycle threshold <30; included Africa sequences from GISAID | 20 (18 H3N2 and 2 H1N1pdm09); NGS (Illumina); Atlanta, USA (abroad) | HA | Antigenic analysis (HAI and NAI); phylogenetics (ML) | 3, 4 |
Owuor (2021) [98] | Observational study nested in five disease surveillance and research programs | Kenya | 2009–2018 | SARI, pneumonia, ARI, and LRTI patients of all ages sampled through five surveillance and research programs; RT-PCR | Archived viral samples with sufficient volume (≥140 µL) for RNA extraction and sequencing, and positive for IAV | 549 (Kilifi (66), Kenya (383), and Africa (100) consisting of H1N1pdm09 (414) and H3N2 (135)); NGS (Illumina); Kilifi, Kenya (local); included online Africa (H1N1pdm09 (155) and H3N2 (281)) and global viral sequences from GISAID | WGs (concat-8) | Phylogenetics (Bayesian); phylodynamics; molecular dating; population dynamics; phylogeography; phylodynamics; reassortment | 1, 2, 3, 4, 8 |
Sanou (2018) [99] | Observational study nested in the national influenza sentinel surveillance system | Burkina Faso | January 2014–December 2015 | ILI and SARI patients under 5 years old; influenza sentinel surveillance system; RT-PCR | Influenza A-positive samples with PCR Ct ≤ 30 | 43 (14 H1N1pdm09 and 29 H3N2); Sanger; Burkina Faso (local) | HA | Phylogenetics (ML) | 1, 2, 3, 4, 8 |
Soli (2019) [100] | Independent observational study | Tunisia | 2009–2013 | Online sequences for H1N1pdm09, H3N2, and avian H9N2 viruses from NCBI; online | Sequences collected in the 2009–2013 seasons | 102 online sequences | HA, NA for all 3 subtypes; PB2, NP, and M for avian H9N2 viruses | Phylogenetics (Bayesian); phylodynamics; Recombination | 3, 4 |
Soliman (2020) [101] | Independent hospital-based observational study | Egypt | January 2015–December 2016 | Sampled 60 ILI children under 5 years old at a pediatric hospital in Egypt; RT-PCR | Sequenced viral samples with high IAV-positive signal; included 116 H1N1pdm09 (2009–2017) and 82 H3N2 (2006–2017) from GISAID sampled in Egypt | Sequenced 10 but recovered 5 (3 H3N2 and 2 H1N1pdm09); Sanger; Egypt (local) | HA, NA | Mutations; phylogenetics (ML) | 3, 4 |
Tivane (2018) [102] | Observational study nested in the National Institute of Health (NIH) influenza sentinel surveillance system | Mozambique | January–June 2015 | SARI inpatients of ages 0–12 years old; national influenza sentinel surveillance system; RT-PCR | Selected influenza-positive samples with PCR ≤ 30 | 19 (12 H3N2, 4 H1N1pdm09, 3 B); Sanger; Francis Crick Institute, United Kingdom (abroad) | HA, NA | Mutations; drug sensitivity using fluorescent neuraminidase activity inhibition; antigenic analysis (HAI); phylogenetics (ML) | 1, 2, 3, 4, 8 |
Valley-Omar (2018) [103] | Retrospective observational study nested in a large household-based transmission study | South Africa | May–October 2013 | ILI patients of all ages and their contacts irrespective of presence of ILI symptoms; large household transmission study (HTS); RT-PCR | Sequenced viruses from all index and contact samples collected from households with viral transmission | 35 (17 H1N1pdm09 and 18 H3N2 from 6 and 8 HHs, respectively); Sanger; South Africa (local) | HA (HA1) | Phylogenetics (ML) | 2, 3, 4, 5, 6, 12, 13 |
H1N1, H1N1pdm09, and H3N2 viruses | |||||||||
Treunicht (2019) [104] | Observational study nested in the national influenza surveillance system | South Africa | 2007–2013 | ILI outpatients of all ages; national influenza surveillance system; cell culture (before 2009) and RT-PCR (in and after 2009) | Selection criteria not described | 140 (43 H1N1pdm09 38 H3N2, and 42 B); Sanger; South Africa (local) | NA | Mutations: drug sensitivity; antigenic analysis (NAI) | 3, 4 |
Wadegu (2016) [105] | Observational study nested in a sentinel surveillance network | Kenya | 2008–2011 | ILI outpatients aged ≥ 2 months; sentinel site surveillance network; RT-PCR | Archived samples; selection criteria not described | 92 (21 H3N2, 18 H1N1, and 53 H1N1pdm09; Sanger; Kenya (local) | HA (HA1), MP (M2) | Mutations; drug sensitivity; phylogenetics (Bayesian); phylodynamics; reassortment | 3, 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabakooza, G.; Galiwango, R.; Frost, S.D.W.; Kateete, D.P.; Kitayimbwa, J.M. Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review. Microorganisms 2022, 10, 900. https://doi.org/10.3390/microorganisms10050900
Nabakooza G, Galiwango R, Frost SDW, Kateete DP, Kitayimbwa JM. Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review. Microorganisms. 2022; 10(5):900. https://doi.org/10.3390/microorganisms10050900
Chicago/Turabian StyleNabakooza, Grace, Ronald Galiwango, Simon D. W. Frost, David P. Kateete, and John M. Kitayimbwa. 2022. "Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review" Microorganisms 10, no. 5: 900. https://doi.org/10.3390/microorganisms10050900
APA StyleNabakooza, G., Galiwango, R., Frost, S. D. W., Kateete, D. P., & Kitayimbwa, J. M. (2022). Molecular Epidemiology and Evolutionary Dynamics of Human Influenza Type-A Viruses in Africa: A Systematic Review. Microorganisms, 10(5), 900. https://doi.org/10.3390/microorganisms10050900