Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Vectors and Media
2.2. Primers
2.3. Genetic Manipulation
2.4. Expression of Recombinant Protein
2.5. Quantification of Gene Expression via Real-Time Reverse Transcription PCR (RT-qPCR)
2.6. Microorganism Growth
2.7. Furfural and HMF Reduction
2.8. Ethanol Productivity
3. Results
3.1. Molecular Characteristics
3.2. Expression of Aldehyde Reductase
3.3. Furfural Tolerance
3.4. ari1 Gene Expression
3.5. Furfural and HMF Reduction Capacities
3.6. Ethanol Production Capacities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bothast, R.J.; Saha, B.C. Ethanol production from agricultural biomass substrates. Adv. Appl. Microbiol. 1997, 44, 261–286. [Google Scholar] [CrossRef]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Galbe, M.; Zacchi, G. Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv. Biochem. Eng. Biotechnol. 2007, 108, 41–65. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Elander, M.; Myrback, K. Isolation of crystalline trehalose after fermentation of glucose by maceration juice. Arch. Biochem. 1949, 21, 249–255. [Google Scholar] [PubMed]
- Sanchez, B.; Bautista, J. Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb. Technol. 1988, 10, 315–318. [Google Scholar] [CrossRef]
- Boopathy, R.; Bokang, H.; Daniels, L. Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J. Ind. Microbiol. 1993, 11, 147–150. [Google Scholar] [CrossRef]
- Larsson, S.; Palmqvist, E.; Hahn-Hgerdal, B.; Tengborg, C.; Stenberg, K.; Zacchi, G.; Nilvebrant, N.O. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 1999, 24, 151–159. [Google Scholar] [CrossRef]
- Liu, Z.L.; Blaschek, H.P. Biomass Conversion Inhibitors and In Situ Detoxification. Biomass Biofuels Strateg. Glob. Ind. 2010, 233–259. [Google Scholar] [CrossRef]
- Lewis Liu, Z.; Moon, J.; Andersh, B.J.; Slininger, P.J.; Weber, S. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2008, 81, 743–753. [Google Scholar] [CrossRef]
- Liu, Z.L.; Moon, J. A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 2009, 446, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Divate, N.R.; Chen, G.H.; Divate, R.D.; Ou, B.R.; Chung, Y.C. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance. Bioengineered 2017, 8, 524–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, A.; Riezman, H. Rapid protein extraction from Saccharomyces cerevisiae. Yeast 1994, 10, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Teste, M.A.; Duquenne, M.; François, J.M.; Parrou, J.L. Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol. Biol. 2009, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Kupiainen, L.; Ahola, J.; Tanskanen, J. Kinetics of glucose decomposition in formic acid. Chem. Eng. Res. Des. 2011, 89, 2706–2713. [Google Scholar] [CrossRef]
- Divate, N.R.; Chen, G.H.; Wang, P.M.; Ou, B.R.; Chung, Y.C. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Bioengineered 2016, 7, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.; Liu, Z.L. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae. Yeast 2015, 32, 399–407. [Google Scholar] [CrossRef]
- Carrasco, J.E.; Sáiz, M.C.; Navarro, A.; Soriano, P.; Sáez, F.; Martinez, J.M. Effects of dilute acid and steam explosion pretreatments on the cellulose structure and kinetics of cellulosic fraction hydrolysis by dilute acids in lignocellulosic materials. Appl. Biochem. Biotechnol. 1994, 45, 23–34. [Google Scholar] [CrossRef]
- Sjöström, E. Wood Chemistry: Fundamentals and Applications; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Mirpoor, S.F.; Restaino, O.F.; Schiraldi, C.; Giosafatto, C.V.L.; Ruffo, F.; Porta, R. Lignin/carbohydrate complex isolated from posidonia oceanica sea balls (Egagropili): Characterization and antioxidant reinforcement of protein-based films. Int. J. Mol. Sci. 2021, 22, 9147. [Google Scholar] [CrossRef]
- Almeida, J.R.M.; Modig, T.; Petersson, A.; Hähn-Hägerdal, B.; Lidén, G.; Gorwa-Grauslund, M.F. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 2007, 82, 340–349. [Google Scholar] [CrossRef]
- Fenske, J.J.; Griffin, D.A.; Penner, M.H. Comparison of aromatic monomers in lignocellulosic biomass prehydrolysates. J. Ind. Microbiol. Biotechnol. 1998, 20, 364–368. [Google Scholar] [CrossRef]
- Erkan, S.B.; Yatmaz, E.; Germec, M.; Turhan, I. Effect of furfural concentration on ethanol production using Saccharomyces cerevisiae in an immobilized cells stirred-tank bioreactor with glucose-based medium and mathematical modeling. J. Food Process. Preserv. 2021, 45, e14635. [Google Scholar] [CrossRef]
- Liu, Z.L.; Slininger, P.J.; Dien, B.S.; Berhow, M.A.; Kurtzman, C.P.; Gorsich, S.W. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 2004, 31, 345–352. [Google Scholar] [CrossRef]
Primer | Sequence 5′-3′ | Purpose |
---|---|---|
Forward | 5′TCGTTCGAAAAAATGGCGACTACTGATACCACTGTTTTCGTTTCTG-3′ | ari1 cloning |
Reverse | 5′TCACTCGAGTTAGGCTTCATTTTGAACTTCTAACATTTGCGCCGC-3′ | |
VF | TTCGAAAAAATGGGTACTAC | Verification of ari1 gene insertion |
VR | AGTGATGGTGATGGTGATGG | |
qAri1-F | TTGTGCTACACACTGCCTCC | Quantitative real-time PCR |
qAri1-R | CGTTCACTGCAGGGGTTAGT | |
qTaf10-F | TCCAGGATCAGGTCTTCCGT | |
qTaf10-R | TGTCCTTGCAATAGCTGCCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divate, N.R.; Huang, P.-J.; Chen, G.-H.; Chung, Y.-C. Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase. Microorganisms 2022, 10, 850. https://doi.org/10.3390/microorganisms10050850
Divate NR, Huang P-J, Chen G-H, Chung Y-C. Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase. Microorganisms. 2022; 10(5):850. https://doi.org/10.3390/microorganisms10050850
Chicago/Turabian StyleDivate, Nileema R., Pei-Ju Huang, Gen-Hung Chen, and Yun-Chin Chung. 2022. "Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase" Microorganisms 10, no. 5: 850. https://doi.org/10.3390/microorganisms10050850
APA StyleDivate, N. R., Huang, P.-J., Chen, G.-H., & Chung, Y.-C. (2022). Construction of Recombinant Saccharomyces cerevisiae with Ethanol and Aldehydes Tolerance via Overexpression of Aldehyde Reductase. Microorganisms, 10(5), 850. https://doi.org/10.3390/microorganisms10050850