Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. AM Fungus and Inoculation Procedure
2.3. Litter Chemical Properties and Enzyme Activity
2.4. DNA Extraction, PCR Amplification, and Miseq Sequencing
2.5. Sequencing Data Processing
2.6. Statistical Analysis
3. Results
3.1. AM Fungi Effects on Litter Properties and Enzyme Activities
3.2. Effects of AM Fungi on Litter Bacterial Community Compositions and Diversities
3.3. Effects of Litter Properties and Enzyme Activities on Bacterial Communities for the Different AM Fungi Inoculation Treatments
3.4. Effects of AM Fungi Inoculation on the Functional Characteristics of Bacterial Communities in Litter
4. Discussion
4.1. Effects of AM Fungi on Litter Properties
4.2. Induced AM Fungi Alteration of Bacterial Community Composition in Litter
4.3. Effects of AM Fungi on the Functional Characteristics of Bacterial Communities in Litter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ochoa-Hueso, R.; Delgado-Baquerizo, M.; King, P.T.; Benham, M.; Arca, V.; Power, S.A. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biol. Biochem. 2019, 129, 144–152. [Google Scholar] [CrossRef]
- Cotrufo, M.F.; Soong, J.L.; Horton, A.J.; Campbell, E.E.; Haddix, M.; Wall, D.H.; Parton, W.J. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 2015, 8, 776–779. [Google Scholar] [CrossRef]
- Leifheit, E.F.; Verbruggen, E.; Rillig, M.C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol. Biochem. 2015, 81, 323–328. [Google Scholar] [CrossRef]
- Lei, C.; Booker, F.L.; Cong, T.; Burkey, K.O.; Zhou, L.; Shew, H.D.; Hu, S. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 2012, 337, 1084. [Google Scholar] [CrossRef]
- Li, H.; Li, X.L.; Xiang, D. Role of arbuscular mycorrhzizal fungi in Leymus chinensis litter decomposition. J. Ecol. Eng. 2010, 19, 1569–1573. [Google Scholar] [CrossRef]
- Leigh, J.; Fitter, A.H.; Hodge, A. Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. Journal Article; Research Support, Non-U.S. Gov’t. FEMS Microbiol. Ecol. 2011, 76, 428–438. [Google Scholar] [CrossRef] [Green Version]
- Hodge, A. Interactions between arbuscular mycorrhizal fungi and organic material substrates. Adv. Appl. Microbiol. 2014, 89, 47–99. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.L.; Wang, C.; Xiang, D. Study of arbuscular mycorrhzizal fungi on decomposition of alfalfa litter. Pratacultural Sci. 2009, 26, 40–43. [Google Scholar] [CrossRef]
- Gui, H.; Purahong, W.; Wubet, T.; Derek, P.S.G.; Mortimer, P.E. Funneliformis mosseae alters soil fungal community dynamics and composition during litter decomposition. Fungal Ecol. 2020, 43, 100864. [Google Scholar] [CrossRef]
- Žifčáková, L.; Dobiášová, P.; Kolářová, Z.; Koukol, O.; Baldrian, P. Enzyme activities of fungi associated with Picea abies needles. Fungal Ecol. 2011, 4, 427–436. [Google Scholar] [CrossRef]
- Jia, T.; Guo, T.; Chai, B. Bacterial community characteristics and enzyme activities in Imperata cylindrica litter as phytoremediation progresses in a copper tailings dam. PeerJ 2020, 8, e9612. [Google Scholar] [CrossRef]
- Yue, K.; Yang, W.; Tan, B.; Peng, Y.; Huang, C.; Xu, Z.; Wu, F. Immobilization of heavy metals during aquatic and terrestrial litter decomposition in an alpine forest. Chemosphere 2019, 216, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, A.; Papa, S.; Curcio, E.; Sorrentino, G.; Fuggi, A. Enzyme dynamics on decomposing leaf litter of Cistus incanus and Myrtus communis in a Mediterranean ecosystem. Soil Biol. Biochem. 2000, 32, 1847–1855. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.; Gao, Y.; Jia, X.; Wang, M.; Ding, J.; Cheng, L.; Wu, B. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China. Soil Biol. Biochem. 2020, 144, 107782. [Google Scholar] [CrossRef]
- Magill, A.H.; Aber, J.D.; Berntson, G.M.; Mcdowell, W.H.; Nadelhoffer, K.J.; Melillo, J.M.; Steudler, P. Long-term nitrogen additions and nitrogen saturation in two temperate forests. Ecosystems 2000, 3, 238–253. [Google Scholar] [CrossRef]
- Xue, Y.T.; Lin, Y.H.; He, X.B.; Luo, Y.L.; Wu, X.; Xiao, J.M.; Chen, T. Effects of Lead on the Decomposition of Phyllostachys pubescens Leaf Litter in Western Hu’nan Province. J. Chongqing Norm. Univ. 2018, 35, 117–123. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, Y.G.; Smith, F.A.; Wang, Y.; Chen, B. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ. Pollut. 2008, 155, 174–181. [Google Scholar] [CrossRef]
- Zhao, C.; Long, J.; Liao, H.; Zheng, C.; Li, J.; Liu, L.; Zhang, M. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, Southwest China. Sci. Rep. 2019, 9, 2160. [Google Scholar] [CrossRef]
- Zhang, M.M.; Fan, S.H.; Guan, F.Y.; Yan, X.R.; Yin, Z.X. Soil bacterial community structure of mixed bamboo and broad-leaved forest based on tree crown width ratio. Sci. Rep. 2020, 10, 6522. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, Q.; Sun, X.; Chen, D.; Zhang, S. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biol. Biochem. 2019, 141, 107690. [Google Scholar] [CrossRef]
- Pandit, P.D.; Gulhane, M.K.; Khardenavis, A.A.; Purohit, H.J. Mining of hemicellulose and lignin degrading genes from differentially enriched methane producing microbial community. Bioresour. Technol. 2016, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.H.; Pourcher, A.M.; Bouchez, T.; Gelhaye, E.; Peu, P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl. Microbiol. Biotechnol. 2014, 98, 9527–9544. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Sun, Y.; Zhang, Y.; Huang, T.; Zhou, Z.; Li, Y.; Li, Z. Pollutant removal performance and microbial enhancement mechanism by water-lifting and aeration technology in a drinking water reservoir ecosystem. Sci. Total Environ. 2020, 709, 135848. [Google Scholar] [CrossRef]
- Kothari, S.K.; Marschner, H.; Romheld, V. Effect of a vesicular–arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea Mays L.). New Phytol. 1991, 117, 649–655. [Google Scholar] [CrossRef]
- Weissenhorn, I.; Glashoff, A.; Leyval, C.; Berthelin, J. Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil. 1994, 167, 189–196. [Google Scholar] [CrossRef]
- Tullio, M.; Pierandrei, F.; Salerno, A.; Rea, E. Tolerance to cadmium of vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol. Fert. Soils. 2003, 37, 211–214. [Google Scholar] [CrossRef]
- Posta, K.; Marschner, H.; Mheld, V.R. Manganese reduction in the rhizosphere of mycorrhizal and nonmycorrhizal maize. Mycorrhiza 1994, 5, 119–124. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, K.; Lyu, Z.; Zhu, J. Microbial groups and their functions control the decomposition of coniferous litter: A comparison with broadleaved tree litters. Soil Biol. Biochem. 2019, 133, 196–207. [Google Scholar] [CrossRef]
- Kramer, S.; Dibbern, D.; Moll, J.; Huenninghaus, M.; Koller, R.; Krueger, D.; Bonkowski, M. Resource partitioning between bacteria, fungi, and protists in the detritusphere of an agricultural soil. Front. Microbiol. 2016, 7, 1524. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Yang, G.; Ma, Y.; Yao, Q.; Ma, Y.; Ma, H.; Li, G. Seasonal dynamics of microbial diversity in the rhizosphere of Ulmus pumila L. var. sabulosa in a steppe desert area of Northern China. PeerJ 2019, 7, e7526. [Google Scholar] [CrossRef] [PubMed]
- Ossola, A.; Aponte, C.; Hahs, A.K.; Livesley, S.J. Contrasting effects of urban habitat complexity on metabolic functional diversity and composition of litter and soil bacterial communities. Urban Ecosyst. 2016, 20, 595–607. [Google Scholar] [CrossRef]
- Hollister, E.B.; Schadt, C.W.; Palumbo, A.V.; James Ansley, R.; Boutton, T.W. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. Soil Biol. Biochem. 2010, 42, 1816–1824. [Google Scholar] [CrossRef]
TC % | TN % | C/N | pH | LWC % | Pb mg/kg | Cd mg/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
AMF | 0.192 | 0.827 | 2.860 | 0.083 | 2.187 | 0.141 | 10.593 | 0.001 | 9.583 | 0.001 | 2.256 | 0.134 | 0.065 | 0.937 |
HM | 0.647 | 0.535 | 1.075 | 0.362 | 1.434 | 0.264 | 281.336 | <0.001 | 4.853 | 0.021 | 17.561 | <0.001 | 17.648 | <0.001 |
AMF × HM | 0.576 | 0.684 | 0.343 | 0.845 | 0.352 | 0.839 | 487.540 | <0.001 | 0.438 | 0.780 | 2.118 | 0.121 | 0.076 | 0.989 |
Heavy Metal | AMF | TC % | TN % | C/N | pH | LWC % | Pb mg/kg | Cd mg/kg |
---|---|---|---|---|---|---|---|---|
CK | RI | 37.164 ± 0.962 a | 0.283 ± 0.011 a | 131.377 ± 8.380 a | 7.127 ± 0.006 c | 0.314 ± 0.013 a | 1.174 ± 0.501 a | 0.093 ± 0.021 a |
GM | 37.618 ± 0.619 a | 0.313 ± 0.054 a | 123.044 ± 24.201 a | 7.503 ± 0.007 a | 0.208 ± 0.042 a | 1.273 ± 1.029 a | 0.045 ± 0.014 b | |
NM | 37.253 ± 1.008 a | 0.349 ± 0.081 a | 110.717 ± 26.098 a | 7.273 ± 0.049 b | 0.204 ± 0.095 a | 0.699 ± 0.191 a | 0.034 ± 0.018 b | |
Cd | RI | 36.323 ± 1.221 a | 0.344 ± 0.066 a | 108.508 ± 21.993 a | 7.427 ± 0.015 b | 0.273 ± 0.016 a | 1.387 ± 0.531 a | 5.095 ± 4.067 a |
GM | 37.341 ± 0.476 a | 0.294 ± 0.017 a | 127.318 ± 9.121 a | 7.437 ± 0.015 b | 0.209 ± 0.038 b | 1.1445 ± 0.458 a | 6.314 ± 4.060 a | |
NM | 37.076 ± 1.876 a | 0.460 ± 0.180 a | 88.877 ± 31.706 a | 7.723 ± 0.015 a | 0.181 ± 0.031 b | 1.292 ± 1.172 a | 6.000 ± 4.132 a | |
Pb | RI | 36.874 ± 2.335 a | 0.359 ± 0.104 a | 109.804 ± 37.580 a | 7.743 ± 0.006 a | 0.323 ± 0.055 a | 9.647 ± 11.226 a | 0.114 ± 0.057 a |
GM | 35.935 ± 1.397 a | 0.338 ± 0.020 a | 106.887 ± 10.263 a | 7.247 ± 0.015 c | 0.287 ± 0.004 a | 19.306 ± 6.935 a | 0.121 ± 0.014 a | |
NM | 37.166 ± 0.331 a | 0.439 ± 0.166 a | 92.001 ± 29.745 a | 7.310 ± 0.017 b | 0.251 ± 0.047 a | 6.837 ± 1.012 a | 0.077 ± 0.053 a |
Urease | Sucrase | Cellulase | Catalase | Polyphenol Oxidase | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(mg · (g · 24 h)−1) | (mg · (g · 24 h)−1) | (mg · (g · 72 h)−1) | (mg · (g · 20 min)−1) | (mL · g−1) | ||||||
F | p | F | p | F | p | F | p | F | p | |
AMF | 136.789 | <0.001 | 115.465 | <0.001 | 69.487 | <0.001 | 5.258 | 0.016 | 409.383 | <0.001 |
HM | 4.871 | 0.02 | 44.154 | <0.001 | 0.283 | 0.757 | 0.516 | 0.605 | 170.613 | <0.001 |
AMF × HM | 406.132 | <0.001 | 460.762 | <0.001 | 3.777 | 0.021 | 3.032 | 0.045 | 42.865 | <0.001 |
Heavy Metal | AMF | Urease (mg · (g · 24 h)−1) | Sucrase (mg · (g · 24 h)−1) | Cellulase (mg · (g · 72 h)−1) | Catalase (mg · (g · 20 min)−1) | Polyphenol Oxidase (mL · g−1) |
---|---|---|---|---|---|---|
CK | RI | 1.277 ± 0.132 c | 1.844 ± 0.055 b | 0.331 ± 0.005 c | 6.628 ± 0.133 a | 5.333 ± 1.155 a |
GM | 2.663 ± 0.149 a | 3.351 ± 0.019 a | 0.415 ± 0.013 b | 1.464 ± 0.934 b | 5.667 ± 0.577 a | |
NM | 2.156 ± 0.055 b | 3.326 ± 0.091 a | 0.616 ± 0.027 a | 6.165 ± 0.963 a | 4.667 ± 0.577 a | |
Cd | RI | 1.430 ± 0.035 c | 3.044 ± 0.045 a | 0.202 ± 0.0243 c | 6.165 ± 1.164 a | 6.667 ± 0.577 a |
GM | 0.564 ± 0.080 b | 1.212 ± 0.076 b | 0.469 ± 0.023 b | 1.310 ± 0.133 b | 3.667 ± 0.577 c | |
NM | 4.052 ± 0.202 a | 3.253 ± 0.159 a | 0.543 ± 0.014 a | 6.320 ± 1.164 a | 5.333 ± 0.577 b | |
Pb | RI | 1.770 ± 0.058 b | 3.104 ± 0.072 a | 0.051 ± 0.030 c | 4.393 ± 0.000 a | 6.000 ± 1.000 a |
GM | 2.779 ± 0.174 a | 2.734 ± 0.048 b | 0.417 ± 0.025 a | 2.697 ± 1.273 b | 5.000 ± 1.000 a | |
NM | 1.066 ± 0.063 c | 2.397 ± 0.057 c | 0.310 ± 0.033 b | 6.242 ± 0.801 a | 3.333 ± 2.309 a |
Heavy Metal | AMF | Richness Estimator | Diversity Index | Coverage% | ||
---|---|---|---|---|---|---|
ACE | Chao1 | Shannon | Simpson | |||
CK | RI | 236.820 | 243.000 | 3.410 | 0.095 | 99.212 |
GM | 341.680 | 355.170 | 3.526 | 0.075 | 98.793 | |
NM | 306.840 | 280.550 | 3.048 | 0.150 | 98.982 | |
Cd | RI | 272.430 | 252.150 | 3.514 | 0.061 | 99.125 |
GM | 279.030 | 292.080 | 3.279 | 0.102 | 99.140 | |
NM | 301.540 | 283.820 | 2.830 | 0.167 | 98.987 | |
Pb | RI | 294.250 | 279.180 | 3.251 | 0.097 | 98.997 |
GM | 388.420 | 357.910 | 3.486 | 0.099 | 98.654 | |
NM | 311.510 | 277.340 | 3.060 | 0.121 | 98.910 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, T.; Wang, Y.; Liang, X.; Guo, T. Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress. Microorganisms 2022, 10, 206. https://doi.org/10.3390/microorganisms10020206
Jia T, Wang Y, Liang X, Guo T. Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress. Microorganisms. 2022; 10(2):206. https://doi.org/10.3390/microorganisms10020206
Chicago/Turabian StyleJia, Tong, Yu Wang, Xiaoxia Liang, and Tingyan Guo. 2022. "Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress" Microorganisms 10, no. 2: 206. https://doi.org/10.3390/microorganisms10020206
APA StyleJia, T., Wang, Y., Liang, X., & Guo, T. (2022). Effect of AM Fungi Inoculation on Litter Bacterial Community Characteristics under Heavy Metal Stress. Microorganisms, 10(2), 206. https://doi.org/10.3390/microorganisms10020206