Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of GO Suspension
2.2. Fungal Strain and Plant Material
2.3. Effect of GO on Mycelial Growth of B. sorokiniana
2.4. Effect of GO on Spore Growth of B. sorokiniana
2.5. Observation of the Cell Morphology
2.6. Measurement of the Leaked DNA and RNA
2.7. Measurement of the Electrolyte Leakage
2.8. Effect of GO in Preventing Fungal Infection
2.9. Statistical Analysis
3. Results
3.1. Inhibition of GO on Mycelial Growth of B. sorokiniana
3.2. Inhibition of GO on Spore Germination of B. sorokiniana
3.3. Variation of Morphological Characteristics of Spores after GO Treatment
3.4. GO Inhibited Fungal Infections in Wheat
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Avouris, P. Graphene: Electronic and photonic properties and devices. Nano Lett. 2010, 10, 4285–4294. [Google Scholar] [CrossRef] [PubMed]
- Jampilek, J.; Kralova, K. Advances in biologically applicable graphene-based 2D nanomaterials. Int. J. Mol. Sci. 2022, 23, 6253. [Google Scholar] [CrossRef]
- Xiong, S.; Luo, J.; Wang, Q.; Li, Z.; Li, J.; Liu, Q.; Gao, L.; Fang, S.-H.; Li, Y.; Pan, H.; et al. Targeted graphene oxide for drug delivery as a therapeutic nanoplatform against parkinson’s disease. Biomater. Sci. 2021, 9, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, N.; Yano, Y.; Ito, H.; Miyauchi, Y.; Itami, K. Graphene nanoribbon dielectric passivation layers for graphene electronics. ACS Appl. Nano. Mater. 2019, 2, 4825–4831. [Google Scholar] [CrossRef]
- Chen, G.; Tan, Z.; Zhao, Y.; Ni, B.; Zhu, Y.; Lu, Y. Applications of graphene for energy storage and conversion. Scientia Sinica Chimica 2013, 43, 704. [Google Scholar] [CrossRef]
- Foreman, H.; Lalwani, G.; Kalra, J.; Krug, L.; Sitharaman, B. Gene delivery to mammalian cells using a graphene nanoribbon platform. J. Mater. Chem. B 2017, 5, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- Keskin, S.; Jonge, N. Imaging Imaging graphene-encapsulated microtubules at room temperature with electron microscopy. Microsc. Microanal. 2019, 25, 11–12. [Google Scholar] [CrossRef] [Green Version]
- Lawkowska, K.; Pokrywczyńska, M.; Koper, K.; Kluth, L.; Drewa, T.A.; Adamowicz, J. Application of graphene in tissue engineering of the nervous system. Int. J. Mol. Sci. 2021, 23, 33. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, K.S.; Kim, S.; Gwon, Y.; Kim, J. Graphene oxide-assisted promotion of plant growth and stability. Nanomaterials 2020, 10, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Cao, H.; Wang, H.; Zhang, R.; Jia, H.; Huang, J.; Zhao, J.; Yao, J. Effects of graphene on morphology, microstructure and transcriptomic profiling of Pinus tabuliformis Carr. roots. PLoS ONE 2021, 16, e0253812. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, H.; Zhao, J.; Wang, H.; Xing, B.; Chen, Z.; Li, X.; Zhang, J. Graphene oxide exhibited positive effects on the growth of Aloe vera L. Physiol. Mol. Biol. Pla. 2021, 27, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2013, 6, 1879–1889. [Google Scholar] [CrossRef] [PubMed]
- Alimardani, V.; Abolmaali, S.; Borandeh, S. Antifungal and antibacterial properties of graphene-based nanomaterials: A mini-review. J. Nanostruct. 2019, 9, 402–413. [Google Scholar] [CrossRef]
- Fatima, N.; Qazi, U.; Mansha, A.; Ahmad, I.; Javaid, R.; Abbas, Q.; Nadeem, N.; Rehan, Z.; Noreen, S.; Zahid, M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J. Ind. Eng. Chem. 2021, 100, 40–58. [Google Scholar] [CrossRef]
- Lukowiak, A.; Kedziora, A.; Strek, W. Antimicrobial graphene family materials: Progress, advances, hopes and fears. Adv. Colloid. Interfac. 2016, 236, 101–112. [Google Scholar] [CrossRef]
- Sun, W.; Wu, F. Two-dimensional materials for antimicrobial applications: Graphene materials and beyond. Chem. Asian J. 2018, 13, 3378–3410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kong, H.; Yang, G.; Zhu, D.; Luan, X.; He, P.; Wei, G. Graphene-based functional hybrid membranes for antimicrobial applications: A review. Appl. Sci. 2022, 12, 4834. [Google Scholar] [CrossRef]
- Liu, C.; Tan, D.; Chen, X.; Liao, J.; Wu, L. Research on graphene and its derivatives in oral disease treatment. Int. J. Mol. Sci. 2022, 23, 4737. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, F.; Cheng, C.; Chen, L.; Shi, X.; Gao, X.; Li, J. Synergistic antifungal activity of graphene oxide and fungicides against Fusarium Head Blight In Vitro and In Vivo. Nanomaterials 2021, 11, 2393. [Google Scholar] [CrossRef]
- Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, I.; Bhattacharya, P.; Monikangkana, T.; Neogi, S.; Pal, S.; Chakraborty, S. Bactericidal effect of graphene oxide and reduced graphene oxide: Influence of shape of bacteria. Colloids Interface Sci. Commun. 2018, 28, 60–68. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Han, H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B: Biointerfaces 2012, 103, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Sawangphruk, M.; Srimuk, P.; Chiochan, P.; Sangsri, T.; Siwayaprahm, P. Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 2012, 50, 5156–5161. [Google Scholar] [CrossRef]
- Sametband, M.; Inna, K.; Gedanken, A.; Sarid, R. Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Inter. 2013, 6, 1228–1235. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ryoo, S.; Na, H.; Kim, Y.; Choi, B.; Lee, Y.; Kim, D.; Min, D. Deoxyribozyme-loaded nano-graphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem. Commun. 2013, 49, 8241–8243. [Google Scholar] [CrossRef]
- Wang, X.; Cai, A.; Wen, X.; Jing, D.; Qi, H.; Yuan, H. Graphene oxide-Fe3O4 nanocomposites as high-performance antifungal agents against Plasmopara viticola. Sci. China Mater. 2017, 60, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Radhi, A.; Mohamad, D.; Abdul Rahman, F.; Abdullah, A.; Hasan, H. Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J. Mater. Res. Technol. 2021, 11, 1290–1307. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, T.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef]
- Karahan, H.; Wei, L.; Goh, K.; Liu, Z.; Birer, O.; Dehghani, F.; Xu, C.; Wei, J.; Chen, Y. Bacterial physiology is a key modulator of the antibacterial activity of graphene oxide. Nanoscale 2016, 8, 17181–17189. [Google Scholar] [CrossRef]
- Romero, M.; Marangoni, V.; Faria, C.; Leite, I.; Silva, C.; Maroneze, C.; Pereira-da-Silva, M.; Bagnato, V.; Inada, N. Graphene oxide mediated broad-spectrum antibacterial based on bimodal action of photodynamic and photothermal effects. Front. Microbiol. 2020, 10, 2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, Y.; Ge, C.; Fang, G.; Wu, R.; Zhang, H.; Chai, Z.; Chen, C.; Yin, J. Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ. Sci. Technol. 2017, 51, 10154–10161. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Meng, Z.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; et al. Destructive extration of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotech. 2013, 8, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Laurent, S.; Chen, W.; Akhavan, O.; Imani, M.; Ashkarran, A.; Mahmoudi, M. Graphene: Promises, facts, opportunities, and challenges in nanomedicine. Chem. Rev. 2013, 113, 3407–3424. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Antibacterial activity of graphene-based materials. J. Mater. Chem. B 2016, 4, 6892–6912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Luo, F.; Zhu, B.; Wang, G. Toxicological effects of graphene oxide on Saccharomyces cerevisiae. Toxicol. Res. 2017, 6, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Shao, K.; Li, Z.; Guo, N.; Zuo, Y.; Li, Q.; Lu, Z.; He, Q.; Han, H. Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Appl. Mater. Interfaces 2015, 7, 21571–21579. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Wang, L.; Xie, S.; Zhang, Y.; Kang, R.-J.; Zhang, M.; Zhang, P.; Li, Y.; Hu, Y.; et al. A novel effector, CsSp1, from Bipolaris sorokiniana, is essential for colonization in wheat and is also involved in triggering host immunity. Mol. Plant Pathol. 2021, 23, 218–236. [Google Scholar] [CrossRef]
- Schäfer, P.; Hückelhoven, R.; Langen, G.; Baltruschat, H.; Stein, E.; Nagarajan, S.; Kogel, K. Bipolaris sorokiniana, a cereal pathogen of global concern: Cytological and molecular approaches towards better control. Mol. Plant Pathol. 2002, 3, 185–195. [Google Scholar] [CrossRef]
- Reis, E. Sporulation of cochliobolus sativus on residues of winter crops and its relationship to the increase of inoculum density in soil. Plant Dis. 1984, 68, 411. [Google Scholar] [CrossRef]
- Acharya, K.; Dutta, A.; Pradhan, P. Bipolaris sorokiana (Sacc.) Shoem.: The most destructive wheat fungal pathogen in the warmer areas. Aust. J. Crop Sci. 2011, 5, 1064–1071. [Google Scholar]
- Conner, R.; Duczek, L.; Kozub, G.; Kuzyk, A. Influence of crop rotation on common root rot of wheat and barley. Can. J. Plant Pathol. 2009, 1996, 247–254. [Google Scholar] [CrossRef]
- Dong, N.; Liu, X.; Lu, Y.; Du, L.; Xu, H.; Liu, H.; Xin, Z.; Zhang, Z. Overexpression of TaPIEP1, a pathogen-induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana. Func. Integr. Genomic. 2010, 10, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Shan, T.; Hong, Y.; Xu, H.; Zhang, Z. TaPIMP2, a pathogen-induced MYB protein in wheat, contributes to host resistance to common root rot caused by Bipolaris sorokiniana. Sci. Rep. 2017, 7, 1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhao, J.; Qiao, J.; Li, W.; Guan, Z.; Liu, Z.; Bai, X.; Xing, B.; Zhang, J.; Li, J.; et al. Graphene-mediated antioxidant enzyme activity and respiration in plant roots. ACS Agr. Sci. Tech. 2022, 2, 646–660. [Google Scholar] [CrossRef]
- Wei, X.; Xu, Z.; Zhang, N.; Yang, W.; Liu, D.; Ma, L. Synergistic action of commercially available fungicides for protecting wheat from common root rot caused by Bipolaris sorokiniana in China. Plant Dis. 2020, 105, 667–674. [Google Scholar] [CrossRef]
- Money, N. Spore Production, Discharge, and Dispersal. In The Fungi; Academic Press: Cambridge, MA, USA, 2016; pp. 67–97. [Google Scholar]
- Ortiz, S.; Huang, M.; Hull, C. Spore germination as a target for antifungal therapeutics. Antimicrob. Agents Ch. 2019, 63, e00994-19. [Google Scholar] [CrossRef]
- Han, Q.; Huang, L.; Buchenauer, H.; Wang, C.; Kang, Z. Cytological study of wheat spike infection by Bipolaris sorokiniana. J. Phytopathol. 2009, 158, 22–29. [Google Scholar] [CrossRef]
- Strange, R.; Scott, P. Plant disease: A threat to global food security. Annu. Rev. Phytopathol. 2005, 43, 83–116. [Google Scholar] [CrossRef]
- Ram, S.; Duveiller, E. Spot blotch continues to cause substantial grain yield reductions under resource-limited farming conditions. J. Phytopathol. 2006, 154, 482–488. [Google Scholar] [CrossRef]
- Kurantowicz, N.; Sawosz, E.; Jaworski, S.; Prasek Kutwin, M.; Strojny, B.; Wierzbicki, M.; Szeliga, J.; Hotowy, A.; Lipińska, L.; Kozinski, R.; et al. Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Res. lett. 2015, 10, 23. [Google Scholar] [CrossRef]
- Pang, L.; Dai, C.; Bi, L.; Guo, Z.; Fan, J. Biosafety and antibacterial ability of graphene and graphene oxide in vitro and in vivo. Nanoscale Res. Lett. 2017, 12, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, X.; Chen, J.; Han, H.; Yuan, Z. Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 2014, 68, 798–806. [Google Scholar] [CrossRef]
- Pulingam, T.; Thong, K.; Ali, M.; Nelson Appaturi, J.; Dinshaw, I.; Ong, Z.; Leo, B. Graphene oxide exhibits differential mechanistic action towards Gram-positive and Gram-negative bacteria. Colloids Surf. B Biointerfaces 2019, 181, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Farzanegan, A.; Roudbary, M.; Falahati, M.; Khoobi, M.; Gholibegloo, E.; Farahyar, S.; Karimi, P.; Khanmohammadi, M. Synthesis, characterization and antifungal activity of a novel formulated nanocomposite containing Indolicidin and Graphene oxide against disseminated candidiasis. J. Mycol. Med. 2018, 28, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Laguna, F.; Suarez-Diez, M.; Tamayo-Ramos, J. Commonalities and differences in the transcriptional response of the model fungus Saccharomyces cerevisiae to different commercial graphene oxide materials. Front. Microbiol. 2020, 11, 1943. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cao, H.; Wang, J.; Li, F.; Zhao, J. Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms 2022, 10, 1994. https://doi.org/10.3390/microorganisms10101994
Zhang X, Cao H, Wang J, Li F, Zhao J. Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms. 2022; 10(10):1994. https://doi.org/10.3390/microorganisms10101994
Chicago/Turabian StyleZhang, Xiao, Huifen Cao, Juan Wang, Feng Li, and Jianguo Zhao. 2022. "Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo" Microorganisms 10, no. 10: 1994. https://doi.org/10.3390/microorganisms10101994
APA StyleZhang, X., Cao, H., Wang, J., Li, F., & Zhao, J. (2022). Graphene Oxide Exhibits Antifungal Activity against Bipolaris sorokiniana In Vitro and In Vivo. Microorganisms, 10(10), 1994. https://doi.org/10.3390/microorganisms10101994