Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Media and Culture Conditions
2.2. Plasmid Constructs
2.3. Transformation of P. chrysogenum Protoplasts, Extraction of Genomic DNA and Southern Blotting
2.4. RNA Extraction and RT-PCR Experiments
2.5. Sample Preparation for HPLC Analysis of Intracellular Levels of AdoMet, AdoHcy, Putrescine and Spermidine
2.6. HPLC Analysis of Intracellular AdoMet and AdoHcy
2.7. HPLC Analysis of Intracellular Putrescine and Spermidine
2.8. HLPC Analysis of Benzylpenicillin Production
3. Results
3.1. P. chrysogenum Wisconsin 54-1255 Genome Contains a Putative AdoMet Synthetase-Encoding Gene, Which Is Constitutively Expressed under Normal and Penicillin-Producing Conditions
3.2. Knocking-Down of the P. chrysogenum Pc16g04380 Gene Is Compatible with a Viable Phenotype
3.3. Pc16g04380 Encodes AdoMet Synthetase in P. chrysogenum (PcSasA)
3.4. Secondary Metabolism Is Affected by Reduced Levels of AdoMet
3.5. Overexpression of PcsasA Does Not Lead to an Increase in Benzylpenicillin Production
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus 2011, 2, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Estrada, C.; Martín, J.F. Penicillins and Cephalosporins. In Comprehensive Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–296. ISBN 9780444640475. [Google Scholar]
- Brakhage, A.A.; Spröte, P.; Al-Abdallah, Q.; Gehrke, A.; Plattner, H.; Tüncher, A. Regulation of penicillin biosynthesis in filamentous fungi. Adv. Biochem. Eng. Biotechnol. 2004, 88, 45–90. [Google Scholar] [CrossRef]
- Martín, J.F.; Ullán, R.V.; García-Estrada, C. Regulation and compartmentalization of β-lactam biosynthesis. Microb. Biotechnol. 2010, 3, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, J.F. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: Cross-talk regulation of secondary metabolite pathways. J. Ind. Microbiol. Biotechnol. 2017, 44, 525–535. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Domínguez-Santos, R.; Kosalková, K.; Martín, J.F. Transcription factors controlling primary and secondary metabolism in filamentous fungi: The β-lactam paradigm. Fermentation 2018, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.; Reyes-Dominguez, Y. Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet. Biol. 2011, 48, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bok, J.W.; Keller, N.P. LaeA, a Regulator of Secondary Metabolism in Aspergillus spp. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 2004, 3, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Bayram, O.; Krappmann, S.; Ni, M.; Bok, J.W.; Helmstaedt, K.; Valerius, O.; Braus-Stromeyer, S.; Kwon, N.J.; Keller, N.P.; Yu, J.H.; et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 2008, 320, 1504–1506. [Google Scholar] [CrossRef]
- Reyes-Dominguez, Y.; Bok, J.W.; Berger, H.; Shwab, E.K.; Basheer, A.; Gallmetzer, A.; Scazzocchio, C.; Keller, N.P.; Strauss, J. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 2010, 76, 1376–1386. [Google Scholar] [CrossRef] [Green Version]
- Kosalková, K.; García-Estrada, C.; Ullán, R.V.; Godio, R.P.; Feltrer, R.; Teijeira, F.; Mauriz, E.; Martín, J.F. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2009, 91, 214–225. [Google Scholar] [CrossRef]
- Kotb, M.; Geller, A.M. Methionine adenosyltransferase: Structure and function. Pharmacol. Ther. 1993, 59, 125–143. [Google Scholar] [CrossRef]
- Graham, D.E.; Bock, C.L.; Schalk-Hihi, C.; Lu, Z.J.; Markham, G.D. Identification of a highly diverged class of S-adenosylmethionine synthetases in the archaea. J. Biol. Chem. 2000, 275, 4055–4059. [Google Scholar] [CrossRef] [Green Version]
- Markham, G.D.; Parkin, D.W.; Mentch, F.; Schramm, V.L. A kinetic isotope effect study and transition state analysis of the S-adenosylmethionine synthetase reaction. J. Biol. Chem. 1987, 262, 5609–5615. [Google Scholar] [CrossRef]
- Chiang, P.K.; Gordon, R.K.; Tal, J.; Zeng, G.C.; Doctor, B.P.; Pardhasaradhi, K.; McCann, P.P. S-Adenosylmethionine and methylation. FASEB J. 1996, 10, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pérez, G.F.; Bautista, J.M.; Pajares, M.A. Methionine adenosyltransferase as a useful molecular systematics tool revealed by phylogenetic and structural analyses. J. Mol. Biol. 2004, 335, 693–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reczkowski, R.S.; Taylor, J.C.; Markham, G.D. The active-site arginine of S -adenosylmethionine synthetase orients the reaction intermediate. Biochemistry 1998, 37, 13499–13506. [Google Scholar] [CrossRef]
- Lenis, Y.Y.; Elmetwally, M.A.; Maldonado-Estrada, J.G.; Bazer, F.W. Physiological importance of polyamines. Zygote 2017, 25, 244–255. [Google Scholar] [CrossRef]
- Tabor, C.W.; Tabor, H. Polyamines. Annu. Rev. Biochem. 1984, 53, 749–790. [Google Scholar] [CrossRef] [PubMed]
- Yarlett, N.; Garofalo, J.; Goldberg, B.; Ciminelli, M.A.; Ruggiero, V.; Sufrin, J.R.; Bacchi, C.J. S-Adenosylmethionine synthetase in bloodstream Trypanosoma brucei. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1993, 1181, 68–76. [Google Scholar] [CrossRef]
- Reguera, R.M.; Balaña-Fouce, R.; Pérez-Pertejo, Y.; Fernández, F.J.; García-Estrada, C.; Cubría, J.C.; Ordóñez, C.; Ordóñez, D. Cloning expression and characterization of methionine adenosyltransferase in Leishmania infantum promastigotes. J. Biol. Chem. 2002, 277, 3158–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajares, M.A.; Markham, G.D. Methionine adenosyltransferase (S-adenosylmethionine synthetase). Adv. Enzymol. Relat. Areas Mol. Biol. 2011, 78, 449–521. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.; Surdin-Kerjan, Y. SAM1, the structural gene for one of the S-adenosylmethionine synthetases in Saccharomyces cerevisiae. Sequence and expression. J. Biol. Chem. 1987, 262, 16704–16709. [Google Scholar] [CrossRef]
- Thomas, D.; Rothstein, R.; Rosenberg, N.; Surdin-Kerjan, Y. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: Physiology and regulation of both enzymes. Mol. Cell. Biol. 1988, 8, 5132–5139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, S.Y.; Appling, D.R. Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 43051–43059. [Google Scholar] [CrossRef] [Green Version]
- Hoffert, K.M.; Higginbotham, K.S.P.; Gibson, J.T.; Oehrle, S.; Strome, E.D. Mutations in the S-adenosylmethionine synthetase genes SAM1 and SAM2 differentially affect genome stability in Saccharomyces cerevisiae. Genetics 2019, 213, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Mautino, M.R.; Barra, J.L.; Rosa, A.L. eth-1, the Neurospora crassa locus encoding S-adenosylmethionine synthetase: Molecular cloning, sequence analysis and in vivo overexpression. Genetics 1996, 142, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J.; Bayram, Ö.; Braus, G.H. Fungal S-adenosylmethionine synthetase and the control of development and secondary metabolism in Aspergillus nidulans. Fungal Genet. Biol. 2012, 49, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhao, K.; Qu, Y.; Song, X.; Zhao, J.; Qin, Y. Penicillium oxalicum S-adenosylmethionine synthetase is essential for the viability of fungal cells and the expression of genes encoding cellulolytic enzymes. Fungal Biol. 2021, 125, 1–11. [Google Scholar] [CrossRef]
- Casqueiro, J.; Bañuelos, O.; Gutiérrez, S.; Hijarrubia, M.J.; Martín, J.F. Intrachromosomal recombination between direct repeats in Penicillium chrysogenum: Gene conversion and deletion events. Mol. Gen. Genet. MGG 1999, 261, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- García-Estrada, C.; Ullán, R.V.; Velasco-Conde, T.; Godio, R.P.; Teijeira, F.; Vaca, I.; Feltrer, R.; Kosalková, K.; Mauriz, E.; Martín, J.F. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochem. J. 2008, 415, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Ullán, R.V.; Godio, R.P.; Teijeira, F.; Vaca, I.; García-Estrada, C.; Feltrer, R.; Kosalkova, K.; Martín, J.F. RNA-silencing in Penicillium chrysogenum and Acremonium chrysogenum: Validation studies using beta-lactam genes expression. J. Microbiol. Methods 2008, 75, 209–218. [Google Scholar] [CrossRef]
- Cardoza, R.E.; Moralejo, F.J.; Gutiérrez, S.; Casqueiro, J.; Fierro, F.; Martín, J.F. Characterization and nitrogen-source regulation at the transcriptional level of the gdhA gene of Aspergillus awamori encoding an NADP-dependent glutamate dehydrogenase. Curr. Genet. 1998, 34, 50–59. [Google Scholar] [CrossRef]
- García-Estrada, C.; Vaca, I.; Lamas-Maceiras, M.; Martín, J.F. In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Appl. Microbiol. Biotechnol. 2007, 76, 169–182. [Google Scholar] [CrossRef]
- Cantoral, J.M.; Díez, B.; Barredo, J.L.; Alvarez, E.; Martín, J.F. High–frequency transformation of Penicillium chrysogenum. Nat. Biotechnol. 1987, 5, 494–497. [Google Scholar] [CrossRef]
- Fierro, F.; García-Estrada, C.; Castillo, N.I.; Rodríguez, R.; Velasco-Conde, T.; Martín, J.F. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet. Biol. 2006, 43, 618–629. [Google Scholar] [CrossRef]
- Lamas-Maceiras, M.; Vaca, I.; Rodríguez, E.; Casqueiro, J.; Martín, J.F. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase. Biochem. J. 2006, 395, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Valkó, K.; Hamedani, M.P.; Ascah, T.L.; Gibbons, W.A. A comparative study of the reversed-phase HPLC retention behaviour of S-adenosyl-l-methionine and its related metabolites on Hypersil ODS and SupelcosilTM LC-ABZ stationary phases. J. Pharm. Biomed. Anal. 1993, 11, 361–366. [Google Scholar] [CrossRef]
- Zhang, J.; Klinman, J.P. High-performance liquid chromatography separation of the (S,S)- and (R,S)-forms of S-adenosyl-L-methionine. Anal. Biochem. 2015, 476, 81–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdestan, Ö.; Üren, A. A method for benzoyl chloride derivatization of biogenic amines for high performance liquid chromatography. Talanta 2009, 78, 1321–1326. [Google Scholar] [CrossRef]
- Asotra, S.; Mladenov, P.V.; Burke, R.D. Improved method for benzoyl chloride derivatization of polyamines for high-peformance liquid chromatography. J. Chromatogr. A 1987, 408, 227–233. [Google Scholar] [CrossRef]
- van den Berg, M.A.; Albang, R.; Albermann, K.; Badger, J.H.; Daran, J.M.; Driessen, A.J.M.; García-Estrada, C.; Fedorova, N.D.; Harris, D.M.; Heijne, W.H.M.; et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 2008, 26, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horikawa, S.; Tsukada, K. Molecular cloning and developmental expression of a human kidney S-adenosylmethionine synthetase. FEBS Lett. 1992, 312, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Pajares, M.A.; Corrales, F.J.; Ochoa, P.; Mato, J.M. The role of cysteine-150 in the structure and activity of rat liver S-adenosyl-L-methionine synthetase. Biochem. J. 1991, 274, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takusagawa, F.; Kamitori, S.; Markham, G.D. Structure and function of S -adenosylmethionine synthetase: Crystal structures of S -adenosylmethionine synthetase with ADP, BrADP, and PP i at 2.8 Å resolution. Biochemistry 1996, 35, 2586–2596. [Google Scholar] [CrossRef]
- García-Estrada, C.; Barreiro, C.; Jami, M.S.; Martín-González, J.; Martín, J.F. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. J. Proteomics 2013, 85, 129–159. [Google Scholar] [CrossRef]
- Zhgun, A.A.; Eldarov, M.A. Polyamines upregulate cephalosporin C production and expression of β-lactam biosynthetic genes in high-yielding Acremonium chrysogenum strain. Molecules 2021, 26, 6636. [Google Scholar] [CrossRef]
- Frisvad, J.C.; Smedsgaard, J.; Larsen, T.O.; Samson, R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 2004, 49, 201–241. [Google Scholar]
- Cram, D.J. Mold metabolites; The structure of sorbicillin, a pigment produced by the mold Penicillium notatum. J. Am. Chem. Soc. 1948, 70, 4240–4243. [Google Scholar] [CrossRef]
- Viggiano, A.; Salo, O.; Ali, H.; Szymanski, W.; Lankhorst, P.P.; Nygård, Y.; Bovenberg, R.A.L.; Driessen, A.J.M. Pathway for the biosynthesis of the pigment chrysogine by Penicillium chrysogenum. Appl. Environ. Microbiol. 2018, 84, e02246-17. [Google Scholar] [CrossRef] [Green Version]
- Salo, O.; Guzmán-Chávez, F.; Ries, M.I.; Lankhorst, P.P.; Bovenberg, R.A.L.; Vreeken, R.J.; Driessen, A.J.M. Identification of a polyketide synthase involved in sorbicillin biosynthesis by Penicillium chrysogenum. Appl. Environ. Microbiol. 2016, 82, 3971–3978. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Chávez, F.; Zwahlen, R.D.; Bovenberg, R.A.L.; Driessen, A.J.M. Engineering of the filamentous fungus Penicillium chrysogenum as cell factory for natural products. Front. Microbiol. 2018, 9, 2768. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya-Bayram, Ö.; Palmer, J.M.; Keller, N.; Braus, G.H.; Bayram, Ö. One Juliet and four Romeos: VeA and its methyltransferases. Front. Microbiol. 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Santos, R.; Kosalková, K.; Sánchez-Orejas, I.-C.; Barreiro, C.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; García-Estrada, C. Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production. Microorganisms 2022, 10, 78. https://doi.org/10.3390/microorganisms10010078
Domínguez-Santos R, Kosalková K, Sánchez-Orejas I-C, Barreiro C, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production. Microorganisms. 2022; 10(1):78. https://doi.org/10.3390/microorganisms10010078
Chicago/Turabian StyleDomínguez-Santos, Rebeca, Katarina Kosalková, Isabel-Clara Sánchez-Orejas, Carlos Barreiro, Yolanda Pérez-Pertejo, Rosa M. Reguera, Rafael Balaña-Fouce, and Carlos García-Estrada. 2022. "Characterization of the Gene Encoding S-adenosyl-L-methionine (AdoMet) Synthetase in Penicillium chrysogenum; Role in Secondary Metabolism and Penicillin Production" Microorganisms 10, no. 1: 78. https://doi.org/10.3390/microorganisms10010078