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Abstract: Transcription factors are key regulatory proteins in all living beings. In fungi, transcription
factors include either broad-domain regulatory proteins that affect the expression of many
genes involved in biosynthetic processes, or proteins encoded by cluster-associated (also called
pathway-specific) regulatory genes. Belonging to the most interesting transcription factors in fungi are
binuclear zinc finger proteins. In addition to the transcription factors in the strict sense, other proteins
play a very important role in the expression of genes for primary and secondary metabolism in fungi,
such as winged helix regulators, the LaeA protein and the velvet complex. LaeA appears to be involved
in heterochromatin reorganization, and the velvet complex proteins, which are nuclear factors that
associate with LaeA, also have a determining role in both differentiation (sporulation) and secondary
metabolite biosynthesis. The genes involved in the biosynthesis of β-lactam antibiotics are well known
and serve as an excellent model to understand the transcriptional control of genes involved in the
biosynthesis of secondary metabolites. Interaction between different regulatory proteins in the promoter
regions may represent a cross-talk regulation between different gene clusters.

Keywords: β-lactam antibiotics; control of gene expression; filamentous fungi; regulation; secondary
metabolism; transcription factors

1. Introduction

Fungi play very important roles in nature. They are crucial in biotransformation in the
biosphere, thus acting as recyclers and playing a major role in the balance of ecosystems.
Wood-decay fungi (mainly basidiomycetes) are classified as brown (e.g., Serpula lacrymans), soft (e.g.,
Chaetomium globosoum), and white (e.g., Pleurotus ostreatus) rot fungi, and participate in the degradation
of renewable wood sources and decomposition of organic matter, thus providing a large amount of
resources for the microbial world [1,2]. Fungi are normally not pathogenic organisms, although some
species may infect plant and animal tissues and cause notable diseases. Certain fungi can be found
living in association with different plants, stablishing various levels of interaction, from mutualism to
obligate parasitism. Plant-fungal interactions have a strong influence in the biosynthesis and secretion
of secondary metabolites. Therefore, characterization of the transcription factors that control the
expression of fungal genes is of great importance to understand the plant–fungi interactions [3,4].
Also, it is important to note that filamentous fungi are the closest eukaryote organisms to the metazoan
and therefore, they serve as an excellent model to understand the basic mechanisms that control
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gene expression in higher eukaryotes. Indeed, yeasts and filamentous fungi have served in the last
decades as true models to understand the basic biology of eukaryotes, which has contributed to pave
the way for research in areas such as genetics, physiology, medicine, and cell biology. For example,
Saccharomyces cerevisiae, baker’s yeast, has been used as a model to study aging, regulation of gene
expression, signal transduction, cell cycle, metabolism, apoptosis, neurodegenerative disorders, and
many other biological processes [5]. This yeast was used to set up the basis to discover the key
regulators of the eukaryotic cell cycle, a research that led Leland H. Hartwell, R. Timothy Hunt, and
Paul M. Nurse to be awarded the Nobel Prize in Medicine in 2001.

On the other hand, filamentous fungi and yeasts (Ascomycetes mainly from the genera Penicillium,
Aspergillus, Saccharomyces and Kluyveromyces) contribute to the maturation processes of cheese and other
fermented products for the food industry. Other Ascomycetes play a key role in the pharmaceutical
industry as producers of secondary metabolites, such as antibiotics (e.g., Penicillium chrysogenum,
Acremonium chrysogenum), antitumorals (Taxomyces andreanae), anticholesterolemics (Aspergillus terreus,
Penicillium brevicompactum) and immunomodulators (Penicillium stoloniferum, Tolypocladium niveum) [6–8].

Basic studies on fungal physiology were first carried out in Aspergillus nidulans and Neurospora
crassa and soon after they were extended to P. chrysogenum. The complete genome of this filamentous
fungus was sequenced at the end of the last decade [9], thus paving the way to different transcriptomics,
proteomics, and metabolomics studies. Therefore, a vast amount of information has been gathered on
different molecular aspects in P. chrysogenum, which together with the large number of molecular tools
that have been developed in this microorganism for biotechnological purposes, have made this fungus
extremely interesting as a model of fungal physiology and biotechnology.

Due to the interest of P. chrysogenum for the pharmaceutical industry as β-lactam producer, most
of the research carried out on this fungus has been focused on aspects related to penicillin biosynthesis
and production. As a consequence, the benzylpenicillin biosynthetic pathway is one of the best
characterized processes from the genetic, biochemical, subcellular, and metabolic points of view and
therefore, it can be considered a paradigm of the compartmentalized biosynthetic pathway for the
study of fungal secondary metabolites biosynthesis. A special emphasis has been given to the study
of the transcription factors in P. chrysogenum, which has provided strong evidence of the complex
regulatory networks controlling growth, differentiation, and secondary metabolite biosynthesis [10,11].

Secondary metabolism genes are often clustered in filamentous fungi. The biosynthesis of
secondary metabolites is a complex process coupled with morphological development, since most
secondary metabolites are produced when the fungus is beginning a stage of development represented
by the formation of spores and after the initial growth phase has been completed [10]. Transcriptional
control of genes involved in the biosynthesis of secondary metabolites is carried out by two categories
of transcription factors that interact with distinct recognition sequences (target sequences) present in
the promoter regions of different genes. These transcription factors can be regulatory proteins that
are specific to a particular gene cluster, or broad-domain transcription factors that are mediated by
nutritional and environmental signals such as carbon source, pH, or nitrogen sources. Therefore, control
of secondary metabolism is subjected to complex regulatory networks that ensure the biosynthesis
of secondary metabolites in response to general cellular metabolism and to the presence of specific
pathway inducers [11].

One of the best characterized fungal secondary metabolism pathways is the biosynthesis of
β-lactam antibiotics. Hydrophobic penicillins are synthesized by P. chrysogenum, Aspergillus nidulans,
and other Penicillium and Aspergillus species [12], whereas A. chrysogenum is able to produce hidrophilic
penicillins and cephalosporin C. The hydrophobic or hydrophilic nature of different penicillins is
conferred by the side chain that is attached to the penam nucleus, which comprises the β-lactam ring
fused to a 5-membered thiazolidine ring. Penicillin and cephalosporin C share the initial steps of their
respective biosynthetic pathways [13]. The pcbAB and pcbC genes, which show a divergent orientation
and share a bidirectional promoter, code the enzymes necessary for the biosynthesis of isopenicillin
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N, the latter representing the branching point for the biosynthesis of hydrophobic penicillins and
cephalosporin C [13].

In P. chrysogenum and A. nidulans, isopenicillin N is converted to hydrophobic penicillins
(e.g., benzylpenicillin) by means of the penDE-encoded acyltransferase. The pcbC–pcbAB genes are
always grouped and are located next to the penDE gene [13].

Cephalosporin C biosynthesis in A. chrysogenum requires the epimerization of isopenicillin N to
penicillin N in a reaction catalyzed by the products of the cefD1 and cefD2 genes. This is followed by
thiazolidine ring expansion and further hydroxylation by means of the bifunctional protein encoded
by the cefEF gene. The last step in cephalosporin C biosynthesis consists of an acetylation reaction
catalyzed by the product of the cefG gene. These genes are organized in at least two clusters located on
different chromosomes. The “early” gene cluster, located on chromosome VII (4.6 Mb), contains pcbAB,
pcbC, cefD1, and cefD2 genes. The “late” gene cluster, located on the 2.2-Mb chromosome I, includes
the cefEF and cefG genes [13].

The promoter regions of these genes contain target sequences for many different types of
transcription factors. The penicillin biosynthetic gene cluster represents a good example of the complexity
of interactions between promoter regions and transcription factors (Figure 1). These regulators control
the expression of secondary metabolism genes in response to different nutritional, environmental and
stress conditions and some of them are described in the following sections.
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Figure 1. Schematic representation of the promoter regions of the benzylpenicillin gene cluster and
potential binding sites for some transcription factors. Numbers above genes indicate positions within
contig 21 of the P. chrysogenum Wisconsin 54–1255 genome.
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2. Zinc-Binding Transcription Factors

Transcription factors belong to different protein families. Belonging to the most abundant types
of transcription factors are the zinc-binding proteins [14], which form one of the largest families of
transcription factors in eukaryotes. These zinc-binding proteins contain amino acid sequences, so called
zinc signatures or zinc finger motifs, in which cysteines and/or histidines coordinate one or more zinc
atoms to form local peptide structures that are required for their specific functions. These proteins are
present in all living beings, from prokaryotes (e.g., Agrobacterium tumefaciens Ros protein) to higher
eukaryotes [15,16]. The zinc-binding proteins are usually classified into three major classes, and
differences in the structure of proteins of the three classes are important in the recognition of their target
sequences in the DNA [17]:

Class I contains a signature formed by four amino acids: Cys2His2 (abbreviated C2H2). This type
is the most frequent in higher eukaryotes and is also present in yeast and fungi [18].

The second class contains a signature of Cys4 (abbreviated C4), which is more frequent in
filamentous fungi.

The third type, which is very important in filamentous fungi, contains a signature sequence
of Cys6 and coordinates two zinc atoms per monomer, thus forming the so-called zinc-binding
nucleus Zn(II)2Cys6 (abbreviated Zn2C6). This third class of zinc-binding proteins is exclusive for
yeast and filamentous fungi and includes many of the most relevant transcription factors in these
organisms. This class is usually referred to as binuclear zinc finger (or simply nuclear zinc finger)
transcription factors.

Although the C2H2 type is the most frequent and was the first discovered in Xenopus at the end of
the last century, in recent years many binuclear zinc finger type transcription factors have been found
not only in S. cerevisiae and Schizosaccharomyces pombe, but also in many different filamentous fungi
(see Tables 1 and 2).

Table 1. Representative examples of class I zinc-binding transcription factors (C2H2) that have been
characterized in filamentous fungi.

Fungal Species Transcription
Factor Process/Function Reference

Ascomycetes

Acremonium chrysogenum Cre1 Glucose catabolite regulation [19,20]

Aspergillus nidulans PacC pH regulation [21]

Aspergillus nidulans AslA Control of the K(+) stress-inducible expression of the genes
encoding the ion pumps [22]

Aspergillus nidulans SltA Control of morphogenesis and sterigmatocystin biosynthesis [23]

Aspergillus nidulans FlbC Control of conidial development and germination, and brlA
and vosA expression [24]

Aspergillus nidulans NsdC Control of fruiting body formation [25]

Aspergillus nidulans MtfA Regulation of secondary metabolism and differentiation [26]

Aspergillus nidulans BrlA Regulation of differentiation [27]

Aspergillus nidulans,
Penicillium chrysogenum CreA Glucose catabolite regulation [28,29]

Aspergillus glaucus Agseb1 Control of sensitivity to hyperosmotic stress. Hyphae
branching and aspergiolide A biosynthesis [30]

Botrytis cinerea BcYOH1 Control of botrydial, phytotoxin and other secondary
metabolites gene clusters [31]

Colletotrichum gloeosporioides CrzA Control of morphogenetic processes and pathogenicity [32]

Fusarium verticillioides Ada1 Control of asexual development [33]

Fusarium verticillioides Sda1 Control of polyol metabolism and fumonisin biosynthesis [34]

Magnaporthe oryzae Znf1 Control of pathogenicity [35]
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Table 1. Cont.

Fungal Species Transcription
Factor Process/Function Reference

Magnaporthe oryzae Flb3p Required for normal aerial mycelium formation [36]

Magnaporthe oryzae Cos1 Control of conidiophores development [37]

Saccharomyces cerevisiae MIG1 Glucose catabolite regulation [38]

Trichoderma atroviride Blu7 Control of light-regulated genes, growth and conidiation [39]

Verticillium dahliae Czf Control of fungal growth, development, various stress
responses, and virulence [40]

Basidiomycetes

Agaricus bisporus C2H2 Control of timing for mushroom formation [41]

Cryptococcus neoformans Ste12αp Regulation of several genes associated with virulence [42]

Ganoderma lucidum GlPacC Control of response to ambient pH [43]

Schizophyllum commune C2H2 Regulation of primordium development [44]

Ustilago maydis Mzr1 Transcriptional activator during host colonization [45]

Ustilago maydis Rua1 Regulation of biosurfactant ustilagic acid biosynthesis [46]

Table 2. Representative examples of class III zinc binding transcription factors (Zn2C6) that have been
characterized in filamentous fungi.

Fungal Species Transcription
Factor Process/Function Reference

Ascomycetes

Aspergillus nidulans AclR Activation of genes for ethanol oxidation [47,48]

Aspergillus nidulans ArcA Arginine catabolic pathway [49]

Aspergillus nidulans NirA Activation of nitrate assimilation [50,51]

Aspergillus nidulans PrnA Activation of proline utilization [52,53]

Aspergillus nidulans QutA Regulation of genes for quinic acid utilization [54]

Aspergillus nidulans QutH Possible role in the regulation of protocatechuic acid
utilization [55]

Aspergillus nidulans TamA Nitrogen regulation [56]

Aspergillus nidulans Uay Activation of purine transport and utilization [57,58]

Aspergillus nidulans, Aspergillus
oryzae, Aspergillus niger AmyR Activation of amylolytic gene expression [59,60]

Aspergillus nidulans, Neurospora
crassa FacB Activation of acetate regulatory genes [61,62]

Aspergillus oryzae, Aspergillus
niger, Fusarium oxysporum XlnR Regulation of xylanolytic genes expression [63]

Aspergillus fumigatus GliZ Regulation of gliotoxin [64]

Bipolaris oryzae Bmr1 Regulation of melanin biosynthesis [65]

Clonostachys rogersoniana VerZ Regulation of verticillin biosynthesis [66]

Colletotricum lindemuthianum CltA1 Involved in the regulation of biotrophy/nectotrophy switch [67]

Colletotricum lagenarium CmR1 Regulation of melanin biosynthesis [68]

Cercospora nicotianae CRG1 Involved in cercosporin resistance [69]

Fusarium verticillioides Zrf1 Regulation of fumonisin biosynthesis and sugars transport [70]

Fusarium oxysporum Fow2 Control of pathogenicity [71]

Fusarium graminearum and
F. verticillioides FgArt1 Regulation of tricotecenos and fumonisin. [72]

Fusarium graminearum Ebr1 Involved in growth and virulence [73]

Leptosphaeria maculans SirZ Regulation of sirodesmin biosynthesis [74]
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Table 2. Cont.

Fungal Species Transcription
Factor Process/Function Reference

Magnaporthe grisea Pig1 Regulation of melanin biosynthesis [68]

Nectria haematococca Ctf1 a and b Activation of cutinases [75]

Neurospora crassa Fl Required for conidiophore morphogenesis [76]

Neurospora crassa Nit4 Activaion of nitrate assimilation [77]

Penicillium citrinum MlcR Involved in compactin biosynthesis [78]

Penicillium roqueforti Pcz1 Regulation of cell development [79]

Parastagonospora nodorum PnPf2 Involved in host specific virulence [80]

Saccharomyces cerevisiae ArgRII Control of arginine metabolism [81]

Talaromyces marneffei FacB Regulation of the glyoxalate cycle [82]

Trichoderma reesei AceII Activation of cellulases and xylanases gene expression [83]

Sordaria macrospora Pro1 Involved in the development of fruiting bodies [84]

Basidiomycetes

Schizophyllum commune Fst3 Regulation of mushroom development [85]

Schizophyllum commune Fst4 Regulation of mushroom formation [85]

Ustilago maydis Ton1
Involved in inducing the expression of rrm4 (an RNA-binding

protein involved in cell polarity and also required for full
pathogenicity)

[86]

2.1. Class I Zinc Binding Transcription Factors (C2H2)

The classical C2H2 domain contains conserved cysteine and histidine pairs and adopts a
left-handed ββα structure composed of a β-hairpin (antiparallel β-sheet comprising two β-strands)
and one α-helix, with the amino acid sequence X2-Cys-X2,4-Cys-X12-His-X3,4,5-His (Figure 2).
This structure is stabilized by the coordination of a zinc atom with two conserved cysteine residues
at one end of the β sheet and with two conserved histidine residues at the α-helix C-terminus [87].
This structure is frequently repeated in the protein and the protein containing several of these sequences
binds as a monomer to its DNA target sequence.

Important examples of the C2H2 type are the PacC transcriptional regulators of A. nidulans and
P. chrysogenum, which contain three zinc fingers per monomer [21], the MtfA repressor of A. nidulans [26]
or the CreA factor that controls carbon catabolite regulation in many filamentous fungi [28,88]. In recent
years a large number of fungal transcription factors of class I have been reported (Table 1).
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2.1.1. Class I: CreA (Cre1)

Media composition has a strong influence in the expression of secondary metabolite gene
clusters. Microorganisms have developed a survival strategy based on the selection of the most
energetically favorable carbon source, which favors rapid colonization of habitats [89]. The mechanism
of carbon source regulation (or carbon catabolite repression), allows preferential assimilation of an
energy-efficient and readily utilizable carbon source over a wide variety of relatively less easily
accessible carbon sources [90]. In this scenario, glucose and other readily utilized carbon sources are
able to repress the expression of different genes, such as those encoding enzymes required for the
breakdown of alternative carbon sources (e.g., xylanases, cellulases, and arabinases).

In filamentous fungi, carbon catabolite repression of primary metabolism is mediated by a
Cys2-His2-type zinc finger transcription factor named CreA (Cre1) [91], which is an orthologous
of MIG1, the final effector responsible for repression of glucose-regulated genes in S. cerevisiae [38].
CreA contains two zinc fingers, an alanine-rich region and frequent S(T)PXX motifs [28], and binds the
consensus sequence SYGGRG [92–94]. CreA is regulated to some extent by ubiquitination, the latter
promoted by the CreD-HulA ubiquitination ligase complex, whereas the CreB-CreC deubiquitination
(DUB) complex removes ubiquitin from CreA, thus causing its activation [91].

Carbon catabolite repression is not exclusively circumscribed to primary metabolism. Biosynthesis
of many secondary metabolites is also subject to carbon source regulation. β-lactam producing fungi
represent a good example of how this process controls secondary metabolism.

In P. chrysogenum, glucose, sucrose and to a lesser extent maltose, fructose, and galactose all
have a negative effect on penicillin biosynthesis. Interestingly, the use of lactose may overcome this
negative effect in the presence of subrepressing doses of glucose [95]. Carbon regulation is exerted
at different levels of the penicillin biosynthesis: flux of L-α-aminoadipic acid (penicillin precursor);
uptake and activation of side chain precursors; transcriptional and post-transcriptional regulation
of the penicillin biosynthetic gene cluster [96]. In fact, it has been reported that glucose gives rise to
drastic reduction in the transcript levels of the three genes involved in the biosynthesis of penicillin
(pcbAB, pcbC, and penDE) [97,98] and therefore, a carbon regulatory protein is expected to transduce
nutritional signals to the penicillin biosynthetic gene cluster. The important role played by CreA in
the control of penicillin biosynthesis has been recently confirmed. Six CreA binding sites (SYGGRG)
are present in the intergenic pcbAB-pcbC region of P. chrysogenum (Figure 1), CreA-1 being the main
cis-acting element regulating carbon repression of the pcbAB gene [99]. In addition, seven putative
CreA binding sites have been identified in the promoter region of the penDE gene (Figure 1), although
their role in regulating the expression of this penicillin biosynthetic gene has yet to be elucidated.

A similar repression phenomenon has been also observed in A. nidulans and A. chrysogenum,
where glucose or sucrose reduce β-lactam antibiotic biosynthesis [29,100,101]. In A. nidulans, repressing
carbon sources regulate ipnA (pcbC) gene expression, at least in part, at the transcriptional level [29],
the product of this gene (IPN synthase) showing reduced activity in the presence of glucose.
This carbohydrate led to a very weak repressor effect on the acvA (pcbAB) gene expression [101].
Interestingly, the repression effect on the aat (penDE)-encoding IAT was achieved, at least in part,
at post-transcriptional level. This phenomenon was also observed in the wild type strain of
P. chrysogenum [101], and was in contrast to previous observations in the improved strain P. chrysogenum
AS-P-78 [102], which suggests partial modifications of the glucose-mediated regulation in this penicillin
high-producing strain.

Unlike in P. chrysogenum, CreA seems not to play a role in C-source repression of β-lactam
biosynthesis in A. nidulans, since different mutants in CreA, CreB, or CreC did not modify carbon
regulation of penicillin biosynthesis [29,103,104]. These results indicate that a CreA-independent
mechanism of carbon repression controls penicillin biosynthesis in A. nidulans.

In the cephalosporin C-producer A. chrysogenum, the repression effect of glucose is more
remarkable on cephalosporin C than on penicillin. Therefore, this negative effect seems to be
stronger in the late steps of the pathway [100]. The glucose effect on ACV synthetase is exerted
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at post-transcriptional level, since inhibition of ACVS specific activity is due to depletion of the
cofactor ATP via sugar metabolism [105]. Conversely, expression of the pcbC and cefEF genes is
controlled by carbon repression in a wild-type strain of A. chrysogenum. However, in a cephalosporin C
high producing strain, the pcbC transcript level is not affected by the presence of glucose. This suggests
that strain improvement is correlated with deregulation of glucose repression [19,20]. Control of
cephalosporin C biosynthesis by Cre1 (CreA) has been suggested, and in fact, several binding sites are
present in the upstream regions of the biosynthesis genes pcbC and cefEF [19,20].

2.1.2. Class I: PacC

Filamentous fungi can adapt to grow in a wide range of ambient pH values, thus keeping
homeostasis in both acidic and alkaline environments. Regulation of pH-dependent gene expression is
these microorganisms is mediated by the transcriptional activator PacC [106], which is a transcription
factor of the Cys2His2-type with three zinc fingers [107].

Under acidic conditions, the full-length form of PacC (PacC72) adopts a close conformation that
is inaccessible to the activating proteases. This is due to intramolecular interactions involving the
C-terminal domain [108]. On the contrary, at neutral to alkaline pH, activation of PacC is initiated in
response to a signaling cascade involving dedicated Pal signal transduction components (A, B, C, F, H,
and I) and the participation of ESCRT-I, -II, and -III components (endosomal sorting complex required
for transport) [109,110].

The plasma membrane signaling complex includes three components: (i) the cell surface sensor
PalH, which contains seven transmembrane domains and senses the extracellular pH level [111,112];
(ii) PalI, which assists plasma membrane localization of PalH [113]; and (iii) PalF, an arrestin-related
protein that stabilizes PalH through strong interactions and is phosphorylated and ubiquitinated
under neutral to alkaline conditions [114,115]. This results in endocytosis of the PalH/PalF complex to
endomembranes, recruitment of ESCRT components, and incorporation of PalC, PalA, and PalB [116].

This cascade leads to the activation of PacC by a two-step proteolytic cleavage. During the
first step, which occurs in response to pH signaling, PalA interacts with the two YPXL/I motifs
flanking the cleavage site in PacC72 [117], whereas the cysteine protease PalB removes approximately
180 ◦C-terminal residues to yield PacC53 [118–120]. In the second step, which is pH-independent
and most likely mediated by the proteasome, PacC53 is converted to PacC27 [121]. Under neutral
to alkaline conditions, the PacC27 processed form prevents transcription of those genes expressed
preferentially at acidic pH and activates transcription of alkaline expressed genes [21,106].

Steady-state levels of pacC transcripts are low under acidic pH values and relatively high under
alkaline conditions in wild-type strains [106]. It has been reported that the unprocessed PacC72
negatively autoregulates pacC gene expression, the latter occurring under alkaline conditions due to
derepression after PacC72 processing in response to pH signaling [110].

Biosynthesis of each fungal secondary metabolite is optimal at a certain pH condition. Interestingly,
production of β-lactam antibiotics by P. chrysogenum (hydrophobic penicillins) and A. chrysogenum
(cephalosporin C) is favored under alkaline ambience pH values [122,123]. Under these conditions,
PacC activates gene expression by binding the consensus sequence 5′-GCCARG-3′ [106]. The promoter
region of the genes involved in the biosynthesis of penicillin and cephalosporin C contains several
PacC binding sites. In P. chrysogenum, the three genes involved in the biosynthesis of penicillin seem
to be regulated by PacC, since seven putative binding sites are present in the pcbAB–pcbC intergenic
region and three putative binding sites are found within the promoter region of the penDE gene [122]
(Figure 1). In A. chrysogenum, putative PacC binding sites have been found in the promoter region
of “early” and “late” genes involved in the biosynthesis of cephalosporin C. In this microorganism
the bi-directional promoters of the genes pcbAB–pcbC and cefEF–cefG contain two PacC binding sites
each [123]. These data suggest PacC-mediated pH regulation of full penicillin biosynthesis process
and partial pH regulation of cephalosporin C biosynthesis. In addition, PacC-dependent regulation of
cephalosporin C biosynthesis seems to have changed during strain improvement, since the optimum
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pH value for the expression of the genes involved in the biosynthesis of cephalosporin in a wild-type
strain was pH 8, unlike in a production strain, where the optimum pH value was pH 6 [123].

Regulation of β-lactam biosynthetic gene expression by pH is related to another important
environmental factor that dramatically affects the biosynthesis of β-lactam antibiotics; the carbon source.
The use of repressing carbon sources (e.g., glucose or sucrose) causes acidification of the culture medium,
whereas non-repressing carbon sources (e.g., lactose) produce alkalinization. Therefore, although
carbon source and pH have independent regulatory mechanisms, both carbon and pH regulation act
in concert [106,124]. In A. nidulans the alkaline external pH is able to override the negative effect of a
repressing carbon source on the ipnA (pcbC) gene expression, unlike in P. chrysogenum, where full pcbC
gene expression was dependent on carbon source derepression irrespective of the ambient pH [97,122].

2.1.3. Class I: MTFA (Master Transcription Factor A)

A novel zinc binding transcription factor was reported in A. nidulans [26]. This transcription factor
regulates several secondary metabolite biosynthesis independently of the VeA regulatory protein. The
same secondary metabolites are also controlled by VeA through interaction with LaeA and several other
proteins of the velvet complex. Ramamoorthy and coworkers [26] searched for transcription factors
controlling secondary metabolism and sexual and asexual reproduction in A. nidulans in a VeA-defective
strain. The new transcription factor, named Master Transcription Factor A (MTFA), belongs to the
C2H2 class and its monomeric protein contains two zinc binding domains per molecule. MTFA controls
sterigmatocystin, penicillin, and terrequinone biosynthesis in A. nidulans. The biosynthesis of penicillin
decreases in mutants deleted in the MTFA transcription factor and, interestingly, overexpression of mtfA
leads to a five-fold increase in penicillin biosynthesis due to modulation of the expression of the three
penicillin biosynthesis genes pcbAB, pcbC, and penDE. Remarkably, the biosynthesis of sterigmatocystin
and terrequinone does not follow the same pattern. Although production of these other secondary
metabolites decreases in the MTFA mutant, there is no increase in the production of these metabolites
when the MTFA gene is overexpressed in the wild type parental strain. This inhibitory effect suggests
that in the case of sterigmatocystin and terrequinone, there is a critical level of MTFA that is optimal
for the biosynthesis of these secondary metabolites. The MTFA factor regulates at least two genes of
the terrequinone biosynthesis; tdiA and tdiB. The tdiA gene encodes an indol prenyltransferase that
catalyzes the first step of terrequinone biosynthesis. Deletion of the MTFA gene and complementation
with the wild type allele changes the expression of the AflR regulatory gene of the sterigmatocystin
gene cluster, hence indicating that a critical level of MTFA is optimal for sterigmatocystin biosynthesis.
Fluorescence electron microscope studies using MTFA–GFP fused proteins indicated that the MTFA
factor is located in the nucleus, both under dark and light conditions, and regulates sexual and asexual
sporulation. This regulation is connected to changes in expression of the VeA transcription factor.
In the MTFA deletion mutant, expression of blrA is abnormally high, a condition that correlates with
repression of conidiation [125]. MTFA homologous genes have been found in a number of Ascomycetes
fungi, but not in yeasts, plants, or animals. In particular, the MTFA orthologous gene of P. chrysogenum
is encoded by Pc22g24110 (Accession number XP_002566301.1). P. chrysogenum and A. nidulans MTFA
genes share 49.3% identity and 58.7% similarity, and it is likely that the MTFA gene of P. chrysogenum
might also control the expression of the pcbAB, pcbC, and penDE genes.

2.2. Class II Zinc Binding Transcription Factors (C4)

The C4 class includes well known transcription factors, such as the nuclear receptor proteins and
the so called GATA factors [126]. The majority of the fungal GATA factors contain a single zinc finger
domain with the amino acid sequence Cys-X2-Cys-X17,18-Cys-X2-Cys followed by a highly basic
region [127] (Figure 3). This class of transcription factors binds to GATA sequences ((A/T)GATA(A/G))
present in target promoters. The protein usually binds as homodimers or heterodimers to the
recognition sequence [128]. Homodimers bind inverted GATA repeat sequences, whereas heterodimers
recognize direct repeated sequences. Interesting examples of class II transcription factors are AreA of
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A. nidulans (named NreI in P. chrysogenum or AcareA in A. chrysogenum), which controls the nitrogen
regulation in these fungi attaching to GATA sequences [129–131], and Sre1, the latter controlling iron
uptake and siderophore biosynthesis in Histoplasma capsulatum [132].
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Class II: AreA (Nre)

A constant nitrogen supply is necessary to assure fungal growth under different environmental
conditions. This supply is achieved by means of a wide-domain regulatory system known as nitrogen
metabolite repression. When preferred nitrogen sources, such as ammonium or glutamine, are absent,
alternative nitrogen sources (e.g., amino acids, GABA, purines, etc.) can be used. This process is
controlled by this system, which regulates components of the nitrate assimilation machinery and also
permeases and catabolic enzymes [96,129,133,134].

In ascomycetous fungi, the key player in charge of activating (de-repression mechanism) those
genes involved in the utilization of alternative nitrogen sources in the absence of preferred ones,
is the transcription factor AreA (dubbed Nre in P. chrysogenum) [121]. AreA/NRE contain a single
Cys-X2-Cys-X17-Cys-X2-Cys (Cys2Cys2) zinc finger domain preferentially binding to at least two
HGATAR (GATA) DNA sequence motifs within a range of 30 bp [96,129,135].

During nitrogen starvation, nitrate assimilation in A. nidulans is controlled by AreA. This GATA
transcription factor is able to open the chromatin at the nitrate utilization gene cluster via histone
acetylation and act synergistically with the nitrate-induced transcription factor NirA, which ultimately
binds the target promoter region of the nitrate assimilatory genes for transcription initiation [136–138].

An additional GATA transcription factor (AreB in A. nidulans or NreB in P. chrysogenum) has been
also reported to be involved in nitrogen regulation in these two filamentous fungi. AreB (NreB) was
initially considered the negative counterpart of AreA (Nre), thus playing a role as a major repressor
of AreA-activated nitrogen catabolism genes [139,140]. Recent studies have reported more complex
functions for AreB, which acts synergistically with AreA as activators or repressors of their shared target
genes and physically interacts in the nucleus under nitrogen-limiting conditions [141]. In addition,
they are involved in the control of several complex cellular processes like carbon metabolism and
transport, and can be considered as master regulators of secondary metabolism [142].

β-lactam antibiotic production by P. chrysogenum and A. chrysogenum is strongly influenced by the
nitrogen source. An ammonium concentration above 100 mM strongly interfered with cephalosporin
C production in A. chrysogenum [143], whereas the addition of 40 mM ammonium to P. chrysogenum
grown in the presence of lactose led to the repression of expression of the reporter uidA gene from both
pcbAB and pcbC promoters, thus indicating that the expression of each of these penicillin biosynthesis
genes is regulated by nitrogen repression [144]. In fact, the bidirectional promoter region pcbAB–pcbC
of P. chrysogenum contains five GATA motifs (Figure 1). Only NRE strongly interacts in vitro with a site
that contains two of these GATA motifs, which are arranged in a head-to-head fashion and separated
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by 27 bp [145]. Therefore, nitrogen metabolite regulation of the genes involved in the biosynthesis
of penicillin mediated by Nre seems very likely, pointing to these secondary metabolism genes as
members of a nitrogen control circuit [96]. The A. chrysogenum intergenic region of the corresponding
pcbAB–pcbC genes also contains several GATA motifs (up to 15), thus suggesting AreA-mediated
nitrogen repression of cephalosporin production [146]. In fact, it has been reported that AreA binds to
the bidirectional promoter of pcbAB–pcbC in this microorganism, thus playing an important role not
only in the regulation of nitrogen metabolism, but also in cephalosporin production [131]. Interestingly,
in A. nidulans the bidirectional acvA–ipnA (pcbAB–pcbC) promoter region only contains one GATA
motif, which is consistent with the fact that no evidence for nitrogen-dependent regulation of penicillin
biosynthesis has been reported so far in this filamentous fungus [96].

2.3. Class III Zinc Binding Transcription Factors (Zn2C6)

Zinc-binding transcription factors of class III contain two sets of three cysteines, flanked
by basic amino acids, each one coordinating a zinc atom and thus forming the so-called zinc
finger. Therefore, the two zinc atoms are coordinated by six cysteine molecules. These binuclear
transcription factors contain a DNA binding domain that is usually located in the amino terminal
region of the protein (exceptionally in the carboxyl terminal end) and has the amino acid sequence
Cys-X2-CysX6-Cys-X5-12-Cys-X2-Cys-X6-9-Cys (Figure 4). These proteins may work as monomers,
homodimers, or heterodimers. The DNA-binding domain is tripartite and consists of the signal
sequence Cys6, a linker region, and the dimerization region. The signal sequence is made of two
groups of three cysteine molecules separated by a loop [147].

The classical model protein of class III is the Gal4p protein, which is a regulatory protein
for galactose utilization in yeast (Figure 5) [148]. A few of these zinc-binding proteins have been
crystallized, including Gal4p [149,150], their crystal structures providing information on how they
form homodimers [151]. The crystal structure reveals that these type of transcription factors bind to
two repeated CGG sequences separated by a different number of nucleotides. The zinc atom is required
for binding the transcription factor to the DNA, but it can be replaced by cadmium [152,153]. Indeed,
some of the crystal structures were obtained with cadmium instead of zinc. While the recognized motif
consists of two direct repeat CGG sequences, some of these transcription factors bind to inverted CGG
sequences separated by a variable linker. The variable linker region may explain the different specificity
of the recognized regions by distinct zinc binding proteins; this variable region somehow provides a
rigid distance that determines the specificity of recognition of the different binding sequences [154].
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The third element of the tripartite DNA binding domain is the dimerization domain. This domain
consists of heptad repeats that form coil structures, and the dimerization appears to take place by coil
to coil interaction in a form similar to that of the leucine zipper. Most zinc-binding transcription factors
contain this dimerization coil region, but a few of them lack the dimerization capability, indicating
that the latter work as monomers. The middle homology region is poorly conserved among different
members of these zinc finger factors. This region has a regulatory role and appears to be important in
the modulation of the transcriptional activity of those factors. Indeed, mutants in these regions are
sometimes constitutive, which indicates that the middle homology region plays a role in regulation
of the transcriptional activity, most likely an inhibitory role. Finally, the C-terminal region of these
transcription factors is usually acidic and probably plays different functions in distinct transcription
factors. Some of them have transmembrane domains, thus suggesting that this region may serve
to anchor the protein to membrane systems, whereas in other cases it has a modulatory role of the
transcription factor activity [17].

Specificity and Binding of the Binuclear Zinc Finger Transcription Factors

Despite the overall structure similarity between hundreds of these factors, they have notable
recognition specificity. There are several features that determine binding specificity. One of them is
the orientation of the CGG triplets in the binding site; in some cases, there are direct repetitions of
the CGG, whereas in others inverted repeats are present. Moreover, the distance between the CGG
triplets introduces another variable in the specificity. In general, binding of transcription factor dimers to
these sequences takes place by two proteins bound either in a face to face configuration (in the case of
recognition of inverted CGG repeats), or in face to tail configuration (in the case of direct CGG repeat) [17].

However, comparison of the recognition sites of a certain transcription factor reveals a
considerable variability, thus indicating that other features different from the nucleotide sequence are
also important [155]. Indeed, chip studies with chromatin immunoprecipitation indicate that some
transcription factors bind to many nucleotide sequences in the intergenic regions of the S. cerevisiae
genome, some of which do not contain the consensus target sequence [156].

There are hundreds of binuclear transcription factors in yeasts and filamentous fungi. About fifty
of these proteins have been described in S. cerevisiae and Candida albicans [17], but in recent years
many more examples of zinc finger transcription factors have been found in different filamentous
fungi. These transcription factors play very important roles in the regulation of fungal differentiation,
sporulation, secondary metabolite biosynthesis, and primary metabolism (Table 2).
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3. Winged Helix Regulators

Winged helix regulators are a large and diverse set of evolutionarily conserved transcription
factors formed by members of the RFX and the forkhead families [157]. These transcription factors
are found in all organisms, from bacteria to mammals, but their functional properties and interaction
profile are diverse and versatile.

Winged helix proteins share an evolutionarily conserved DNA-binding domain and belong to the
ensemble of helix-turn-helix proteins. The winged helix motif is a compact α/β structure consisting of
two wings, three α helices, and three β strands [158] (Figure 6).
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3.1. RFX-Related Transcription Regulators

RFX transcripcional factors form a small class of winged helix proteins and are characterized by a
nonconventional mode of DNA recognition.

In A. chrysogenum, CPCR1 is the first member of the RFX transcription factors identified from
filamentous fungi. It is involved in the regulation of cephalosporin C biosynthesis. This transcription
factor only binds DNA in a dimeric state and is involved in the regulation of cephalosporin C
biosynthesis by binding, at least, two sequences at the bidirectional promoter region of the pcbAB–pcbC
genes of A. chrysogenum [159]. Knockout transformants in cpcR1 showed decreased transcript levels
of the pcbC gene, as well as a reduction in the penicillin N production, but not in cephalosporin C
levels. Therefore, CPCR1 is not likely involved in the regulation of the late genes of the cephalosporin
biosynthetic cluster [159,160].

CPCR1 homologous proteins have been found in β-lactam non-producer fungi, such as
Neurospora crassa and Fusarium graminearum, thus indicating that this factor may have different
regulatory functions not restricted to antibiotic biosynthesis. In fact, it has been shown that CPCR1 is
also involved in the control of morphological development and is necessary for hyphal fragmentation,
and hence for the formation of arthrospores in A. chrysogenum [161]. Also, in the opportunistic human
pathogenic fungus, Penicillium marneffei, RfxA (CPCR1 ortholog) may be required for linking cell
division with cellular differentiation during morphogenesis, mainly in the process of conidiation and
growth under yeast form [162].

In P. chrysogenum, the global transcription factor PcRFX1 (orthologous of the A. chrysogenum
CPCR1) controls penicillin biosynthesis. Domínguez-Santos and coworkers [163] established a
new consensus sequence for the binding of PcRFX1 to the penicillin biosynthetic gene promoters
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(5′-NNRCCNNRSHWAY-3′). Using this consensus sequence, two putative binding sites in the promoter
region of pcbAB, one in the promoter region of pcbC and another one in the promoter region of penDE,
were found (Figure 1). The functionality of these putative PcRFX1 DNA binding sequences was verified
using gene reporter assays. Furthermore, by means of DNA binding assays, specific interaction of PcRFX1
with the putative DNA binding sequences located in the penicillin biosynthetic gene promoters was
demonstrated. Pcrfx1 knockdown transformants showed a reduction in isopenicillin N and penicillin G
production, which was a consequence of a decreased expression of the penicillin gene cluster. Therefore,
PcRFX1 controls the early and late steps of the penicillin biosynthetic process in P. chrysogenum. In this
filamentous fungus, PcRFX1 is also suggested to control several pathways of primary metabolism [163].

3.2. Forkhead-Type Regulators

In a similar way to CPCR1 (RFX), forkhead transcription factors also form a subclass of
winged helix transcription factors [158]. Consensus binding sites have been determined for this
type of regulators, including seven core nucleotides 5′-G/AT/CC/AAAT/CA-3′ from 17 different
sequences [164].

The first member of the forkhead family to be characterized in filamentous fungi was
AcFKH1. This transcription factor is associated with the RFX transcription factor CPCR1 in A.
chrysogenum [161,165]. AcFKH1 has two conserved domains; the N-terminal forkhead-associated
domain (FHA), which could be involved in phospho-protein interactions, and the C-terminal
DNA-binding domain (FKH) of the winged helix/forkhead type. This transcription factor controls
cephalosporin C biosynthesis through the recognition of two consensus binding sequences inside the
pcbAB–pcbC promoter region of A. chrysogenum. Although this factor is not directly involved in the
fragmentation of hyphae, its interaction seems to be necessary for the functionality of CPCR1 in the
morphogenesis of this fungus [161]. These authors suggested that CPCR1, together with AcFKH1,
represents a molecular link between secondary metabolism (antibiotic production) and morphogenesis
(arthrospore formation). Therefore, these two transcription factors are of utmost importance in the
control of fungal growth during cephalosporin production.

In P. chrysogenum, PcFKH1 (orthologous of AcFKH1) has been reported to control antibiotic
production. The promoter regions of the genes involved in the biosynthesis of penicillin were analyzed
in search for putative FKH1 binding sites using the consensus sequences 5′-RYMAAYA-3′ [166], which
is a modification of the binding sequence reported by Kaufmann and coworkers [164]. PcFKH1-binding
sites were not found “in silico” in the promoter region of the pcbAB gene, whereas two binding sites
were identified within the pcbC and penDE gene promoters (Figure 1). Expression analyses carried
out in Pcfkh1 knockdown transformants and DNA binding assays showed that PcFKH1 positively
controls the expression of the penDE gene through specific interaction with the promoter region of
this gene, thus confirming the involvement of this transcription factor in the control of penicillin
biosynthesis. In addition, PcFKH1 also controls the expression of ancillary genes of the penicillin
biosynthesis, such as phlA and ppt, which encode a phenylacetyl-CoA ligase and a phosphopantetheinyl
transferase, respectively. These two important genes are involved in the synthesis of penicillin
precursors and activation of the α-aminoadipyl–cysteinyl–valine synthetase (encoded by the pcbAB
gene). Furthermore, this factor also acts on conidiation and spore pigmentation in the improved
laboratory reference strain P. chrysogenum Wisconsin 54–1255, although it is not involved in hyphal
morphology [166]. A genome-wide analysis of processes putatively coregulated by PcFKH1 and
PcRFX1 was made in P. chrysogenum. This analysis suggested that these two factors are likely involved
in the control of several primary metabolism pathways as well [166].

4. Global Regulators of Secondary Metabolism

Several global regulators play important roles in balancing growth, sporulation, and secondary
metabolite production in filamentous fungi.
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4.1. The LaeA Transcription Factor and Heterochromatin Reorganization

LaeA (loss of aflR expression-A), a global secondary metabolite regulator, controls the synthesis
of several secondary metabolites including carcinogens (sterigmatocystin), antibiotics (penicillin),
antihypercholesterolemic agents (lovastatin), mycotoxins (aflatoxin, gliotoxin), anthraquinones
(endocrocin), and bioactive metabolites (pseurotin) [167–172]. LaeA, described for the first time
in Aspergillus species, is a nuclear methyltransferase that contains a methyltransferase domain with
several S-adenosylmethionine (SAM) binding sites and a predicted nuclear localization signal near
the N terminus (Figure 7), which is correlated with the putative role of this protein in chromatin
remodeling [172]. Amino acid comparison among LaeA proteins of A. nidulans, A. fumigatus, N. crassa,
Magnaporthe grisea, Coccidioides immitis, and Fusarium sporotrichioides shows exactly the same SAM
binding sites that are found in histone methyltransferases and arginine methyltransferases. However,
LaeA lacks other conserved domains (e.g., a SET domain, a double E loop) typically detected in this
methyltransferase protein family [173]. A. nidulans laeA gene has three putative AflR binding sites,
one in the promoter region and two in the encoding region, and one intron [168]. Deletion of laeA
blocks the expression of sterigmatocystin, penicillin, and lovastatin biosynthetic gene clusters in A.
nidulans. Expression of ipnA (encoding isopenicillin N synthase) was considerably reduced in the ∆laeA
strain. On the contrary, overexpression of laeA leads to increased penicillin and lovastatin production.
The spore production in ∆laeA strains was similar to that of the wild type, evidencing that the role of
LaeA is primarily played in the regulation of secondary metabolite gene clusters [168].

In P. chrysogenum, the laeA gene (PclaeA) was first isolated and characterized by Kosalková and
coworkers [174] as a homologous gene of the A. nidulans and A. fumigatus laeA genes. PcLaeA shows
61% and 60% amino acid identity to the orthologous protein of A. nidulans and A. fumigatus, respectively.
The deduced PcLaeA sequence possesses the conserved SAM binding site of protein methyltransferases,
which is found in the LaeA protein of other filamentous fungi. The PclaeA gene is present as a single
copy in the genome of low- and high-penicillin producing strains, and is located outside of the 56.8 kb
region that is amplified in high-penicillin producing strains. This fact indicates that the chromosomal
region including PclaeA has not been reorganized during the process of strain improvement.

Overexpression of PclaeA resulted in an increase in the transcript level of pcbC and penDE genes.
This led to increased benzylpenicillin production as compared to the parental strain. PclaeA knockdown
mutants showed reduced levels of penicillin biosynthetic gene expression and antibiotic production.
In these mutants, the expression of pcbC and penDE genes was downregulated (the pcbC gene expression
showed larger reduction), which is concordant with the hypothesis of LaeA having a preferential effect
on chromatin organization in divergent promoter regions. Conversely, the steady state levels of the
gene transcripts involved in the roquefortine alkaloid biosynthesis (dmaW gene) were similar to those
observed in the wild-type parental strain. This fact is probably related to the chromatin arrangement
in the low-expression roquefortine promoters. In addition, the knockdown PclaeA mutant exhibited a
reduced level in the production of at least one hydrophilic compound. Nevertheless, the production of
different metabolites was increased in the loss-of-function mutant. A similar phenomenon has also
been found in A. nidulans, where the biosynthesis of different secondary metabolites is regulated either
positively or negatively by LaeA [175]. These data indicate the complex regulatory network controlling
the secondary metabolism in filamentous fungi [174].

Interestingly, PclaeA knockdown transformants showed pigmentation and sporulation
defects [174], and a P. chrysogenum strain carrying a deletion of the PclaeA gene failed in conidiophore
development in both light and dark conditions [176], thus confirming that PcLaeA not only controls
some secondary metabolism gene clusters, but also asexual differentiation.

Even though the exact function of LaeA has not been totally deciphered, there is evidence of the
relationship between chromatin modification and LaeA activity. Chromatin remodeling is an important
regulatory mechanism in the biosynthesis of fungal secondary metabolites. It seems that secondary
metabolism clusters are silenced by heterochromatic histone marks and that “closed” heterochromatic
structures are reversed to euchromatin during activation of secondary metabolism through a process
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mediated by LaeA [177,178]. However, the exact mechanism of direct or indirect LaeA involvement
in the modification of the chromatin structure is not completely known [179]. LaeA also shows
S-methylmethionine auto-methylation activity; nevertheless this activity is not essential for function [180].

Although the role of LaeA in the control of secondary metabolism is very well stablished,
participation of this transcription factor in the regulation of primary metabolism has not yet been
evidenced. For example, it has been reported that the transcription of the lys1 gene that encodes
homocitrate synthase (the first enzyme of the lysine pathway), seems not to be regulated by LaeA.
The reason for this phenomenon might be that primary metabolism genes do not require the same
transcription factors as secondary metabolism genes, the latter strongly interacting with LaeA [172].

Due to capacity of LaeA to act as a global regulator of secondary metabolism, the discovery of
new molecules that can regulate its expression is another interesting aspect. For example, it has been
reported that 1,3-diaminopropane and spermidine are able to enhance PclaeA transcript levels and
increase penicillin titers [181].

4.2. The Velvet Complex

Since the discovery of the key regulator of secondary metabolism LaeA in A. nidulans, numerous
studies focused on this transcription factor have been conducted in different filamentous fungi. Among
the fruits of these investigations was the finding that LaeA interacts with members of the velvet
complex, which is involved in coordinating secondary metabolism and differentiation processes.
The velvet complex consists of VeA (VelA), VelB, VelC, and VosA proteins, which are highly conserved
among ascomycetes and basidiomycetes [182]. In P. chrysogenum, the velvet domain, a conserved amino
acid motif with high sequence similarity to the velvet domain described for A. nidulans, is located next
to the N terminus of PcVeA and PcVosA. However, in PcVelC this motif is located in the C terminus
of the protein. In PcVelB, the velvet domain is split into two parts; one placed in the N terminus and
the other one in the C terminus. A nuclear localization signal was detected in PcVeA, PcVelB, PcVosA,
and PcVelC. One additional nuclear localization signal was detected at the C terminus of PcVelC.
In addition, for PcVelC, a predicted nuclear export sequence was detected within the velvet domain at
the C terminus [183] (Figure 7).Fermentation 2018, 4, x 16 of 26 
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(adapted from [183]).

Members of the velvet complex interact with each other and with LaeA in the fungal
nucleus. Since the discovery of the velvet complex in A. nidulans, it has been described in several



Fermentation 2018, 4, 47 17 of 27

fungi [176,184–186]. The role of the velvet complex is critical in understanding the transcription
processes in filamentous fungi, and some proteins in the complex participate in processes of the fungal
response to light. VeA and VelB in Aspergillus are DNA binding proteins [182], and together with
LaeA, constitute the core of the velvet complex in A. nidulans. Under light conditions, LaeA reduces
the levels of VelB and VeA and proper asexual development can occur. In darkness, VeA and VelB
are necessary for forming fruiting bodies and join LaeA to create a heterotrimeric complex [168,184].
In the absence of LaeA, velvet proteins are not suppressed and sexual development is permitted [182].
VosA, also interacts in the dark with VelB, and the heterodimer VosA-VelB downregulates asexual
spore formation. A clear role was provided for the three velvet regulators VeA, VelB, and VosA in
A. nidulans, unlike the function of VelC, which remained initially unanswered. More recently, it was
reported that VelC positively controls sexual development [187].

The LaeA-velvet complex has great significance for increasing the production of new secondary
metabolites, especially those whose production is very low due to silent state of genes involved
in their biosynthesis [172]. Regarding regulation of β-lactam antibiotics by this complex, LaeA,
VeA, and VelC are positive regulators of the penicillin biosynthesis in a high producing strain of
P. chrysogenum, whereas VelB has the opposite effect [183]. In A. chrysogenum, VeA positively controls
the expression of all six cephalosporin C biosynthesis genes. In addition, the veA disruption strains
showed accelerated formation of arthrospores and hyperbranching of hyphal tips on osmotically
nonstabilized media [188]. By means of a comparative gene expression analysis of wild-type and
production strains of A. chrysogenum and P. chrysogenum, it was revealed that the expression of target
genes of the velvet complex were altered as a consequence of strain improvement programs [189].
These authors concluded that regulatory changes are decisive factors for improved β-lactam antibiotic
production during strain improvement programs in both fungi. In addition, analysis of the laeA
and veA encoding genes in high penicillin producing strains revealed that these transcription factors
acquired important mutations during the strain improvement programs, resulting in differential
expression of those genes involved in the biosynthesis of secondary metabolites [172].

5. Concluding Remarks

As detailed above, there are many transcription factors that affect the expression of genes involved
in primary and secondary metabolism in filamentous fungi. A major role is played by zinc-binding
proteins of classes I, II, or III. These types of transcription factors include the well-known major
transcription factors that control carbon catabolite regulation (CreA), the pH controlling transcription
factor PacC, GATA factors (such as NreI or AreA), and binuclear zinc fingers. Another important
group of transcription factors in filamentous fungi include the winged helix factors, such as RFX and
forkhead proteins. Additionally, although they are not strictly speaking transcription factors, LaeA
and the velvet complex proteins play critical roles in the regulation of metabolism in filamentous
fungi, particularly in genes involved in secondary metabolism and morphological differentiation.
Although there is important knowledge on these transcription factors and regulatory proteins, many
of the details linking them to the transcription of the genes involved in the biosynthesis of secondary
metabolites are still poorly known. A final interesting finding is that the promoters of many of the
genes involved in the biosynthesis of secondary metabolites, particularly those that are expressed
from bidirectional promoter regions, contain multiple binding sites for these transcription factors
(Figure 1), which are located next to each other in the operator region and determine the interaction
between different transcription factors. Even in some cases, overlapping of the binding sites for certain
transcription factors may occur and therefore, the interaction of these regulatory proteins will be a
subject of great interest over the next few years.
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