Capture of Essential Trace Elements and Phosphate Accumulation as a Basis for the Antimicrobial Activity of a New Ultramicrobacterium—Microbacterium lacticum Str. F2E
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Isolation and Culture Conditions
2.2. Phylogenetic Analysis
2.3. Microscopy
2.3.1. Phase Contrast Microscopy
2.3.2. Transmission Electron Microscopy
2.3.3. X-ray Microanalysis
2.4. Cell Volume Calculation
2.5. Physiology and Biochemical Assay
2.6. Antibiotic Resistance Testing
2.7. Antagonistic Activity Assay
2.8. Determination of Metal Content
2.9. DNA Sequencing, Assembly and Annotation of Complete Genomes
2.10. Genome Comparative Analysis
3. Results
3.1. Morphology and Ultrastructural Organization
3.2. Identification, Physiology and Biochemical Properties of the Strain F2E
3.3. Genomic Features of M. lacticum Strain DSM 20427 and Microbacterium sp. F2E
3.4. Identification of Iron Transport and Phosphate Accumulation Gene Homologues
3.5. X-ray Microanalysis Investigation of the Globular Structures
3.6. Antimicrobial Activity of the Strain F2E
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atterbury, R.J.; Tyson, J. Predatory bacteria as living antibiotic—Where are we now? Microbiolres 2021, 167, 001025. [Google Scholar] [CrossRef]
- Braga, R.M.; Dourado, M.N.; Araújo, W.L. Microbial interactions: Ecology in a molecular perspective. Braz. J. Microbiol. 2016, 47, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Granato, E.T.; Meiller-Legrand, T.A.; Foster, K.R. The evolution and ecology of bacterial warfare. Curr. Biol. 2019, 29, R521–R537. [Google Scholar] [CrossRef]
- Jurkevitch, E.; Davidov, Y. Phylogenetic diversity and evolution of predatory prokaryotes. Predat. Prokaryotes 2006, 4, 11–56. [Google Scholar] [CrossRef]
- Baer, M.L.; Ravel, J.; Chun, J.; Hill, R.T.; Williams, H.N. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 2000, 50, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Snyder, A.R.; Williams, H.N.; Baer, M.L.; Walker, K.E.; Stine, O.C. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 2002, 52, 2089–2094. [Google Scholar] [CrossRef] [Green Version]
- Duda, V.I.; Suzina, N.E.; Esikova, T.Z.; Akimov, V.N.; Oleinikov, R.R.; Polivtseva, V.N.; Abashina, T.N.; Shorokhova, A.P.; Boronin, A.M. A cytological characterization of the parasitic action of ultramicrobacteria NF1 and NF3 of the genus Kaistia on chemoorganotrophic and phototrophic bacteria. FEMS Microbiol. Ecol. 2009, 69, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Suzina, N.E.; Esikova, T.Z.; Akimov, V.N.; Abashina, T.N.; Dmitriev, V.V.; Polivtseva, V.N.; Duda, V.I.; Boronin, A.M. Study of ectoparasitism of ultramicrobacteria of the genus Kaistia, strains NF1 and NF3 by electron and fluorescence microscopy. Mikrobiologiia 2008, 77, 55–62. [Google Scholar] [CrossRef]
- Davidov, Y.; Jurkevitch, E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2004, 54, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Pineiro, S.A.; Sahaniuk, G.E.; Romberg, E.; Williams, H.N. Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake, Utah. Curr. Microbiol. 2004, 48, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, R.; Pedros-Alio, C.; Esteve, I.; Mas, J.; Chase, D.; Margulis, L. Predatory prokaryotes: Predation and primary consumption evolved in bacteria. Proc. Natl. Acad. Sci. USA 1986, 83, 2138–2142. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.O. Predatory prokaryotes: An emerging research opportunity. J. Mol. Microbiol. Biotechnol. 2002, 4, 467–477. [Google Scholar]
- Pérez, J.; Moraleda-Muñoz, A.; Marcos-Torres, F.J.; Muñoz-Dorado, J. Bacterial predation: 75 Years and counting! Environ. Microbiol. 2016, 18, 766–779. [Google Scholar] [CrossRef] [PubMed]
- Jurkevitch, E. (Ed.) Predatory Prokaryotes: Biology, Ecology and Evolution; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mu, D.S.; Wang, S.; Liang, Q.Y.; Du, Z.Z.; Tian, R.; Ouyang, Y.; Wang, X.P.; Zhou, A.; Gong, Y.; Chen, G.J.; et al. Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments. Microbiome 2020, 8, 126. [Google Scholar] [CrossRef]
- Duda, V.I.; Suzina, N.E.; Boronin, A.M. Ultramicrobacteria. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Van de Peer, Y.; De Wachter, R. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Bioinformatics 1994, 10, 569–570. [Google Scholar] [CrossRef] [PubMed]
- Luft, J.H. Electron microscopy of cell extra-neous coats as revealed by ruthenium red staining. J. Cell Biol. 1964, 23, 54A. [Google Scholar]
- Reynolds, E.S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, C.; Gutierrez, C.; Ramirez, C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 1978, 24, 710–715. [Google Scholar] [CrossRef]
- Suzina, N.E.; Ross, D.V.; Shorokhova, A.P.; Abashina, T.N.; Polivtseva, V.N.; Esikova, T.Z.; Machulin, A.V.; Mulyukin, A.L.; Duda, V.I. Cytophysiological characteristics of the vegetative and dormant cells of stenotrophomonas sp. strain FM3, a bacterium isolated from the skin of a Xenopus laevis Frog. Microbiology 2018, 87, 339–349. [Google Scholar] [CrossRef]
- Reznik, I.D.; Ermakov, G.P.; Shneerson, Y.A. Nikel: In 3 Volumes. V. 2. Oxidized Nickel Ores. Characteristics of Ores. Pyrometallurgy and Hydrometallurgy of Oxidized Nickel Ores; Nauka I Tekhnologii: Moscow, Russia, 2004; Volume 2. (In Russian) [Google Scholar]
- Krysanova, T.A.; Voronyuk, I.V.; Shkutina, I.V. Analytical Chemistry for Students of the Correspondence Department of Higher Professional Education of the Pharmaceutical Faculty in the Specialty 060108—Farmaciya; State Univ. Publ. Print. Cent.: Voronezh, Russia, 2011. (In Russian) [Google Scholar]
- GOST 13195-73; Wines, Wine Materials, Cognacs and Cognac Spirits. Method for Determination of Iron. Mekhuzla, N.A.; Zakharina, O.S. (Eds.) State Committee of Standards of the Council of Ministers of the USSR: Moscow, Russia, 1975. (In Russian) [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.H.; Ha, S.M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [Green Version]
- Geyer, G.E. Electronic Histochemistry; Rakhlin, N.T., Ed.; MIR: Moscow, Russia, 1974. (In Russian) [Google Scholar]
- Suzina, N.E.; Duda, V.I.; Esikova, T.Z.; Shorokhova, A.P.; Gafarov, A.B.; Oleinikov, R.R.; Akimov, V.N.; Abashina, T.N.; Polivtseva, V.N.; Boronin, A.M. Novel ultramicrobacteria, strains NF4 and NF5, of the genus Chryseobacterium: Facultative epibionts of Bacillus subtilis. Microbiology 2011, 80, 535–548. [Google Scholar] [CrossRef]
- Zaitsev, G.M.; Tsitko, I.V.; Rainey, F.A.; Trotsenko, Y.A.; Uotila, J.S.; Stackebrandt, E.; Salkinoja-Salonen, M.S. New aerobic ammonium-dependent obligately oxalotrophic bacteria: Description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. Int. J. Syst. Bacteriol. 1998, 48, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Bayer, E.A.; Setter, E.; Lamed, R. Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 1985, 163, 552–559. [Google Scholar] [CrossRef] [Green Version]
- Mulyukin, A.L.; Soina, V.S.; Demkina, E.V.; Kozlova, A.N.; Suzina, N.E.; Dmitriev, V.V.; Duda, V.I.; El’-Registan, G.I. Formation of resting cells by non-spore-forming micro-organisms as a strategy of long-term survival in the environment. Instrum. Methods Mission. Astrobiol. VI 2003, 4939, 208–218. [Google Scholar] [CrossRef]
- Suzina, N.E.; Mulyukin, A.L.; Dmitriev, V.V.; Nikolaev, Y.A.; Shorokhova, A.P.; Bobkova, Y.S.; Barinova, E.S.; Plakunov, V.K.; El-Registan, G.I.; Duda, V.I. The structural bases of long-term anabiosis in non-spore-forming bacteria. Adv. Sp. Res. 2006, 38, 1209–1219. [Google Scholar] [CrossRef]
- Mulyukin, A.L.; Demkina, E.V.; Kryazhevskikh, N.A.; Suzina, N.E.; Vorob’eva, L.I.; Duda, V.I.; Galchenko, V.F.; El-Registan, G.I. Dormant forms of Micrococcus luteus and Arthrobacter globiformis not platable on standard media. Microbiology 2009, 78, 407–418. [Google Scholar] [CrossRef]
F2E | |
---|---|
Genome size, bp | 2°873°295 |
Number of contigs | 58 |
GC, % | 70.4 |
The shortest contig, bp | 502 |
Median sequence size, bp | 11,735 |
Average sequence size, bp | 49,539.6 |
Longest contig, bp | 450,112 |
Contig N50 | 160,800 |
Contig L50 | 6 |
ANI % | DDH % | |
---|---|---|
M. aurum KACC 15219 (NZ_CP018762.1) | 81.88 | 34.60 |
M. aurum DSM 8600T (JAFBCQ000000000.1) | 82.18 | 34.50 |
M. schleiferi A32-1 (NZ_CP064760.1) | 75.56 | 17.00 |
M. oleivorans A9 (CP031421.1) | 77.23 | 22.20 |
M. oleivorans I46 (CP058316.1) | 77.51 | 21.20 |
M. oleivorans NBRC 103075T (BCRG00000000.1) | 77.27 | 22.30 |
M. pygmaeum DSM 23142T (NZ_LT629692.1) | 76.07 | 19.40 |
M. lacticum JCM 1379T (BMOA00000000.1) | 96.86 | 61.40 |
M. hydrocarbonoxydans DSM16089T (FNSQ00000000.1) | 75.80 | 17.60 |
M. caowuchunii ST-M6T (NZ_CP044231.1) | 76.12 | 19.00 |
M. endophyticum DSM 27099T (CP049255.1) | 73.37 | 14.30 |
Genome Information | Microbacterium sp. F2E | M. lacticum DSM 20427 |
---|---|---|
Chromosome size, Mb | 2.87 | 3.09 |
Number of contigs | 58 | 1 |
tRNAs | 47 | 47 |
Noncoding RNAs | 3 | 3 |
Complete rRNAs | 3 | 3 |
Total genes | 2795 | 3047 |
Total CDS | 2742 | 2994 |
Coding CDS | 2643 | 2813 |
Test Bacteria | Presence of Growth Inhibition Zone * |
---|---|
Gram-negative bacteria | |
Alcaligenes faecalis E502 | − |
Escherichia coli K12 | +/− |
Erwinia herbicola ATCC 27155 | − |
Erwinia carotovora B15 | − |
Pseudomonas putida KT2442 | +/− |
P. aeruginosa PAO1 | − |
P. alcaligenes VKM-1295 | − |
P. chlororaphis PCL1391 | − |
P. protegens 38a | +/− |
Gram-positive bacteria | |
Arthrobacter sp. B52 | + |
Bacillus megaterium VKM B-512 | + |
B. cereus GA5T | + |
B. subtilis ATCC 6633 | + |
B. thuringiensis ATCC 35646 | + |
B. wehnestephanensis KBAB4 | + |
Lysinibacillus sphaericus VKM B-509 | + |
M. liquefaciens Ash10-2 | + |
Micrococcus luteus VKM Ас-2230 | +/+ |
M. roseus VKM B-1236 | + |
Rhodococcus erythropolis Sh5 | + |
Staphylococcus aureus 209-Р | + |
Streptococcus salivarius M15 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzina, N.E.; Machulin, A.V.; Sorokin, V.V.; Polivtseva, V.N.; Esikova, T.Z.; Shorokhova, A.P.; Delegan, Y.A.; Abashina, T.N. Capture of Essential Trace Elements and Phosphate Accumulation as a Basis for the Antimicrobial Activity of a New Ultramicrobacterium—Microbacterium lacticum Str. F2E. Microorganisms 2022, 10, 128. https://doi.org/10.3390/microorganisms10010128
Suzina NE, Machulin AV, Sorokin VV, Polivtseva VN, Esikova TZ, Shorokhova AP, Delegan YA, Abashina TN. Capture of Essential Trace Elements and Phosphate Accumulation as a Basis for the Antimicrobial Activity of a New Ultramicrobacterium—Microbacterium lacticum Str. F2E. Microorganisms. 2022; 10(1):128. https://doi.org/10.3390/microorganisms10010128
Chicago/Turabian StyleSuzina, Nataliya E., Andrey V. Machulin, Vladimir V. Sorokin, Valentina N. Polivtseva, Tatiana Z. Esikova, Anna P. Shorokhova, Yanina A. Delegan, and Tatiana N. Abashina. 2022. "Capture of Essential Trace Elements and Phosphate Accumulation as a Basis for the Antimicrobial Activity of a New Ultramicrobacterium—Microbacterium lacticum Str. F2E" Microorganisms 10, no. 1: 128. https://doi.org/10.3390/microorganisms10010128
APA StyleSuzina, N. E., Machulin, A. V., Sorokin, V. V., Polivtseva, V. N., Esikova, T. Z., Shorokhova, A. P., Delegan, Y. A., & Abashina, T. N. (2022). Capture of Essential Trace Elements and Phosphate Accumulation as a Basis for the Antimicrobial Activity of a New Ultramicrobacterium—Microbacterium lacticum Str. F2E. Microorganisms, 10(1), 128. https://doi.org/10.3390/microorganisms10010128