Design, Modelling and Control of Novel Series-Elastic Actuators for Industrial Robots
Abstract
:1. Motivation
2. Related Work
3. Mechatronics
3.1. Mechanical Design
3.2. Joint Electronics
4. Joint Control
Deflection Controller
5. Spring Modeling
5.1. Introduction to Dynamic Gaussian Mixture Model (DGMM)
5.2. Online Update Method
Algorithm 1: Spring Model Update. |
5.3. Gaussian Regression for Estimation
5.4. Model Transfer
Transferability
6. Experiments and Evaluation
6.1. Actuator
Torque Tracking Experiments
6.2. Spring Coupling Analysis
6.3. Initial Results of Model Transfer
6.4. Arm
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Kagermann, H.; Lukas, W.D.; Wahlster, W. Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution. Available online: http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution (accessed on 23 March 2019).
- CR-35iA Collaborative Robot from Fanuc. Available online: http://www.fanuc.eu/pt/en/robots/robot-filter-page/collaborative-cr35ia (accessed on 23 March 2019).
- Motoman HC10 Collaborative Robot from Yaskawa. Available online: https://www.yaskawa.eu.com/en/news-events/news/article/news/motoman-hc10-collaborative-robot-safe-and-flexible-interaction/ (accessed on 23 March 2019).
- AURA Collaborative Robot from COMAU. Available online: http://www.comau.com/EN/media/news/2016/06/comau-at-automatica-2016 (accessed on 23 March 2019).
- KUKA LBR iiwa. Available online: www.kuka-lbr-iiwa.com (accessed on 23 March 2019).
- Rethink Robotics. Available online: www.rethinkrobotics.com (accessed on 23 March 2019).
- Universal Robots. Available online: www.universal-robots.com (accessed on 23 March 2019).
- Franka Robot from KBee AG. Available online: https://www.franka.de/ (accessed on 23 March 2019).
- Pratt, G.; Williamson, M. Series Elastic Actuators. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, 5–9 August 1995; pp. 399–406. [Google Scholar]
- Diftler, M.A.; Mehling, J.S.; Abdallah, M.E.; Radford, N.A.; Bridgwater, L.B.; Sanders, A.M.; Askew, R.S.; Linn, D.M.; Yamokoski, J.D.; Permenter, F.A.; et al. Robonaut 2—The first humanoid robot in space. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2178–2183. [Google Scholar]
- Knabe, C.; Seminatore, J.; Webb, J.; Hopkins, M.; Furukawa, T.; Leonessa, A.; Lattimer, B. Design of a series elastic humanoid for the DARPA Robotics Challenge. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea, 3–5 November 2015; pp. 738–743. [Google Scholar]
- Hopkins, M.A.; Ressler, S.A.; Lahr, D.F.; Leonessa, A.; Hong, D.W. Embedded joint-space control of a series elastic humanoid. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 3358–3365. [Google Scholar]
- Paine, N.; Mehling, J.S.; Holley, J.; Radford, N.A.; Johnson, G.; Fok, C.L.; Sentis, L. Actuator Control for the NASA-JSC Valkyrie Humanoid Robot: A Decoupled Dynamics Approach for Torque Control of Series Elastic Robots. J. Field Robot. 2015, 32, 378–396. [Google Scholar] [CrossRef]
- Tsagarakis, N.G.; Morfey, S.; Cerda, G.M.; Zhibin, L.; Caldwell, D.G. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 673–678. [Google Scholar]
- Hutter, M.; Remy, C.D.; Hoepflinger, M.A.; Siegwart, R. High Compliant Series Elastic Actuation for the Robotic Leg ScarlETH. In Proceedings of the International Conference on Climbing and Walking Robots (CLAWAR), Paris, France, 6–8 September 2011. [Google Scholar]
- Bodie, K.; Bellicoso, C.D.; Hutter, M. ANYpulator: Design and control of a safe robotic arm. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 1119–1125. [Google Scholar]
- Yu, H.; Huang, S.; Thakor, N.; Chen, G.; Toh, S. A novel compact compliant actuator design for rehabilitation robots. In Proceedings of the IEEE International Conference on Rehabilitation Robotics, Seattle, WA, USA, 24–26 June 2013. [Google Scholar]
- Paine, N.; Oh, S.; Sentis, L. Design and Control Considerations for High-Performance Series Elastic Actuators. IEEE/ASME Trans. Mechatron. 2013, 19, 1080–1091. [Google Scholar] [CrossRef] [Green Version]
- Junior, A.G.L.; Andrade, R.M.d.; Filho, A.B. Series Elastic Actuator: Design, Analysis and Comparison. In Recent Advances in Robotic Systems; Wang, G., Ed.; InTech: Rijeka, Croatia, 2016; Chapter 10. [Google Scholar]
- Arumugom, S.; Muthuraman, S.; Ponselvan, V. Modeling and application of series elastic actuators for force control multi legged robots. J. Comput. 2009, 1, 26–33. [Google Scholar]
- Kong, K.; Bae, J.; Tomizuka, M. A Compact Rotary Series Elastic Actuator for Human Assistive Systems. Trans. Mechatron. 2011, 17, 288–297. [Google Scholar] [CrossRef]
- Mallwitz, M.; Will, N.; Teiwes, J.; Kirchner, E.A. The CAPIO Active Upper Body Exoskeleton and its Application for Teleoperation. In Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation, Noordwijk, The Netherlands, 11–13 May 2015. [Google Scholar]
- Sudano, A.; Tagliamonte, N.; Accoto, D.; Guglielmelli, E. A Resonant Parallel Elastic Actuator for Biorobotic Applications. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 14–18 September 2014. [Google Scholar]
- Rollinson, D.; Ford, S.; Brown, B.; Choset, H. Design and modeling of a series elastic element for snake robots. In Proceedings of the ASME 2013 Dynamic Systems and Control Conference, Palo Alto, CA, USA, 21–23 October 2013. [Google Scholar]
- Wyeth, G. Demonstrating the Safety and Performance of a Velocity Sourced Series Elastic Actuator. In Proceedings of the IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008. [Google Scholar]
- Lee, H.; Kwak, S.; Oh, S. Force Control of Series Elastic Actuators-Driven Parallel Robot. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018. [Google Scholar]
- ANYbotics, ANYdrive Actuators. Available online: https://www.anybotics.com/anydrive/#ad-features (accessed on 23 March 2019).
- Hebi Robotics, X-Series Actuator. Available online: http://hebirobotics.com/products/ (accessed on 23 March 2019).
- Lee, C.; Kwak, S.; Kwak, J.; Oh, S. Generalization of Series Elastic Actuator Configurations and Dynamic Behavior Comparison. Actuators 2017, 6, 26. [Google Scholar] [CrossRef]
- Bartsch, S.; Kirchner, F. Spaceclimber: A Six-Legged Robot for Extraterrestrial Surface Exploration in Unstructured and Steep Terrain. In Proceedings of the Seventh International Workshop on Robotics for Risky Environment—Extreme Robotics, St. Petersburg, Russia, 1–3 October 2013. [Google Scholar]
- Zenzes, M.; Kampmann, P.; Stark, T.; Schilling, M. NDLCom: Simple Protocol for Heterogeneous Embedded Communication Networks. In Proceedings of the Embedded World Exhibition and Conference, Nürnberg, Germany, 23–25 February 2016. [Google Scholar]
- Ford, S.; Rollinson, D.; Willig, A.; Choset, H. Online Calibration of a Compact Series Elastic Actuator. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014. [Google Scholar]
- Lu, C.; Mao, Y.; Zhu, Q.; Xiong, R. Novel series elastic actuator design and velocity control. Electr. Mach. Control 2015, 19, 83–88. [Google Scholar]
- Edgington, M.; Kassahun, Y.; Kirchner, F. Dynamic motion modelling for legged robots. In Proceedings of the International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 4688–4694. [Google Scholar]
- Yu, B.; de Gea Fernández, J.; Kassahun, Y.; Bargsten, V. Learning the Elasticity of a Series-Elastic Actuator for Accurate Torque Control. In Advances in Artificial Intelligence: From Theory to Practice; Benferhat, S., Tabia, K., Ali, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 543–552. [Google Scholar]
Type | 28 Nm | 50 Nm | 120 Nm | 300 Nm |
---|---|---|---|---|
Max. Speed (deg/s) | 300 | 157 | 95 | 57 |
Rated Speed (deg/s) (at max. continuous torque) | 190 | 106 | 66 | 41 |
Max. Continuous Torque (Nm) | 28 | 50 | 120 | 300 |
Stiffness (Nm/deg) | 5.6 | 10 | 19.8 | 39.3 |
Gear Ratio | 100 | 120 | 120 | 160 |
Weight (kg) | 0.9 | 2.5 | 3.9 | 4.6 |
Type | 28 Nm | 50 Nm | 120 Nm | 300 Nm |
---|---|---|---|---|
Power (W) | 140 | 145 | 370 | 580 |
Nominal Voltage (V) | 48 | 48 | 48 | 48 |
Nominal Current (A) | 4.8 | 5 | 7 | 11 |
Communication Protocol | NDLCom, UDP | NDLCom, UDP | NDLCom, UDP | NDLCom, UDP |
Position Sensors | ||||
(Quantity, Type, Resolution (deg)) | 3, absolute, 19-bit | 3, absolute, 19-bit | 3, absolute, 19-bit | 3, absolute, 19-bit |
Mechanical Brake | ||||
(Manufacturer, Activation | ||||
Voltage (V)) | Mayr, 10/12 | Kendrion, 24 | Mayr, 10/12 | Mayr, 10/12 |
Motor current measurements | ||||
(phase currents, line currents) | yes, yes | yes, yes | yes, yes | yes, yes |
Coefficient | [Unit] | Joint 2, 300 Nm | Joint 3, 120 Nm | Joint 4, 28 Nm |
---|---|---|---|---|
[Nm/A] | 0.210 | 0.180 | 0.057 | |
[1] | 160 | 120 | 100 | |
[Nm] | 10.876 | −1.007 | 0.1800 | |
[Nm/deg] | −30.29 | −16.12 | −6.259 | |
[Nm/(deg/s)] | 2.3337 | 0.7507 | 0.0439 | |
[Nm] | 15.521 | 8.9038 | 0.4111 | |
[Nm] | −149.0 | 36.400 | −2.671 | |
[Nm/deg] | −874.3 | −526.7 | −32.58 | |
[Nm/(deg/s)] | 0.3076 | 0.0000 | 0.0626 | |
[Nm] | 15.969 | 3.0109 | 0.0000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Gea Fernández, J.; Yu, B.; Bargsten, V.; Zipper, M.; Sprengel, H. Design, Modelling and Control of Novel Series-Elastic Actuators for Industrial Robots. Actuators 2020, 9, 6. https://doi.org/10.3390/act9010006
de Gea Fernández J, Yu B, Bargsten V, Zipper M, Sprengel H. Design, Modelling and Control of Novel Series-Elastic Actuators for Industrial Robots. Actuators. 2020; 9(1):6. https://doi.org/10.3390/act9010006
Chicago/Turabian Stylede Gea Fernández, José, Bingbin Yu, Vinzenz Bargsten, Michael Zipper, and Holger Sprengel. 2020. "Design, Modelling and Control of Novel Series-Elastic Actuators for Industrial Robots" Actuators 9, no. 1: 6. https://doi.org/10.3390/act9010006
APA Stylede Gea Fernández, J., Yu, B., Bargsten, V., Zipper, M., & Sprengel, H. (2020). Design, Modelling and Control of Novel Series-Elastic Actuators for Industrial Robots. Actuators, 9(1), 6. https://doi.org/10.3390/act9010006