Review of Electrothermal Actuators and Applications
Abstract
:1. Introduction
2. Hot-And-Cold-Arm Actuators
2.1. Actuation Principle
2.2. Applications of Hot-And-Cold-Arm Actuators
2.2.1. Actuators with Conventional and Modified Shapes
- Different arm widths: The traditional U-shape actuator with different widths of the arms were used in the microgripper [4,38]. As the structural material (SU-8) is non-conductive, an integrated metal heater structure was configured from a layer of metal deposited on the surface. The long extruded arms amplify the driving displacement effectively;
- Different arm lengths: A polysilicon microgripper based on the different arm length principle was developed in [22];
- Electro-thermo-compliant actuator: Embedded ETC actuation was demonstrated in microgrippers and a micromanipulator [23]. Other ETC structures, such as lateral motion blocks, translational expansion, and contraction blocks, were also presented in the work. Some of the structures were fabricated in the PolyMUMPs (Multi-User MEMS Process) method, a foundry process using several polysilicon structural layers;
- Meander heater: In the work of [43], a meander-shape metallic heater was embedded in the wide arm (hot arm) of the polymer microgripper. The increased total length of the heater in the meander shape is more efficient for heat generation;
- Sandwiched structure: When the metal layer is deposited on one side of the polymeric structure, the heat can produce unwanted bimorph effect. The parasitic out-of-plane displacement was reduced by incorporating a metallic heater structure between two layers of SU-8 [43];
- Inclined arms: In comparison with the straight actuator arm design in the previous example, a microgripper with oblique actuator arms provided larger displacements [44]. In [45,46], a modified U-shaped actuator with non-perpendicular joints was investigated. Inclined hot arms facilitate the in-plane movement and guide the deflection of the structure. Therefore, the output displacement of the actuator is increased. The optimal inclination angle was found to be 5°;
2.2.2. Bi-Directional Actuators
2.2.3. Out-Of-Plane Actuators
2.3. Summary of Hot-And-Cold-Arm Actuators
3. Chevron-Type Actuators
3.1. Actuation Principle
3.2. Applications of Chevron Actuators
3.2.1. V-Shape Chevron Actuators
- Linear motion amplification: The work in [70] presented a multi-purpose 2D positioner driven with two single V-shape chevrons along perpendicular axes. Displacement of the actuator was amplified with a compliant amplification mechanism, and the output was measured with a capacitive sensor. Thus, the actuation displacement of 5 µm was amplified with a factor of 3.37;
- Lateral translation: In [71], a stack of V-shape actuators was used to drive an arm of a microgripper, the moving arm is anchored in order to translate the axial driving displacement from a chevron to the lateral displacement of the jaws. This way a relatively large gripping force can be produced, but at a small gripping range;
- Translation with high amplification: As one example, two stacks of chevron actuators are used to drive two gripper arms in [72]. The direction of actuation is translated to the gripping direction and amplified with the assisting flexures. The modeling work has shown that the microgripper could achieve a displacement amplification factor as large as 7.89.
3.2.2. Cascaded Chevron Actuators
3.2.3. Other Chevron-Type Actuators
3.3. Summary of Chevron Actuators
4. Bimorph-Type Actuators
4.1. Actuation Principle
4.2. Applications of Bimorph Actuators
4.3. Summary of Bimorph Actuators
5. Unconventional Actuators
5.1. Actuators Based on Expanding Bars
5.2. Silicon-Polymer Stacked Actuators
5.3. Microspring Actuators
5.4. Actuators with Combined Geometry
5.5. Summary of Actuators
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, S.; Xu, Q. A review on actuation and sensing techniques for MEMS-based microgrippers. J. Micro-Bio Robot. 2017, 13, 1–14. [Google Scholar] [CrossRef]
- Li, L.; Chew, Z.J. 11—Microactuators: Design and technology. In Smart Sensors and MEMS; Nihtianov, S., Luque, A., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 305–348. ISBN 978-0-85709-502-2. [Google Scholar]
- Dochshanov, A.; Verotti, M.; Belfiore, N.P. A comprehensive survey on microgrippers design: Operational strategy. J. Mech. Des. 2017, 139, 70801. [Google Scholar] [CrossRef]
- Chronis, N.; Lee, L.P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J. Microelectromech. Syst. 2005, 14, 857–863. [Google Scholar] [CrossRef]
- Greitmann, G.; Buser, R.A. Tactile microgripper for automated handling of microparts. Sens. Actuators A Phys. 1996, 53, 410–415. [Google Scholar] [CrossRef]
- Rahafrooz, A.; Hajjam, A.; Pourkamali, S. Thermal actuation of high frequency micromechanical resonators. In Proceedings of the 2009 IEEE International SOI Conference, Foster City, CA, USA, 5–8 October 2009; pp. 1–2. [Google Scholar]
- Li, X.; Lee, D.-W. Integrated microcantilevers for high-resolution sensing and probing. Meas. Sci. Technol. 2011, 23, 22001. [Google Scholar] [CrossRef]
- Beardslee, L.A.; Addous, A.M.; Heinrich, S.; Josse, F.; Dufour, I.; Brand, O. Thermal excitation and piezoresistive detection of cantilever in-plane resonance modes for sensing applications. J. Microelectromech. Syst. 2010, 19, 1015–1017. [Google Scholar] [CrossRef]
- Setiono, A.; Fahrbach, M.; Xu, J.; Bertke, M.; Nyang’au, W.O.; Hamdana, G.; Wasisto, H.S.; Peiner, E. Phase optimization of thermally actuated piezoresistive resonant MEMS cantilever sensors. J. Sens. Sens. Syst. 2019, 8, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Sviličić, B.; Mastropaolo, E.; Cheung, R. Piezoelectric sensing of electrothermally actuated silicon carbide MEMS resonators. Microelectron. Eng. 2014, 119, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Xu, Q. MEMS microgripper actuators and sensors: The state-of-the-art survey. Recent Pat. Mech. Eng. 2013, 6, 132–142. [Google Scholar] [CrossRef]
- Ai, W.J.; Xu, Q.S. Overview of flexure-based compliant microgrippers. Adv. Robot. Res. 2014, 1, 1–19. [Google Scholar] [CrossRef]
- Pal, S.; Zhou, L.; Zhang, X.; Xie, H. Electrothermally actuated MEMS mirrors: Design, modeling, and applications. In Optical MEMS, Nanophotonics, and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 173–200. [Google Scholar]
- Verotti, M.; Dochshanov, A.; Belfiore, N.P. A comprehensive survey on microgrippers design: Mechanical structure. J. Mech. Des. 2017, 139, 60801. [Google Scholar] [CrossRef]
- Geisberger, A.A.; Sarkar, N. Techniques in MEMS Microthermal Actuators and Their Applications BT—MEMS/NEMS; Springer: Boston, MA, USA, 2006; pp. 1191–1251. ISBN 978-0-387-25786-0. [Google Scholar]
- Hickey, R.; Kujath, M.; Hubbard, T. Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators. J. Vac. Sci. Technol. A Vac. Surf. Film. 2002, 20, 971–974. [Google Scholar] [CrossRef]
- Guckel, H.; Klein, J.; Christenson, T.; Skrobis, K.; Laudon, M.; Lovell, E.G. Thermo-magnetic metal flexure actuators. In Proceedings of the Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June 1992; pp. 73–75. [Google Scholar]
- Enikov, E.T.; Lazarov, K. PCB-integrated metallic thermal micro-actuators. Sens. Actuators A Phys. 2003, 105, 76–82. [Google Scholar] [CrossRef]
- Butler, J.T.; Bright, V.M.; Cowan, W.D. Average power control and positioning of polysilicon thermal actuators. Sens. Actuators A Phys. 1999, 72, 88–97. [Google Scholar] [CrossRef]
- Huang, Q.-A.; Lee, N.K.S. Analysis and design of polysilicon thermal flexure actuator. J. Micromech. Microeng. 1999, 9, 64–70. [Google Scholar] [CrossRef]
- Chen, R.-S.; Kung, C.; Lee, G.-B. Analysis of the optimal dimension on the electrothermal microactuator. J. Micromech. Microeng. 2002, 12, 291–296. [Google Scholar] [CrossRef]
- Pan, C.S.; Hsu, W. An electro-thermally and laterally driven polysilicon microactuator. J. Micromech. Microeng. 1997, 7, 7–13. [Google Scholar] [CrossRef]
- Moulton, T.; Ananthasuresh, G.K. Micromechanical devices with embedded electro-thermal-compliant actuation. Sens. Actuators A Phys. 2001, 90, 38–48. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kopka, P.; Voges, E. Bistable micromechanical fiber-optic switches on silicon with thermal actuators. Sens. Actuators A Phys. 1999, 78, 28–35. [Google Scholar] [CrossRef]
- Mankame, N.D.; Ananthasuresh, G.K. Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J. Micromech. Microeng. 2001, 11, 452–462. [Google Scholar] [CrossRef]
- Qiu, J.; Lang, J.H.; Slocum, A.H.; Weber, A.C. A bulk-micromachined bistable relay with U-shaped thermal actuators. J. Microelectromech. Syst. 2005, 14, 1099–1109. [Google Scholar]
- Burns, D.M.; Bright, V.M. Design and performance of a double hot arm polysilicon thermal actuator. In Proceedings of the Micromachining and Microfabrication, Austin, TX, USA, 29–30 September 1997; pp. 296–307. [Google Scholar]
- Yan, D.; Khajepour, A.; Mansour, R. Modeling of two-hot-arm horizontal thermal actuator. J. Micromech. Microeng. 2003, 13, 312–322. [Google Scholar] [CrossRef]
- Hubbard, N.B.; Culpepper, M.L.; Howell, L.L. Actuators for micro positioners and nanopositioners. Appl. Mech. Rev. 2006, 59, 324–334. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q. Survey on recent designs of compliant micro-/nano-positioning stages. Actuators 2018, 7, 5. [Google Scholar]
- Cecil, J.; Vasquez, D.; Powell, D. A review of gripping and manipulation techniques for micro-assembly applications. Int. J. Prod. Res. 2005, 43, 819–828. [Google Scholar] [CrossRef]
- Cecil, J.; Powell, D.; Vasquez, D. Assembly and manipulation of micro devices—A state of the art survey. Robot. Comput. Integr. Manuf. 2007, 23, 580–588. [Google Scholar] [CrossRef]
- Cecil, J.; Kumar, M.B.B.R.; Lu, Y.; Basallali, V. A review of micro-devices assembly techniques and technology. Int. J. Adv. Manuf. Technol. 2016, 83, 1569–1581. [Google Scholar] [CrossRef]
- Gauthier, M.; Clévy, C.; Dembélé, S.; Tamadazte, B.; Rabenorosoa, K.; Piat, N.; Lutz, P. Overview of out of plane MEMS assembly techniques. In Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’11., Shanghai, China, 9–13 May 2011. [Google Scholar]
- Solano, B.; Wood, D. Design and testing of a polymeric microgripper for cell manipulation. Microelectron. Eng. 2007, 84, 1219–1222. [Google Scholar] [CrossRef]
- Somà, A.; Iamoni, S.; Voicu, R.; Müller, R.; Al-Zandi, M.H.M.; Wang, C. Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst. Technol. 2017, 24, 1053–1060. [Google Scholar] [CrossRef]
- Dellaert, D.; Doutreloigne, J. A thermally-actuated latching MEMS switch matrix and driver chip for an automated distribution frame. Mechatronics 2016, 40, 287–292. [Google Scholar] [CrossRef]
- Chronis, N.; Lee, L.P. Polymer MEMS-based microgripper for single cell manipulation. In Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS2004), Maastricht, The Netherlands, 25–29 January 2004; pp. 17–20. [Google Scholar]
- Ivanova, K.; Ivanov, T.; Badar, A.; Volland, B.; Rangelow, I.; Ristanic, D.; Sümecz, F.; Fischer, S.; Spitzbart, M.; Brenner, W.; et al. Thermally driven microgripper as a tool for micro assembly. Microelectron. Eng. 2006, 83, 1393–1395. [Google Scholar] [CrossRef]
- Dow, A.B.A.; Jazizadeh, B.; Kherani, N.P.; Rangelow, I. Development and modeling of an electrothermally MEMS microactuator with an integrated microgripper. J. Micromech. Microeng. 2011, 21, 125026. [Google Scholar]
- Deutschinger, A.; Schmid, U.; Schneider, M.; Brenner, W.; Wanzenboeck, H.; Volland, B.; Ivanov, T.; Rangelow, I. Characterization of an electro-thermal micro gripper and tip sharpening using FIB technique. Microsyst. Technol. 2010, 16, 1901–1908. [Google Scholar] [CrossRef]
- Volland, B.E.; Ivanova, K.; Ivanov, T.; Sarov, Y.; Guliyev, E.; Persaud, A.; Zöllner, J.-P.; Klett, S.; Kostic, I.; Rangelow, I.W. Duo-action electro thermal micro gripper. Microelectron. Eng. 2007, 84, 1329–1332. [Google Scholar] [CrossRef]
- Voicu, R.; Muller, R.; Eftime, L. Design optimization for an electro-thermally actuated polymeric microgripper. In Proceedings of the Design, Test, Integration and Packaging of MEMS/MOEMS, Nice, France, 9–11 April 2008; pp. 182–186. [Google Scholar]
- Voicu, R.; Müller, R.; Eftime, L.; Tibeica, C. Design study for an electro-thermally actuator for micromanipulation. Rom. J. Inf. Sci. Technol. 2009, 12, 402–409. [Google Scholar]
- Khazaai, J.; Khir, M.H.M.; Qu, H.; Slicker, J. Design and Fabrication of a Low Power Electro-Thermal V-Shape Actuator with Large Displacement. NSTI-Nanotech 2010, 2, 681–684. [Google Scholar]
- Khazaai, J.J.; Qu, H.; Shillor, M.; Smith, L. Design and fabrication of electro-thermally activated micro gripper with large tip opening and holding force. In Proceedings of the Sensors, IEEE, Limerick, Ireland, 28–31 October 2011; pp. 1445–1448. [Google Scholar]
- Voicu, R.; Muller, R. New electro-thermally actuated micromanipulator with optimized design and FEM simulations analyses. In Proceedings of the 2013 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Barcelona, Spain, 16–18 April 2013; pp. 1–6. [Google Scholar]
- Al-Zandi, M.H.M.; Wang, C.; Voicu, R.; Muller, R. Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsyst. Technol. 2018, 24, 379–387. [Google Scholar] [CrossRef]
- Iamoni, S.; Somà, A. Design of an electro-thermally actuated cell microgripper. Microsyst. Technol. 2014, 20, 869–877. [Google Scholar] [CrossRef]
- Boudaoud, M.; Regnier, S. An overview on gripping force measurement at the micro and nano-scales using two-fingered microrobotic systems. Int. J. Adv. Robot. Syst. 2014, 11, 45. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, Q. An overview of micro-force sensing techniques. Sens. Actuators A Phys. 2015, 234, 359–374. [Google Scholar] [CrossRef]
- Fantoni, G.; Porta, M. A critical review of releasing strategies in microparts handling. In Proceedings of the Fourth International Precision Assembly Seminar (IPAS’2008), Chamonix, France, 10–13 February 2008; pp. 223–234. [Google Scholar]
- Zhang, Y.; Yu, Y.; Zhang, Z.; Zhang, X. Structure and design of microgrippers: A survey. In Proceedings of the 2017 2nd International Conference on Cybernetics, Robotics and Control (CRC), Chengdu, China, 21–23 July 2017; pp. 139–143. [Google Scholar]
- Nikoobin, A.; Niaki, M.H. Deriving and analyzing the effective parameters in microgrippers performance. Sci. Iran. 2012, 19, 1554–1563. [Google Scholar] [CrossRef] [Green Version]
- Pirmoradi, E.; Mirzajani, H.; Badri Ghavifekr, H. Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst. Technol. 2015, 21, 465–475. [Google Scholar] [CrossRef]
- Chiou, J.C.; Lin, W.T. Variable optical attenuator using a thermal actuator array with dual shutters. Opt. Commun. 2004, 237, 341–350. [Google Scholar] [CrossRef]
- Bøggild, P.; Petersen, D.H.; Kjelstrup-Hansen, J.; Mølhave, K.; Andersen, K.N.; Sardan, Ö. Microfabricated tools for pick-and-place of nanoscale components. IFAC Proc. Vol. 2006, 39, 120–126. [Google Scholar] [CrossRef]
- Zhu, Y.-Q.; Han, L.; Wang, L.-F.; Tang, J.-Y.; Huang, Q.-A. A novel three-state RF MEMS switch for ultrabroadband (DC-40 GHz) applications. IEEE Electron. Device Lett. 2013, 34, 1062–1064. [Google Scholar] [CrossRef]
- Nguyen, N.-T.; Ho, S.-S.; Low, C.L.-N. A polymeric microgripper with integrated thermal actuators. J. Micromech. Microeng. 2004, 14, 969–974. [Google Scholar] [CrossRef]
- Mølhave, K.; Hansen, O. Electro-thermally actuated microgrippers with integrated force-feedback. J. Micromech. Microeng. 2005, 15, 1265–1270. [Google Scholar] [CrossRef]
- Sardan, O.; Petersen, D.H.; Mølhave, K.; Sigmund, O.; Bøggild, P. Topology optimized electrothermal polysilicon microgrippers. Microelectron. Eng. 2008, 85, 1096–1099. [Google Scholar] [CrossRef]
- Kopka, P.; Hoffmann, M.; Voges, E. Coupled U-shaped cantilever actuators for 1 × 4 and 2 × 2 optical fibre switches. J. Micromech. Microeng. 2000, 10, 260–264. [Google Scholar] [CrossRef]
- Nakic, C.; Bieker, J.; Lämmle, D.; Winterstein, T.; Schlaak, H.F.; Schaumann, G.; Abel, T. Development of an electrothermal micro positioning platform for laser targets with two degrees of freedom. In Proceedings of the Manipulation, Automation and Robotics at Small Scales (MARSS), Paris, France, 18–22 July 2016; pp. 1–5. [Google Scholar]
- Chen, W.-C.; Chu, C.-C.; Hsieh, J.; Fang, W. A reliable single-layer out-of-plane micromachined thermal actuator. Sens. Actuators A Phys. 2003, 103, 48–58. [Google Scholar] [CrossRef]
- Lara-Castro, M.; Herrera-Amaya, A.; Escarola-Rosas, M.A.; Vázquez-Toledo, M.; López-Huerta, F.; Aguilera-Cortés, L.A.; Herrera-May, A.L. Design and modeling of polysilicon electrothermal actuators for a MEMS mirror with low power consumption. Micromachines 2017, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shen, X.; Chen, X. Design, modeling, and characterization of a MEMS electrothermal microgripper. Microsyst. Technol. 2015, 21, 2307–2314. [Google Scholar] [CrossRef]
- Enikov, E.T.; Kedar, S.S.; Lazarov, K.V. Analytical model for analysis and design of V-shaped thermal microactuators. J. Microelectromech. Syst. 2005, 14, 788–798. [Google Scholar] [CrossRef]
- Kwan, A.M.H.; Song, S.; Lu, X.; Lu, L.; Teh, Y.-K.; Teh, Y.-F.; Chong, E.W.C.; Gao, Y.; Hau, W.; Zeng, F. Improved designs for an electrothermal in-plane microactuator. J. Microelectromech. Syst. 2012, 21, 586–595. [Google Scholar] [CrossRef]
- Luo, J.K.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Comparison of microtweezers based on three lateral thermal actuator configurations. J. Micromech. Microeng. 2005, 15, 1294–1302. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.L.; Gianchandani, Y.B. A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing. J. Micromech. Microeng. 2003, 13, 279–285. [Google Scholar] [CrossRef]
- Andersen, K.N.; Carlson, K.; Petersen, D.H.; Molhave, K.; Eichhorn, V.; Fatikow, S.; Bøggild, P. Electrothermal microgrippers for pick-and-place operations. Microelectron. Eng. 2008, 85, 1128–1130. [Google Scholar] [CrossRef]
- Ali, N.; Shakoor, R.I.; Hassan, M.M. Design, modeling and simulation of electrothermally actuated microgripper with integrated capacitive contact sensor. In Proceedings of the Multitopic Conference (INMIC), Karachi, Pakistan, 22–24 December 2011; pp. 201–206. [Google Scholar]
- Stavrov, V.; Tomerov, E.; Hardalov, C.; Danchev, D.; Kostadinov, K.; Stavreva, G.; Apostolov, E.; Shulev, A.; Andonova, A.; Al-Wahab, M. Low voltage thermo-mechanically driven monolithic microgripper with piezoresistive feedback. In International Precision Assembly Seminar; Springer: Berlin, Heidelberg, 2010; pp. 207–214. [Google Scholar]
- Voicu, R.C.; Tibeica, C.; Müller, R.; Dinescu, A. An SU-8 micro-tweezer based on the chevron electro-thermal actuators with a large in-plane displacement. In Proceedings of the International Semiconductor Conference (CAS), Sinaia, Romania, 11–14 October 2017; pp. 105–108. [Google Scholar]
- Demaghsi, H.; Mirzajani, H.; Ghavifekr, H.B. Design and simulation of a novel metallic microgripper using vibration to release nano objects actively. Microsyst. Technol. 2014, 20, 65–72. [Google Scholar] [CrossRef]
- Chu, J.; Zhang, R.; Chen, Z. A novel SU-8 electrothermal microgripper based on the type synthesis of the kinematic chain method and the stiffness matrix method. J. Micromech. Microeng. 2011, 21, 54030. [Google Scholar] [CrossRef]
- Voicu, R.C.; Tibeica, C.; Mueller, R.; Dinescu, A.; Pustan, M.; Birleanu, C. SU-8 microgrippers based on V-shaped electrothermal actuators with implanted heaters. Rom. J. Inf. Sci. Technol. 2016, 19, 269–281. [Google Scholar]
- Shivhare, P.; Uma, G.; Umapathy, M. Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst. Technol. 2016, 22, 2623–2631. [Google Scholar] [CrossRef]
- Colinjivadi, K.S.; Lee, J.-B.; Draper, R. Viable cell handling with high aspect ratio polymer chopstick gripper mounted on a nano precision manipulator. Microsyst. Technol. 2008, 14, 1627–1633. [Google Scholar] [CrossRef]
- Zhu, Y.; Corigliano, A.; Espinosa, H.D. A thermal actuator for nanoscale in situ microscopy testing: Design and characterization. J. Micromech. Microeng. 2006, 16, 242–253. [Google Scholar] [CrossRef]
- Zhang, R.; Chu, J.; Wang, H.; Chen, Z. A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst. Technol. 2013, 19, 89–97. [Google Scholar] [CrossRef]
- Kim, K.; Liu, X.; Zhang, Y.; Sun, Y. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 2008, 18, 55013. [Google Scholar] [CrossRef]
- Nordquist, C.D.; Baker, M.S.; Kraus, G.M.; Czaplewski, D.A.; Patrizi, G.A. Poly-silicon based latching RF MEMS switch. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 380–382. [Google Scholar] [CrossRef]
- Pal, J.; Zhu, Y.; Lu, J.; Dao, D.V. A novel electrothermally actuated RF MEMS switch for wireless applications. In Proceedings of the 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 19–21 June 2013; pp. 1594–1598. [Google Scholar]
- Saqib, M.; Mubasher Saleem, M.; Mazhar, N.; Awan, S.; Shahbaz Khan, U. Design and analysis of a high-gain and robust multi-DOF electro-thermally actuated MEMS gyroscope. Micromachines 2018, 9, 577. [Google Scholar] [CrossRef] [PubMed]
- Que, L.; Park, J.-S.; Gianchandani, Y.B. Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices. J. Microelectromech. Syst. 2001, 10, 247–254. [Google Scholar]
- Shen, X.; Chen, X. Mechanical performance of a cascaded V-shaped electrothermal actuator. Int. J. Adv. Robot. Syst. 2013, 10, 379–387. [Google Scholar] [CrossRef]
- Voicu, R.-C. Design, numerical simulation and experimental investigation of an SU-8 microgripper based on the cascaded V-shaped electrothermal actuators. J. Phys. Conf. Ser. 2016, 757, 12015. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-S.; Chu, L.L.; Oliver, A.D.; Gianchandani, Y.B. Bent-beam electrothermal actuators-Part II: Linear and rotary microengines. J. Microelectromech. Syst. 2001, 10, 255–262. [Google Scholar] [CrossRef]
- Huang, S.-C.; Chen, W.-L. Design of topologically optimal microgripper. In Proceedings of the 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 12–15 October 2008; pp. 1694–1698. [Google Scholar]
- Guan, C.; Zhu, Y. An electrothermal microactuator with Z-shaped beams. J. Micromech. Microeng. 2010, 20, 85014. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Y.; Liu, X.; Zhang, X. A comparison model of V-and Z-shaped electrothermal microactuators. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 1025–1030. [Google Scholar]
- Yang, S.; Xu, Q. Design of a microelectromechanical systems microgripper with integrated electrothermal actuator and force sensor. Int. J. Adv. Robot. Syst. 2016, 13. [Google Scholar] [CrossRef]
- Rakotondrabe, M.; Fowler, A.G.; Moheimani, S.O.R. Control of a novel 2-DoF MEMS nanopositioner with electrothermal actuation and sensing. IEEE Trans. Control Syst. Technol. 2014, 22, 1486–1497. [Google Scholar]
- Rawashdeh, E.; Karam, A.; Foulds, I.G. Characterization of kink actuators as compared to traditional Chevron shaped bent-beam electrothermal actuators. Micromachines 2012, 3, 542–549. [Google Scholar] [CrossRef]
- Pustan, M.; Chiorean, R.; Birleanu, C.; Dudescu, C.; Muller, R.; Baracu, A.; Voicu, R. Reliability design of thermally actuated MEMS switches based on V—Shape beams. Microsyst. Technol. 2017, 23, 3863–3871. [Google Scholar] [CrossRef]
- Varona, J.; Tecpoyotl-Torres, M.; Hamoui, A.A. Design of MEMS vertical–horizontal chevron thermal actuators. Sens. Actuators A Phys. 2009, 153, 127–130. [Google Scholar] [CrossRef]
- Pustan, M.; Birleanu, C.; Dudescu, C.; Muller, R.; Baracu, A. Integrated thermally actuated MEMS switch with the signal line for the out-of-plane actuation. In Proceedings of the 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Roma, Italy, 22–25 May 2018; pp. 1–4. [Google Scholar]
- Timoshenko, S. Analysis of Bi-metal thermostats. J. Opt. Soc. Am. 1925, 11, 233–255. [Google Scholar] [CrossRef]
- Chu, W.-H.; Mehregany, M.; Mullen, R. Analysis of tip deflection and force of a bimetallic cantilever microactuator. J. Micromech. Microeng. 1993, 3, 4–7. [Google Scholar] [CrossRef]
- Bühler, J.; Funk, J.; Paul, O.; Steiner, F.-P.; Baltes, H. Thermally actuated CMOS micromirrors. Sens. Actuators A Phys. 1995, 47, 572–575. [Google Scholar] [CrossRef]
- Todd, S.T.; Xie, H. An Electrothermomechanical lumped element model of an electrothermal bimorph actuator. J. Microelectromech. Syst. 2008, 17, 213–225. [Google Scholar] [CrossRef]
- Liew, L.-A.; Tuantranont, A.; Bright, V.M. Modeling of thermal actuation in a bulk-micromachined CMOS micromirror. Microelectron. J. 2000, 31, 791–801. [Google Scholar] [CrossRef]
- Zhu, S.-E.; Shabani, R.; Rho, J.; Kim, Y.; Hong, B.H.; Ahn, J.-H.; Cho, H.J. Graphene-based bimorph microactuators. Nano Lett. 2011, 11, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Sang, W.; Zhao, L.; Tang, R.; Wu, Y.; Zhu, C.; Liu, J. Electrothermal actuator on graphene bilayer film. Macromol. Mater. Eng. 2017, 302, 1700239. [Google Scholar] [CrossRef]
- Sun, X.-Q.; Farmer, K.R.; Carr, W.N. A bistable microrelay based on two-segment multimorph cantilever actuators. In Proceedings of the MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176), Heidelberg, Germany, 25–29 January 1998; pp. 154–159. [Google Scholar]
- Sehr, H.; Evans, A.G.R.; Brunnschweiler, A.; Ensell, G.J.; Niblock, T.E.G. Fabrication and test of thermal vertical bimorph actuators for movement in the wafer plane. J. Micromech. Microeng. 2001, 11, 306–310. [Google Scholar] [CrossRef]
- Gilgunn, P.J.; Liu, J.; Sarkar, N.; Fedder, G.K. CMOS–MEMS lateral electrothermal actuators. J. Microelectromech. Syst. 2008, 17, 103–114. [Google Scholar] [CrossRef]
- Pal, S.; Samuelson, S.R.; Zhang, X.; Xie, H. Large in-plane displacement microactuators based on electro-thermal bimorphs with folded multiple segments. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 1587–1590. [Google Scholar]
- Zheng, X.; Kim, J.; Lee, D. Design and fabrication of a novel microgripper with four-point contact fingers Design and fabrication of a novel microgripper with four-point. J. Vac. Sci. Technol. A 2011, 29, 11007. [Google Scholar] [CrossRef]
- Luo, J.K.; He, J.H.; Fu, Y.Q.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages. J. Micromech. Microeng. 2005, 15, 1406–1413. [Google Scholar] [CrossRef] [Green Version]
- Morrison, J.; Imboden, M.; Little, T.D.C.; Bishop, D.J. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability. Opt. Express 2015, 23, 9555–9566. [Google Scholar] [CrossRef]
- Ivanova, K.; Sarov, Y.; Ivanov, T.; Frank, A.; Zöllner, J.; Bitterlich, C.; Wenzel, U.; Volland, B.E.; Klett, S.; Rangelow, I.W. Scanning proximal probes for parallel imaging and lithography. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. Process. Meas. Phenom. 2008, 26, 2367–2373. [Google Scholar] [CrossRef]
- Luo, J.K.; Huang, R.; He, J.H.; Fu, Y.Q.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Modelling and fabrication of low operation temperature microcages with a polymer/metal/DLC trilayer structure. Sens. Actuators A Phys. 2006, 132, 346–353. [Google Scholar] [CrossRef]
- Zhou, J.W.L.; Chan, H.-Y.; To, T.K.H.; Lai, K.W.C.; Li, W.J. Polymer MEMS actuators for underwater micromanipulation. IEEE ASME Trans. Mechatron. 2004, 9, 334–342. [Google Scholar] [CrossRef]
- Liu, L.; Pal, S.; Xie, H. MEMS mirrors based on a curved concentric electrothermal actuator. Sens. Actuators A Phys. 2012, 188, 349–358. [Google Scholar] [CrossRef]
- Jain, A.; Kopa, A.; Pan, Y.; Fedder, G.K.; Xie, H. A two-axis electrothermal micromirror for endoscopic optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 636–642. [Google Scholar] [CrossRef]
- Singh, J.; Gan, T.; Agarwal, A.; Liw, S. 3D free space thermally actuated micromirror device. Sens. Actuators A Phys. 2005, 123, 468–475. [Google Scholar] [CrossRef]
- Wu, L.; Xie, H. A large vertical displacement electrothermal bimorph microactuator with very small lateral shift. Sens. Actuators A Phys. 2008, 145, 371–379. [Google Scholar] [CrossRef]
- Todd, S.T.; Jain, A.; Qu, H.; Xie, H. A multi-degree-of-freedom micromirror utilizing inverted-series-connected bimorph actuators. J. Opt. A Pure Appl. Opt. 2006, 8, S352–S359. [Google Scholar] [CrossRef] [Green Version]
- Jia, K.; Pal, S.; Xie, H. An electrothermal tip–tilt–piston micromirror based on folded dual S-shaped bimorphs. J. Microelectromech. Syst. 2009, 18, 1004–1015. [Google Scholar]
- Zhang, X.; Li, B.; Li, X.; Xie, H. A robust, fast electrothermal micromirror with symmetric bimorph actuators made of copper/tungsten. In Proceedings of the 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 912–915. [Google Scholar]
- Singh, J.; Teo, J.H.S.; Xu, Y.; Premachandran, C.S.; Chen, N.; Kotlanka, R.; Olivo, M.; Sheppard, C.J.R. A two axes scanning SOI MEMS micromirror for endoscopic bioimaging. J. Micromech. Microeng. 2007, 18, 25001. [Google Scholar] [CrossRef]
- Fu, J.; Chen, D.; Ye, T. Study on electrothermally actuated cantilever array for nanolithography. Sci. China Technol. Sci. 2010, 53, 1184–1189. [Google Scholar] [CrossRef]
- Pedrak, R.; Ivanov, T.; Ivanova, K.; Gotszalk, T.; Abedinov, N.; Rangelow, I.W.; Edinger, K.; Tomerov, E.; Hudek, P.; Pedrak, R.; et al. Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes. J. Vac. Sci. Technol. B 2003, 21, 3102–3107. [Google Scholar] [CrossRef]
- Angelov, T.; Roeser, D.; Ivanov, T.; Gutschmidt, S.; Sattel, T.; Rangelow, I.W. Thermo-mechanical transduction suitable for high-speed scanning probe imaging and lithography. Microelectron. Eng. 2016, 154, 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Bullen, D.A.; Zou, J.; Liu, C.; Mirkin, C.A.; Wang, X.; Bullen, D.A.; Zou, J.; Liu, C. Thermally actuated probe array for parallel dip-pen nanolithography. J. Vac. Sci. Technol. B 2004, 22, 2563–2567. [Google Scholar] [CrossRef]
- Voicu, R.-C.; Al Zandi, M.; Müller, R.; Wang, C. Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement. J. Phys. Conf. Ser. 2017, 922, 12006. [Google Scholar] [CrossRef]
- Duc, T.C.; Lau, G.K.; Creemer, J.F.; Sarro, P.M. Electrothermal microgripper with large jaw displacement and integrated force sensors. J. Microelectromech. Syst. 2008, 17, 1546–1555. [Google Scholar] [CrossRef]
- Luo, J.K.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Modelling of Microspring Thermal Actuator. NSTI-Nanotech 2004, 1, 355–358. [Google Scholar]
- Mackay, R.E.; Le, H.R.; Keatch, R.P. Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers. J. Micro Nano Mechatron. 2011, 6, 13–22. [Google Scholar] [CrossRef]
- Duc, T.C.; Lau, G.K.; Wei, J.; Sarro, P.M. 2D electro-thermal microgrippers with large clamping and rotation motion at low driving voltage. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 687–690. [Google Scholar]
- Duc, T.C.; Lau, G.; Sarro, P.M. Polymeric thermal microactuator with embedded silicon skeleton: Part II—Fabrication, characterization, and application for 2-DOF microgripper. J. Microelectromech. Syst. 2008, 17, 823–831. [Google Scholar]
- Wei, J.; Duc, T.C.; Lau, G.K.; Sarro, P.M. Novel electrothermal bimorph actuator for large out-of-plane displacement and force. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Wuhan, China, 13–17 January 2008; pp. 46–49. [Google Scholar]
- Zeman, M.J.F.; Bordatchev, E.V.; Knopf, G.K. Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications. J. Micromech. Microeng. 2006, 16, 1540–1549. [Google Scholar] [CrossRef] [Green Version]
- Greminger, M.A.; Sezen, A.S.; Nelson, B.J. A four degree of freedom MEMS microgripper with novel bi-directional thermal actuators. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2814–2819. [Google Scholar]
- Syms, R.R.A.; Zou, H.; Yao, J.; Uttamchandani, D.; Stagg, J. Scalable electrothermal MEMS actuator for optical fibre alignment. J. Micromech. Microeng. 2004, 14, 1633–1639. [Google Scholar] [CrossRef]
- Khazaai, J.J.; Haris, M.; Qu, H.; Slicker, J. Displacment amplification and latching mechanism using V-shape actuators in design of electro-thermal MEMS switches. In Proceedings of the SENSORS, 2010 IEEE, Kona, HI, USA, 1–4 November 2010; pp. 1454–1459. [Google Scholar]
Principle | Bi-directional | Material | x, µm | u, V | Application | Year | Figure | Ref. |
---|---|---|---|---|---|---|---|---|
different arm width | - | SU-8, Cr/Au | 11 | 2 | microgripper | 2004 | - | [4,38] |
polySi | 9.1 | 14 | microgripper | 2015 | - | [66] | ||
different arm length | - | polySi | 20 | 10 | microgripper | 1997 | - | [22] |
ETC | - | Si (SOI) | – | – | micromanipulator | 2001 | - | [23] |
selective doping | - | Si (SOI) | ~17 | ~8 | actuator | 2001 | - | |
modified resistivity | - | Si, Au | 120 | 50 | bistable relay | 2005 | - | [26] |
folded heater | - | SU-8, Au | 262 | 1.94 | microgripper | 2007 | Figure 2a | [35] |
- | Ni, polySi | 71, 41 | 24, 20 | distribution frame | 2016 | Figure 2c | [37] | |
meander heater | - | SU-8, Cr/Au | ~9.6 | ~0.25 | microgripper | 2008 | - | [43] |
inclined/curved arm | - | SU-8, Cr/Au | ~14.3 | ~0.25 | microgripper | 2009 | - | [44] |
- | Ni | – | – | actuator | 2010 | - | [46] | |
- | SU-8, Cr/Au | 8 | 0.7 | microgripper | 2013–17 | - | [47,48] | |
“skeletal” | - | SU-8, Cr/Au | 17–20 | 0.65 | microgripper | 2014–17 | Figure 2b | [36,49] |
three-beam | possible | Si, Au | 5 | 5 | microgripper | 2006–11 | - | [39,40,41,42] |
possible | SU-8, Pt/Ti | 100 | 10 | microgripper | 2004 | - | [59] | |
yes | Au | 4 | 0.23 | microgripper | 2005 | - | [60] | |
yes | polySi | ~4 | ~8–9 | microgripper | 2008 | - | [61] | |
- | polySi | ~3.5 | 6 | RF latch | 2015 | - | [55] | |
yes | MetalMUMPS | – | 0.55 | RF switch | 2013 | Figure 3 | [58] | |
tethered | - | Si (SOI) | >20 | 5 | optical attenuator | 2004 | - | [56] |
coupled | yes | Si, Ni | 187.2 | – (1.6 W) | opt. fiber switch | 2000 | - | [62] |
kinematic | yes | SUEX, Al | 177.1, 119 | – (54.8 mW) | position. platform | 2016 | - | [63] |
out-of-plane | yes | Si | 6–7 | 5 | actuator | 2003 | - | [64] |
- | polySi | 10.3 | 2.5 | micromirror | 2017 | Figure 4 | [65] |
Principle | Material | Application | x, µm | u, V | Year | Fig. | Ref. |
---|---|---|---|---|---|---|---|
V-shape | Si (SOI) | 2D positioner | ~19 | >14 | 2003 | - | [70] |
Ni | microgripper | 30 ± 4 | ~1.15 (260 mA) | 2005 | - | [69] | |
Si | microgripper | 1.5–2 | – (8 mA) | 2008 | Figure 6a | [71] | |
Si (SOI) | microgripper | 67 | 10 | 2008 | - | [82] | |
SU-8, Au | microgripper | 10 | <1 | 2008 | Figure 6c | [79] | |
Si | microgripper | 6–7 | 4 | 2010 | - | [73] | |
Ni (MUMPs) | microgripper | 79 | 0.7 | 2011 | - | [72] | |
SU-8, Cu | microgripper | 71.5 | 0.195 | 2011–13 | Figure 6b | [76,81] | |
Ni | microgripper | 1.13 | 0.09 | 2014 | - | [75] | |
SU-8, Cr/Au | microgripper | 40 | – (25 mA) | 2016 | - | [77] | |
polySi | microgripper | 19.2 | 1 | 2016 | - | [78] | |
SU-8, Au | microgripper | 70.5 | 0.74 | 2017 | - | [74] | |
MUMPs | MEMS material testing | ~0.8 | – (15 mA) | 2005 | Figure 6d | [80] | |
polySi | RF switch | – | 5 | 2009 | - | [83] | |
Ni | RF switch | 8 | 0.07 | 2013 | - | [84] | |
Ni | MEMS gyroscope | 18.6 | 0.2 | 2018 | - | [85] | |
cascaded | polySi | rotary micro-engine | 33.4 | 14.4 | 2001 | - | [89] |
Ni | ‘inchworm’ micro-engine | 32–40 | 1 | 2001 | - | ||
SU-8, Cr/Au | microgripper | 50 | – (26 mA) | 2016 | Figure 7b | [88] | |
Ni | actuator | 18 | 1.5 | 2008 | - | [90] | |
Z-shape | Si | microgripper | 80 | 6 | 2016 | - | [93] |
Ni (MUMPs) | 2D nanopositioner | ±5 | ±150 | 2014 | Figure 8d | [94] | |
kink-shape | polySi (MUMPs) | actuator | ~8 | 8 | 2012 | Figure 8b | [95] |
out-of-plane | Al | MEMS switch | ~0.16 | – | 2018 | Figure 8c | [96,98] |
Principle | Material | Application | x, µm/° | u, V | Year | Fig. | Ref. |
---|---|---|---|---|---|---|---|
Out-of-plane | Si, SiO2, Al | 2-finger microgripper | 140 | – (80 mW) | 1996 | - | [5] |
Si, SiO2, Au/Cr | 4-finger microgripper | ~35 | 0–30 | 2011 | Figure 10a | [110] | |
Pt, parylene | microcage | 90° | 2.5 | 2004 | - | [115] | |
Ni, DLC | microcage | ~90° | – (<20 mW) | 2005 | Figure 10b | [111] | |
SU-8, Al, DLC | microcage | ~80° | 3.2 (<9 mW) | 2006 | - | [114] | |
SiO2, polySi, Al (CMOS) | micromirror (OCT) | 40°, 25° | 15, 17 | 2004 | - | [117] | |
Si, SiO2, Al | micromirror | 10° | 0–1.4 | 2005 | - | [118] | |
Al, polySi, SiO2 | micromirror | 56 | 3–7 | 2006 | - | [120] | |
Si, SiO2, Al | micromirror (endoscopic) | 17° | 1.6 | 2007 | - | [123] | |
SiO2, Pt, Al | micromirror (OCT) | 621 | 5.3 | 2008 | - | [119] | |
SiO2, Pt, Al | micromirror | ±30°, 480 | ±4, 8 | 2009 | - | [121] | |
SiO2, W, Al | micromirror (endoscopic) | ±11°, 227 | 0.6, 0.8 | 2012 | - | [116] | |
Cu, W, SiO2 | micromirror | ±13°, 169 | 2.3 | 2015 | - | [122] | |
polySi, Au | varifocal micromirror | ±40°, 300 | – (90 mW) | 2015 | Figure 10c,d | [112] | |
Al, SiO2, Si | AFM probe | 3.6 | – (30 µW) | 2003 | - | [125] | |
Si3N4, Cr, W | SPN probe | 16.9 | – (5.5 mA) | 2010 | - | [124] | |
Si, SiO2, Al | AFM/SPN probe | - | 50 | 2008 | Figure 10e | [113] | |
Al, Si, SiO2/Si3N4 | AFM/SPN probe | 10 | – (24 mW) | 2016 | - | [126] | |
Si, Au | DPN probe | 28 | – (17.57 mW) | 2004 | - | [127] | |
In-plane | Si, Al | actuator | 4.5 | – (3 mW) | 2001 | - | [107] |
SiO2, Al (CMOS) | actuator | 2.1 | – | 2008 | - | [108] | |
Al, SiO2, Pt | actuator | 135 | 3.8 | 2013 | - | [109] |
Principle | Direction of Deflection | Material | Application | x, µm | u, V | Year | Fig. | Ref. |
---|---|---|---|---|---|---|---|---|
expanding beams | linear | Ni | microgripper | 60 ± 4 | ~1.15 (190mA) | 2005 | - | [69] |
linear | SU-8, Cr/Cu | microgripper | ~100 | 0.1–0.5 | 2011 | - | [131] | |
linear | SU-8, Cr/Au | microgripper | 11 | 0.65 | 2017 | Figure 11a | [48,128] | |
Si/polymer stack | linear | Si, SU-8, Al | 2D microgripper | 8, 13 | 2 | 2007 | - | [132] |
linear | Si, SU-8, Al | 2D microgripper | 17, 11 | 2.5 | 2008 | - | [133] | |
lateral | Si, SU-8, Al | microgripper | 32 | 4.5 | 2008 | Figure 11b | [129] | |
out-of-plane | Si, SU-8, Al | actuator | 31 | 5 | 2008 | - | [134] | |
microspring | linear | Ni, SiO2 | actuator | 33.7 | 0.4 | 2004 | Figure 11c | [130] |
linear | Ni | microgripper | 94.9 | 1.6 | 2006 | - | [135] | |
X and Y DOF | 2D | Si (SOI) | microgripper | 38.4, 11.6 | ~40 | 2005 | - | [136] |
folded buckling | lateral | Si, Cr/Au | opt. fiber alignment | 26 | ~10 | 2004 | - | [137] |
combined | combined | Ni (MUMPs) | microgripper | 173 | 1 | 2011 | - | [46] |
linear | polySi, Al | MEMS switch | 2.7 | 1 | 2010 | - | [138] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potekhina, A.; Wang, C. Review of Electrothermal Actuators and Applications. Actuators 2019, 8, 69. https://doi.org/10.3390/act8040069
Potekhina A, Wang C. Review of Electrothermal Actuators and Applications. Actuators. 2019; 8(4):69. https://doi.org/10.3390/act8040069
Chicago/Turabian StylePotekhina, Alissa, and Changhai Wang. 2019. "Review of Electrothermal Actuators and Applications" Actuators 8, no. 4: 69. https://doi.org/10.3390/act8040069
APA StylePotekhina, A., & Wang, C. (2019). Review of Electrothermal Actuators and Applications. Actuators, 8(4), 69. https://doi.org/10.3390/act8040069