# Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Mechanical Design

#### 2.1. Schematic Design

#### 2.2. Analytical Modeling

#### 2.3. Parametric Study

## 3. Simulation Study with FEA

#### 3.1. Static Structural Results of Constant-Force Test

#### 3.2. Stress Analysis Results

#### 3.3. Modal Analysis Results

## 4. Experimental Results

#### 4.1. Experimental Setup

#### 4.2. Experimental Results

#### 4.3. Further Discussions

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Howell, L.L. Compliant Mechanisms; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Lobontiu, N. Compliant Mechanisms: Design of Flexure Hinges; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Xu, Q. Design and Implementation of Large-Range Compliant Micropositioning Systems; John Wiley & Sons: Singapore, 2016. [Google Scholar]
- Luo, Y.; Liu, W. Analysis of the displacement of distributed compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate. Mech. Mach. Theory
**2014**, 80, 151–165. [Google Scholar] - Chen, W.; Qu, J.; Chen, W.; Zhang, J. A compliant dual-axis gripper with integrated position and force sensing. Mechatronics
**2017**, 47, 105–115. [Google Scholar] [CrossRef] - Xu, Q. Micromachines for Biological Micromanipulation; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Park, J.H.; Shim, J.; Lee, D.Y. A compact vertical scanner for atomic force microscopes. Sensors
**2010**, 10, 10673–10682. [Google Scholar] [CrossRef] [PubMed] - Xu, Q. Robust impedance control of a compliant microgripper for high-speed position/force regulation. IEEE Trans. Ind. Electron.
**2015**, 62, 1201–1209. [Google Scholar] [CrossRef] - Choi, S.; Han, Y.; Kim, J.; Cheong, C. Force tracking control of a flexible gripper featuring shape memory alloy actuators. Mechatronics
**2001**, 11, 677–690. [Google Scholar] [CrossRef] - Herder, J.L.; Van Den Berg, F.P.A. Statically balanced compliant mechanisms (SBCMs), an example and prospects. In Proceedings of the Design Engineering Technical Conferences and Computer in Engineering Conference DETC2000/MECH-14144, Baltimore, MD, USA, 10–13 September 2000. [Google Scholar]
- Tolman, K.A.; Merriam, E.G.; Howell, L.L. Compliant constant-force linear-motion mechanism. Mech. Mach. Theory
**2016**, 106, 68–79. [Google Scholar] [CrossRef] - Li, B.; Hao, G. Nonlinear behaviour design using the kinematic singularity of a general type of double-slider four-bar linkage. Mech. Mach. Theory
**2018**, 129, 106–130. [Google Scholar] [CrossRef] - Zanaty, M.; Vardi, I.; Henein, S. Programmable multistable mechanisms: Synthesis and modeling. J. Mech. Des.
**2018**, 140, 042301. [Google Scholar] [CrossRef] - Dong, W.; Chen, F.; Gao, F.; Yang, M.; Sun, L.; Du, Z.; Tang, J.; Zhang, D. Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges. Precis. Eng.
**2018**. [Google Scholar] [CrossRef] - Wang, P.; Xu, Q. Design and testing of a flexure-based constant-force stage for biological cell micromanipulation. IEEE Trans. Autom. Sci. Eng.
**2018**, 15, 1114–1126. [Google Scholar] [CrossRef] - Lan, C.; Wang, J.; Chen, Y. A compliant constant-force mechanism for adaptive robot end-effector operations. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–8 May 2010; pp. 2131–2136. [Google Scholar]
- Howell, L.; Magleby, S. Substantially Constant-Force Exercise Machine. U.S. Patent 20040198571A1, 7 October 2004. [Google Scholar]
- Liu, Y.; Zhang, Y.; Xu, Q. Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams. IEEE/ASME Trans. Mech.
**2017**, 22, 476–486. [Google Scholar] [CrossRef] - Carrella, A.; Brennan, M.; Kovacic, I.; Waters, T. On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib.
**2009**, 322, 707–717. [Google Scholar] [CrossRef] - Kovacic, I.; Brennan, M.J.; Waters, T.P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib.
**2008**, 315, 700–711. [Google Scholar] [CrossRef] - Carrella, A.; Brennan, M.; Waters, T.; Shin, K. On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib.
**2008**, 315, 712–720. [Google Scholar] [CrossRef] - Zhou, N.; Liu, K. A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib.
**2010**, 329, 1254–1273. [Google Scholar] [CrossRef] - Smith, S.T.; Badami, V.G.; Dale, J.S.; Xu, Y. Elliptical flexure hinges. Rev Sci Instrum.
**1997**, 68, 1474–1483. [Google Scholar] [CrossRef] - Tseytlin, Y.M. Notch flexure hinges: an effective theory. Rev Sci Instrum.
**2002**, 73, 3363–3368. [Google Scholar] [CrossRef] - Verotti, M. Effect of initial curvature in uniform flexures on position accuracy. Mech. Mach. Theory
**2018**, 119, 106–118. [Google Scholar] [CrossRef] - Verotti, M. Analysis of the center of rotation in primitive flexures: Uniform cantilever beams with constant curvature. Mech. Mach. Theory
**2016**, 97, 29–50. [Google Scholar] [CrossRef] - Pham, H.T.; Wang, D.A. A constant-force bistable mechanism for force regulation and overload protection. Mech. Mach. Theory
**2011**, 46, 899–909. [Google Scholar] [CrossRef] - Wang, P.; Xu, Q. Design of a flexure-based constant-force XY precision positioning stage. Mech. Mach. Theory
**2017**, 108, 1–13. [Google Scholar] [CrossRef] - Wang, D.A.; Chen, J.H.; Pham, H.T. A constant-force bistable micromechanism. Sens. Actuators A Phys.
**2013**, 189, 481–487. [Google Scholar] [CrossRef] - Chen, G.; Chang, H.; Li, G. Design of Constant-Force Compliant Sarrus Mechanism Considering Stiffness Nonlinearity of Compliant Joints. In Advances in Reconfigurable Mechanisms and Robots II; Springer: Basel, Switzerland, 2016; pp. 107–116. [Google Scholar]
- Wang, P.; Xu, Q. Design and modeling of constant-force mechanisms: A survey. Mech. Mach. Theory
**2018**, 119, 1–21. [Google Scholar] [CrossRef] - Xu, Q. Design of a Large-Stroke Bistable Mechanism for the Application in Constant-Force Micropositioning Stage. J. Mech. Robot.
**2017**, 9, 011006. [Google Scholar] [CrossRef] - Wang, J.; Lan, C. A constant-force compliant gripper for handling objects of various sizes. J. Mech. Des.
**2014**, 136, 071008. [Google Scholar] [CrossRef] - Zhang, X.; Xu, Q. Design and analysis of a constant-force parallel micro-gripper. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8 December 2017; pp. 1112–1117. [Google Scholar]
- Zhang, X.; Xu, Q. Design and Analysis of a Compound Constant-Force Mechanism for Compliant Gripper. In Proceedings of the 3rd International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Nagoya, Japan, 4–8 July 2018. [Google Scholar]
- Zhao, J.; Jia, J.; He, X.; Wang, H. Post-buckling and snap-through behavior of inclined slender beams. J. Appl. Mech.
**2008**, 75, 041020. [Google Scholar] [CrossRef] - ABSplus. Available online: http://www.stratasys.com/materials/search/absplus (accessed on 19 September 2018).
- Linß, S.; Gräser, P.; Räder, T.; Henning, S.; Theska, R.; Zentner, L. Influence of geometric scaling on the elasto-kinematic properties of flexure hinges and compliant mechanisms. Mech. Mach. Theory
**2018**, 125, 220–239. [Google Scholar] [CrossRef] - Hanke, U.; Lovasz, E.C.; Zichner, M.; Modler, N.; Comsa, A.; Modler, K.H. Synthesis of PR/RP-chain based compliant mechanisms: Design of applications exploiting fibre reinforced material characteristics. Mach. Sci.
**2015**, 6, 155–161. [Google Scholar] [CrossRef]

**Figure 1.**Schematic of the proposed CCFM. (

**a**) ACFM in top and bottom layers; (

**b**) PCFM in middle layer; (

**c**) Construction of the CCFM.

**Figure 2.**Example of CAD model for the CCFM. (1) Base board, (2) connector 1, (3) connector 2, (4) connector 3, (5) permanent magnetic housing, (6) moving coil, (7) CCFM, (8) end-effector, and (9) fixed end.

**Figure 5.**FEA simulation results. (

**a**) Simulation setup; (

**b**) Comparison between simulation and analytical model results.

**Figure 6.**Simulation result of stress distribution for the CCFM with the displacement $\Delta x$ applied in x-axis.

**Figure 9.**Test result of disturbance rejection during the environmental interaction. (

**a**) The force applied to the input end; (

**b**) The force on the end-effector; (

**c**) Displacement of the end-effector.

**Table 1.**Specifications of the material [37].

Parameter | Value |
---|---|

Density | 1040 kg/m^{3} |

Poisson ratio | 0.394 |

Young’s modulus | 2.2 GPa |

Yield strength | 25 MPa |

Parameter | Value |
---|---|

${l}_{1}$ | 19 mm |

${l}_{2}$ | 8 mm |

${l}_{3}$ | 19 mm |

L | 30 mm |

${t}_{i}$ | 1 mm |

${t}_{o}$ | 2 mm |

$\theta $ | 5° |

Mode | Value (Hz) |
---|---|

First mode | 46.7 |

Second mode | 85.0 |

Third mode | 85.7 |

Fourth mode | 115.4 |

Fifth mode | 150.0 |

Sixth mode | 201.3 |

Method | Value (N) | Deviation |
---|---|---|

Analytical model | 9.0 | 12.5% |

FEA simulation | 8.9 | 11.3% |

Experimental study | 8.0 | - |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, X.; Wang, G.; Xu, Q. Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism. *Actuators* **2018**, *7*, 65.
https://doi.org/10.3390/act7040065

**AMA Style**

Zhang X, Wang G, Xu Q. Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism. *Actuators*. 2018; 7(4):65.
https://doi.org/10.3390/act7040065

**Chicago/Turabian Style**

Zhang, Xiaozhi, Guangwei Wang, and Qingsong Xu. 2018. "Design, Analysis and Testing of a New Compliant Compound Constant-Force Mechanism" *Actuators* 7, no. 4: 65.
https://doi.org/10.3390/act7040065