# Nonlinearities in Control Description and Design of an Electro Hydraulic Actuator for Flexible Nozzle Thrust Vector Control

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Actuator System—Description in the Model of a Rocket

## 3. Nonlinearity in Electro Hydraulic Actuator System

_{f}—the stiffness of a flexible joint is depicted in a much easier and simpler way than by Equation (1). An alternative to description of a flexible joint is basically mathematical description through LOOK UP function (in MatLab), based on experimental data, as shown in [1].

## 4. Non-Linear and Linear Description of Flow Characteristics of Distributor and Flexible Load

## 5. Conclusions

## Author Contributions

## Conflicts of Interest

## References

- Nauparac, D.; Prsic, D.; Milos, M. Design Selection of Adequate Control Algorithm for Electro-hydraulic Actuator Applied on Rocket Engine Flexible Nozzle Thrust Vector Control. In Proceedings of the 14th ITI Symposium, Dresden, Germany, 30 November–1 December 2011. [Google Scholar]
- Situm, Z. Force and position control of a hydraulic presses. VENTIL
**2011**, 17, 314–320. [Google Scholar] - Sivaselvan, M.V.; Reihorn, A.M. Dynamic Force Control with Hydraulic Actuators Using Added Compliance and Displacement Compensation. Earthq. Eng. Struct. Dyn.
**2008**, 37, 1785–1800. [Google Scholar] [CrossRef] - Jelali, M.; Kroll, A. Hydraulic Servo-Systems, Modeling, Identification and Control; Springer: Berlin, Germany, 2003. [Google Scholar]
- Reinhold, V. Nonlinear Control Engineering (Describing Function and Analysis Design); VNR Company: New York, NY, USA, 1982. [Google Scholar]
- Yan, J.; Li, B.; Ling, H.; Chen, H.; Zhang, M. Nonlinear State Space Modeling and System Identification for Electro hydraulic control. Math. Probl. Eng.
**2013**, 2013, 973903. [Google Scholar] [CrossRef] - Fielding, C.; Flux, P. Non-linearities in flight control systems. Aeronaut. J.
**2005**, 107, 673–686. [Google Scholar] - Simscape
^{TM}. 2012 The MathWorks. Available online: www.mathworks.com (assessed on 02 April 2018). - Sieteanu, T.; Giuclea, M.; Mitu, A.M. An Analytical approach for approximation of experimental hysteretic loops by Bouc-Wen model. Proc. Rom. Acad. Ser. A
**2009**, 10, 4354. [Google Scholar] - Borello, L.; Villero, G. Proposals and Comparative Evaluation of Synthetic Nonlinear models in flight control simulation. In Proceedings of the ICAS 2002 Congress, Toronto, ON, Canada, 8–13 September 2002. [Google Scholar]
- Borello, L.; Villero, G.; Dalla Vedova, M.D.L. Flaps Failure and Aircraft Controllability: Developments in Asymmetry Monitoring Techniques. J. Mech. Sci. Technol.
**2014**, 28, 4593–4603. [Google Scholar] [CrossRef] - Borello, L.; Villero, G.; Dalla Vedova, M.D.L. New asymmetry monitoring techniques. Aerosp. Sci. Technol.
**2009**, 13, 475–497. [Google Scholar] [CrossRef] - Bernard, M. Vega Missionization and Post Flight Analyses. Ph.D. Thesis, University of Roma, Rome, Italy, December 2010. [Google Scholar]
- Schinstock, D.; Scott, D.; Haskew, T.A. Modeling and Estimation for Electromechanical Thrust Vector Control of Rocket Engines. J. Propuls. Power
**1998**, 14, 440–446. [Google Scholar] [CrossRef] - Lampani, L.; Angelini, F.; Bernabei, M.; Marocco, R.; Fabrizi, M.; Gaudenezi, P. Finite Eelement Analysis of a Solid booster Flexible bearing Joint for Thrust Vector Control. J. Aerosp. Sci.
**2012**, 91, 53–61. [Google Scholar] - Prilipov, A.V. Razrabotka Metodiki Rasceta Gazogidravliceskoga Istocnika Rulevogo Privoda Upravleniya Povorotnim Soplom Putem Postroenia Epyri Soprjazeniya Raspolagaemoj i Potrebnoj Mocnostei; MAI: Moskva, Russia, 2010. [Google Scholar]
- Si, L.; Wang, Z.; Liu, X.; Zhang, L. A Novel Compound Control Method for Hydraulically Driven Shearer Drum Lifting. J. Control Sci. Eng.
**2014**, 2014, 691787. [Google Scholar] [CrossRef] - Shen, W.; Jiang, J.; Su, X.; Karimi, H. Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail. Sci. World J.
**2013**, 2013, 560694. [Google Scholar] [CrossRef] [PubMed] - Nauparac, D.; Prsic, D.; Milos, M.; Samardzic, M.; Isakovic, J. Design Criterion to Select Adequate Control Algorithm for Electro-Hydraulic Actuator Applied to Rocket Engine Flexible Nozzle Thrust Vector Control Under specific Load, FME Transaction. FME Trans.
**2013**, 41, 33–40. [Google Scholar]

**Figure 2.**Actuator in the rocket control structure. where: K—gain, Kα—feedback gain, ${W}_{\beta}^{\alpha}\left(s\right)$—transfer function of rocket, β—control position, Δ—dead band value.

**Figure 4.**Diagram that shows frequency and amplitude dependency and manifestation of system’s non-linear nature and saturation from velocity and acceleration.

**Figure 8.**Behavior of flexible joint with control offset (0.080 V, K = 1), control per position, elastic and inertial loads.

**Figure 10.**Behavior of flexible joint (model) without control offset, 2 Hz (±1 V), K = 1, input signal and friction in model of flexible joint.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nauparac, D.; Prsic, D.; Milos, M.
Nonlinearities in Control Description and Design of an Electro Hydraulic Actuator for Flexible Nozzle Thrust Vector Control. *Actuators* **2018**, *7*, 15.
https://doi.org/10.3390/act7020015

**AMA Style**

Nauparac D, Prsic D, Milos M.
Nonlinearities in Control Description and Design of an Electro Hydraulic Actuator for Flexible Nozzle Thrust Vector Control. *Actuators*. 2018; 7(2):15.
https://doi.org/10.3390/act7020015

**Chicago/Turabian Style**

Nauparac, Dragan, Dragan Prsic, and Marko Milos.
2018. "Nonlinearities in Control Description and Design of an Electro Hydraulic Actuator for Flexible Nozzle Thrust Vector Control" *Actuators* 7, no. 2: 15.
https://doi.org/10.3390/act7020015