Trajectory Tracking of Unmanned Hovercraft: Event-Triggered NMPC Under Actuation Limits and Disturbances
Abstract
1. Introduction
- A novel event-triggered adaptive-horizon NMPC framework is proposed for unmanned hovercraft trajectory tracking. Unlike conventional fixed-horizon or standalone event-triggered MPC, this method dynamically shrinks the prediction horizon as the tracking error decreases and triggers control updates only when necessary. This dual mechanism significantly enhances computational efficiency without compromising tracking precision.
- A rigorous stability analysis is conducted for the closed-loop system under the proposed EANMPC scheme. The proof establishes input-to-state stability without relying on local linearization, thereby ensuring robustness against strong nonlinearities, model uncertainties, and bounded disturbances.
- Comprehensive simulation validation is performed under realistic conditions, including actuator saturation and time-varying maritime disturbances. The results demonstrate that the proposed method achieves a balance between control performance and real-time feasibility, notably reducing computational cost by 57% compared to standard NMPC while maintaining competitive tracking accuracy.
2. Problem Formulation
2.1. Dynamics of the Hovercraft
2.2. Optimal Problem
2.3. Event-Based NMPC Method
3. Stability Analysis
Proof of Stability
4. Experiments and Verification
4.1. Control Parameters and Model
4.2. Tracking Performance with Disturbance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Hu, Q.; Wang, X.; Yin, J. Event-triggered-based nonlinear model predictive control for trajectory tracking of underactuated ship with multi-obstacle avoidance. Ocean. Eng. 2022, 253, 111278. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained model predictive control: Stability and optimality. Automatica 2000, 36, 789–814, Erratum in Automatica 2001, 37, 483. https://doi.org/10.1016/S0005-1098(00)00173-4. [Google Scholar] [CrossRef]
- Tanaka, K.; Iwasaki, M.; Wang, H. Switching control of an R/C hovercraft: Stabilization and smooth switching. IEEE Trans. Syst. MAN Cybern.—PART B Cybern. 2001, 31, 853–863. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Y.; Xie, L.; Zhu, B. Adaptive Trajectory Tracking Control of a Fully Actuated Surface Vessel With Asymmetrically Constrained Input and Output. IEEE Trans. Control Syst. Technol. 2018, 26, 1851–1859. [Google Scholar] [CrossRef]
- Fu, M.; Zhang, T.; Ding, F.; Wang, D. Safety-guaranteed adaptive neural motion control for a hovercraft with multiple constraints. Ocean. Eng. 2021, 220, 108401. [Google Scholar] [CrossRef]
- Gao, J.; Proctor, A.A.; Shi, Y.; Bradley, C. Hierarchical Model Predictive Image-Based Visual Servoing of Underwater Vehicles With Adaptive Neural Network Dynamic Control. IEEE Trans. Cybern. 2016, 46, 2323–2334. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, B.J.; Silvestre, C.; Cunha, R.; Pascoal, A. Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft. IEEE Trans. Control Syst. Technol. 2014, 22, 2160–2175. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking. Automatica 2020, 115, 108863. [Google Scholar] [CrossRef]
- Wang, N.; Qian, C.; Sun, J.-C.; Liu, Y.-C. Adaptive Robust Finite-Time Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles. IEEE Trans. Control Syst. Technol. 2016, 24, 1454–1462. [Google Scholar] [CrossRef]
- Shishika, D.; Yim, J.K.; Paley, D.A. Robust Lyapunov Control Design for Bioinspired Pursuit With Autonomous Hovercraft. IEEE Trans. Control Syst. Technol. 2017, 25, 509–520. [Google Scholar] [CrossRef]
- Heshmati-Alamdari, S.; Nikou, A.; Dimarogonas, D.V. Robust trajectory tracking control for underactuated autonomous underwater vehicles in uncertain environments. IEEE Trans. Autom. Sci. Eng. 2020, 18, 1288–1301. [Google Scholar] [CrossRef]
- Nikou, A.; Verginis, C.K.; Dimarogonas, D.V. A Tube-Based MPC Scheme for Interaction Control of Underwater Vehicle Manipulator Systems. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, 6–9 November 2018. [Google Scholar] [CrossRef]
- Raghuraman, V.; Koeln, J.P. Hierarchical MPC for coupled subsystems using adjustable tubes. Automatica 2022, 143, 110435. [Google Scholar] [CrossRef]
- Fu, M.; Lijing, D.; Yujie, X.; Dan, B. A novel asymmetrical integral barrier Lyapunov function-based trajectory tracking control for hovercraft with multiple constraints. Ocean. Eng. 2022, 263, 112–132. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Xia, Y.; Zuo, Z. EMPC with adaptive APF of obstacle avoidance and trajectory tracking for autonomous electric vehicles. ISA Trans. 2023, 135, 438–448. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Iwasaki, M.; Zhang, H. Event-Triggered Deep Learning Control of Quadrotors for Trajectory Tracking. IEEE Trans. Ind. Electron. 2024, 71, 2726–2736. [Google Scholar] [CrossRef]
- Fossen, T.I. Handbook of Marine Craft Hydrodynamics and Motion Control; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Wang, T.; Wei, Y.; Peng, X.; Huang, L. Trajectory tracking of autonomous underwater vehicle under disturbance based on time-delay adaptive high-order sliding mode control. Ocean. Eng. 2023, 288, 116081. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yu, X.; Yuan, C. Unmanned surface vehicles: An overview of developments and challenges. Annu. Rev. Control 2016, 41, 71–93. [Google Scholar] [CrossRef]
- Cheung, W.-S.; Ren, J. Discrete non-linear inequalities and applications to boundary value problems. J. Math. Anal. Appl. 2006, 319, 708–724. [Google Scholar] [CrossRef]
- Gong, P.; Yan, Z.; Zhang, W.; Tang, J. Lyapunov-based model predictive control trajectory tracking for an autonomous underwater vehicle with external disturbances. Ocean. Eng. 2021, 232, 109010. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, C.; Fang, H.; Li, H. Advanced Control in Marine Mechatronic Systems: A Survey. IEEE/ASME Trans. Mechatron. 2017, 22, 1121–1131. [Google Scholar] [CrossRef]
- Fu, M.; Gao, S.; Wang, C.; Li, M. Design of driver assistance system for air cushion vehicle with uncertainty based on model knowledge neural network. Ocean. Eng. 2019, 172, 296–307. [Google Scholar] [CrossRef]
- Shen, C.; Shi, Y.; Buckham, B. Trajectory Tracking Control of an Autonomous Underwater Vehicle Using Lyapunov-Based Model Predictive Control. IEEE Trans. Ind. Electron. 2018, 65, 5796–5805. [Google Scholar] [CrossRef]
- Sun, M.; Zhuang, G.; Xia, J.; Wang, Y.; Chen, G. Stochastic admissibility and H∞ output feedback control for singular Markov jump systems under dynamic measurement output event-triggered strategy. Chaos Solitons Fractals 2022, 164, 112635. [Google Scholar] [CrossRef]















| MSE | DMPC | EANMPC | Improvement |
|---|---|---|---|
| x [m2] | 0.3986 | 0.2766 | 30.6% |
| y [m2] | 0.0339 | 0.0303 | 10.6% |
| [rad2] | 0.0049 | 0.0004 | 91.8% |
| MSE | DMPC | EANMPC | Improvement |
|---|---|---|---|
| x [m2] | 0.0034 | 0.0027 | 20.6% |
| y [m2] | 0.0342 | 0.0279 | 18.4% |
| [rad2] | 0.2438 | 0.2212 | 9.26% |
| Computational Date | DMPC | ETMPC | EANMPC |
|---|---|---|---|
| Cost time (s) | 146 | 87 | 63 |
| Trigger times | 967 | 831 | 523 |
| Computational Date | DMPC | ETMPC | EANMPC |
|---|---|---|---|
| Cost time (s) | 152 | 92 | 56 |
| Trigger times | 1012 | 767 | 431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, H.; Wang, Y.; Sun, H. Trajectory Tracking of Unmanned Hovercraft: Event-Triggered NMPC Under Actuation Limits and Disturbances. Actuators 2026, 15, 6. https://doi.org/10.3390/act15010006
Zhang H, Wang Y, Sun H. Trajectory Tracking of Unmanned Hovercraft: Event-Triggered NMPC Under Actuation Limits and Disturbances. Actuators. 2026; 15(1):6. https://doi.org/10.3390/act15010006
Chicago/Turabian StyleZhang, Haolun, Yuanhui Wang, and Han Sun. 2026. "Trajectory Tracking of Unmanned Hovercraft: Event-Triggered NMPC Under Actuation Limits and Disturbances" Actuators 15, no. 1: 6. https://doi.org/10.3390/act15010006
APA StyleZhang, H., Wang, Y., & Sun, H. (2026). Trajectory Tracking of Unmanned Hovercraft: Event-Triggered NMPC Under Actuation Limits and Disturbances. Actuators, 15(1), 6. https://doi.org/10.3390/act15010006

