Weight-Incorporating A* Algorithm with Multi-Factor Cost Function for Enhanced Mobile Robot Path Planning
Abstract
1. Introduction
2. Conventional A* Algorithm
3. Weight-Incorporating A* Algorithm
3.1. Obstacle Collision Weight Factor
3.2. Path Distance Weight Factor
3.3. Driving Suitability Weight Factor
4. Performance Evaluation of Weight-Incorporating A* Algorithm
4.1. Performance Evaluation Methods
4.1.1. Experiments Using Simple 2D Environment
4.1.2. Experiments Using 3D Virtual Environment
4.2. Performance Evaluation Results
4.2.1. Experimental Results Using Simple 2D Environment
4.2.2. Experimental Results Using 3D Virtual Environment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OC | Obstacle Collision |
PD | Path Distance |
DS | Driving Stability |
WIA* | Weight-Incorporating A* |
References
- Yan, X.; Zhou, X.; Luo, Q. A Safe Heuristic Path-Planning Method Based on a Search Strategy. Sensors 2024, 24, 101. [Google Scholar] [CrossRef]
- Hao, K.; Yang, Y.; Li, Z.; Liu, Y.; Zhao, X. CERRT: A Mobile Robot Path Planning Algorithm Based on RRT in Complex Environments. Appl. Sci. 2023, 13, 9666. [Google Scholar] [CrossRef]
- Azizi, M.R.; Rastegarpanah, A.; Stolkin, R. Motion Planning and Control of an Omnidirectional Mobile Robot in Dynamic Environments. Robotics 2021, 10, 48. [Google Scholar] [CrossRef]
- Liao, T.; Chen, F.; Wu, Y.; Zeng, H.; Ouyang, S.; Guan, J. Research on Path Planning with the Integration of Adaptive A-Star Algorithm and Improved Dynamic Window Approach. Electronics 2024, 13, 455. [Google Scholar] [CrossRef]
- Braun, J.; Brito, T.; Lima, J.; Costa, P.; Costa, P.; Nakano, A. A Comparison of A* and RRT* Algorithms with Dynamic and Real Time Constraint Scenarios for Mobile Robots. In SIMULTECH 2019; Scitepress: Setúbal, Portugal, 2019; pp. 398–405. [Google Scholar]
- Yun, S.-W.; Kim, D.-H.; Kim, S.-W.; Kim, D.-J.; Kim, H.-J. Global Path Planning for Autonomous Ship Navigation Considering the Practical Characteristics of the Port of Ulsan. J. Mar. Sci. Eng. 2024, 12, 160. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Wu, H.; Wei, Y. Mobile Robot Path Planning Based on Kinematically Constrained A-Star Algorithm and DWA Fusion Algorithm. Mathematics 2023, 11, 4552. [Google Scholar] [CrossRef]
- Sun, Y.; Fang, M.; Su, Y. AGV Path Planning Based on Improved Dijkstra Algorithm. J. Phys. Conf. Ser. 2021, 1746, 12052. [Google Scholar] [CrossRef]
- Li, X.; Tong, Y. Path Planning of a Mobile Robot Based on the Improved RRT Algorithm. Appl. Sci. 2024, 14, 25. [Google Scholar] [CrossRef]
- Wang, X.; Ma, X.; Li, Z. Research on SLAM and Path Planning Method of Inspection Robot in Complex Scenarios. Electronics 2023, 12, 2178. [Google Scholar] [CrossRef]
- Ha, I.-k. Improved A-Star Search Algorithm for Probabilistic Air Pollution Detection Using UAVs. Sensors 2024, 24, 1141. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, Y.; Zhu, W. Global Path Planning of Unmanned Surface Vehicle Based on Improved A-Star Algorithm. Sensors 2023, 23, 6647. [Google Scholar] [CrossRef]
- Javaid, A. Understanding Dijkstra’s Algorithm. Telecommun. Netw. Models Ejournal 2013. [Google Scholar] [CrossRef]
- Singal, P.; Dijkstra, R.C. Shortest Path Algorithm Using Global Position System. Int. J. Comput. Appl. 2014, 101, 12–18. [Google Scholar] [CrossRef]
- Bing, H.; Lai, L. Improvement and Application of Dijkstra Algorithms. Acad. J. Comput. Inf. Sci. 2022, 5, 97–102. [Google Scholar] [CrossRef]
- Wang, H.; Qi, X.; Lou, S.; Jing, J.; He, H.; Liu, W. An Efficient and Robust Improved A* Algorithm for Path Planning. Symmetry 2021, 13, 2213. [Google Scholar] [CrossRef]
- Liu, S.; Ma, Y. Research for Bidirectional Path Planning Based on An Improved A* Algorithm. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 1036–1039. [Google Scholar]
- Wang, X.; Liu, Z.; Liu, J. Mobile Robot Path Planning Based on an Improved A* Algorithm. In Proceedings of the Conference on Computer Graphics, Artificial Intelligence, and Data Processing, Guangzhou, China, 23 May 2023. [Google Scholar]
- Li, Y.; Jin, R.; Xu, X.; Qian, Y.; Wang, H.; Xu, S.-S.; Wang, Z. A Mobile Robot Path Planning Algorithm Based on Improved A* Algorithm and Dynamic Window Approach. IEEE Access 2022, 10, 57736–57747. [Google Scholar] [CrossRef]
- Li, Z.; Shi, R.; Zhao, Z. A New Path Planning Method Based on Sparse A* Algorithm with Map Segmentation. Trans. Inst. Meas. Control 2021, 44, 916–925. [Google Scholar]
- Sun, Z.; Hsu, D.; Jiang, T.; Kurniawati, H.; Reif, J.H. Reif Narrow Passage Sampling for Probabilistic Roadmap Planning. IEEE Trans. Robot. 2005, 21, 1105–1115. [Google Scholar]
- LaValle, S. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Annu. Res. Rep. 1998, 18, 1001–1024. [Google Scholar]
- Zhang, H.; Wang, Y.; Zheng, J.; Yu, J. Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments. IEEE Access 2018, 6, 53296–53306. [Google Scholar] [CrossRef]
- Schwenzer, M.; Ay, M.; Bergs, T.; Abel, D. Review on Model Predictive Control: An Engineering Perspective. Int. J. Adv. Manuf. Technol. 2021, 117, 1327–1349. [Google Scholar] [CrossRef]
- Li, Y.; Tian, B.; Yang, Y.; Li, C. Path Planning of Robot Based on Artificial Potential Field Method. In Proceedings of the 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 4–6 March 2022; Volume 6, pp. 91–94. [Google Scholar]
- Batkovic, I.; Gupta, A.; Zanon, M.; Falcone, P. Experimental Validation of Safe MPC for Autonomous Driving in Uncertain Environments. IEEE Trans. Control Syst. Technol. 2023, 31, 2027–2042. [Google Scholar] [CrossRef]
- Xia, X.; Li, T.; Sang, S.; Cheng, Y.; Ma, H.; Zhang, Q.; Yang, K. Path Planning for Obstacle Avoidance of Robot Arm Based on Improved Potential Field Method. Sensors 2023, 23, 3754. [Google Scholar] [CrossRef]
- Jain, M.; Saihjpal, V.; Singh, N.; Singh, S.B. An Overview of Variants and Advancements of PSO Algorithm. Appl. Sci. 2022, 12, 8392. [Google Scholar] [CrossRef]
- Wu, L.; Huang, X.; Cui, J.; Liu, C.; Xiao, W. Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot. Expert Syst. Appl. 2023, 215, 119410. [Google Scholar] [CrossRef]
- Varma, A.P.T. Self-Driving Car Simulation Using Genetic Algorithm. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 514–519. [Google Scholar] [CrossRef]
- Freitas, D.; Lopes, L.G.; Dias, F.M. Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy 2020, 22, 362. [Google Scholar] [CrossRef]
- Doerner, K.F.; Merkle, D.; Stützle, T. Special Issue on Ant Colony Optimization. Swarm Intell. 2009, 3, 1–2. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Peng, L. Multi-Robot Path Planning Based on a Deep Reinforcement Learning DQN Algorithm. CAAI Trans. Intell. Technol. 2020, 5, 177–183. [Google Scholar] [CrossRef]
- Li, K.; Hu, Q.; Liu, J. Path Planning of Mobile Robot Based on Improved Multiobjective Genetic Algorithm. Wirel. Commun. Mob. Comput. 2021, 2021, 8836615:1–8836615:12. [Google Scholar] [CrossRef]
- Hao, K.; Zhao, J.; Yu, K.; Li, C.; Wang, C. Path Planning of Mobile Robots Based on a Multi-Population Migration Genetic Algorithm. Sensors 2020, 20, 5873. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, J.-P.; Engelbrecht, A.P. Set-Based Particle Swarm Optimisation: A Review. Mathematics 2023, 11, 2980. [Google Scholar] [CrossRef]
- Chu, H.-S.; Yi, J.; Yang, F. Chaos Particle Swarm Optimization Enhancement Algorithm for UAV Safe Path Planning. Appl. Sci. 2022, 12, 8977. [Google Scholar] [CrossRef]
- Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-Objective Multi-Robot Path Planning in Continuous Environment Using an Enhanced Genetic Algorithm. Expert Syst. Appl. 2019, 115, 106–120. [Google Scholar] [CrossRef]
- Abhishek, B.; Ranjit, S.; Shankar, T.; Eappen, G.; Sivasankar, P.; Rajesh, A. Hybrid PSO-HSA and PSO-GA Algorithm for 3D Path Planning in Autonomous UAVs. SN Appl. Sci. 2020, 2, 1–16. [Google Scholar] [CrossRef]
- Li, M.; Li, B.; Qi, Z.; Li, J.; Wu, J. Optimized APF-ACO Algorithm for Ship Collision Avoidance and Path Planning. J. Mar. Sci. Eng. 2023, 11, 1177. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [Google Scholar] [CrossRef]
- Xu, B. Precise path planning and trajectory tracking based on improved A-star algorithm. Meas. Control 2024, 57, 1025–1037. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, C.; Wang, F.; Li, T.; Zhang, X. Multi-Factor of Path Planning Based on an Ant Colony Optimization Algorithm. Ann. GIS 2020, 26, 101–112. [Google Scholar] [CrossRef]
- Thammachantuek, I.; Ketcham, M. Path Planning for Autonomous Mobile Robots Using Multi-Objective Evolutionary Particle Swarm Optimization. PLoS ONE 2022, 17, e0271924. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z. Efficient path planning method based on A-STAR. J. Phys. Conf. Ser. 2023, 2649, 012026. [Google Scholar] [CrossRef]
- XiangRong, T.; Yukun, Z.; XinXin, J. Improved A* algorithm for robot path planning in static environment. J. Phys. Conf. Ser. 2021, 1792, 012067. [Google Scholar] [CrossRef]
- Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles 2021, 3, 448–468. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Hu, Y.; Fu, S.; Liao, C.; Yu, W. RJA-Star Algorithm for UAV Path Planning Based on Improved R5DOS Model. Appl. Sci. 2023, 13, 1105. [Google Scholar] [CrossRef]
- Liu, L.; Liang, J.; Guo, K.; Ke, C.; He, D.; Chen, J. Dynamic Path Planning of Mobile Robot Based on Improved Sparrow Search Algorithm. Biomimetics 2023, 8, 182. [Google Scholar] [CrossRef] [PubMed]
- Auh, E.; Kim, J.; Joo, Y.; Park, J.; Lee, G.; Oh, I.; Pico, N.; Moon, H. Unloading sequence planning for autonomous robotic container-unloading system using A-star search algorithm. Eng. Sci. Technol. Int. J. 2024, 50, 101610. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.S.; Zahran, S.; Elnaghi, B.E.; Nafea, S. Enhanced Hybrid Path Planning Algorithm Based on Apf and A-Star. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 867–873. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, S.; Bong, J.H.; Jeong, S. Weight-Incorporating A* Algorithm with Multi-Factor Cost Function for Enhanced Mobile Robot Path Planning. Actuators 2025, 14, 369. https://doi.org/10.3390/act14080369
Baik S, Bong JH, Jeong S. Weight-Incorporating A* Algorithm with Multi-Factor Cost Function for Enhanced Mobile Robot Path Planning. Actuators. 2025; 14(8):369. https://doi.org/10.3390/act14080369
Chicago/Turabian StyleBaik, Seungwoo, Jae Hwan Bong, and Seongkyun Jeong. 2025. "Weight-Incorporating A* Algorithm with Multi-Factor Cost Function for Enhanced Mobile Robot Path Planning" Actuators 14, no. 8: 369. https://doi.org/10.3390/act14080369
APA StyleBaik, S., Bong, J. H., & Jeong, S. (2025). Weight-Incorporating A* Algorithm with Multi-Factor Cost Function for Enhanced Mobile Robot Path Planning. Actuators, 14(8), 369. https://doi.org/10.3390/act14080369