An Adaptive BiGRU-ASSA-iTransformer Method for Remaining Useful Life Prediction of Bearing in Aerospace Manufacturing
Abstract
:1. Introduction
2. Related Works
2.1. Attention Mechanism in Bearing Remaining Life Prediction
2.2. Handcrafted Features in Bearing Remaining Life Prediction
3. Methods
3.1. BiGRU-ASSA Module
3.1.1. Bidirectional Gated Recurrent Unit
3.1.2. Adaptive Sparse Self-Attention
3.2. iTransformer Module
3.2.1. Handcrafted Features
3.2.2. iTransformer
- Feature embedding (Embedding)
- 2.
- Inter-feature interaction modeling (Self-Attention)
- 3.
- Time-dependent modeling (FFN)
3.3. Experimental Setup
3.3.1. Bearing Datasets
- PRONOSTIA Dataset
- 2.
- XJTU-SY Dataset
3.3.2. Data Preprocessing
- (1)
- Data Normalization
- (2)
- Sliding Window Division
- (3)
- RUL Label Calculation
3.3.3. Handcrafted Features Calculation
3.3.4. Evaluation Metrics
- Root mean square error (RMSE):
- 2.
- Mean absolute error (MAE):
3.3.5. Model Parameters
4. Results
4.1. Experimental Results
4.1.1. PRONOSTIA Bearing Dataset
4.1.2. XJTU-SY Bearing Dataset
5. Discussion
5.1. Ablation Experiment
5.2. Impact of ASSA on Feature Weighting in RUL Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RUL | Remaining useful life |
BiGRU | Bidirectional gated recurrent unit |
ASSA | Adaptive sparse self-attention |
BAIT-RUL | BiGRU-ASSA-iTransformer for remaining useful life prediction |
GRU | Gated recurrent unit |
CNN | Convolutional neural network |
LSTM | Long short-term memory network |
MLP | Multi-layer perceptron |
RMSE | Root mean square error |
MAE | Mean absolute error |
References
- Yang, G.; Tan, Q.; Tian, Z.; Jiang, X.; Chen, K.; Lu, Y.; Liu, W.; Yuan, P. Integrated Optimization of Process Planning and Scheduling for Aerospace Complex Component Based on Honey-Bee Mating Algorithm. Appl. Sci. 2023, 13, 5190. [Google Scholar] [CrossRef]
- Adamopoulou, E.; Daskalakis, E. Applications and Technologies of Big Data in the Aerospace Domain. Electronics 2023, 12, 2225. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, J.; Tian, H.; Liu, H.; Zhao, W. Optimization Method of Spindle Speed with the Consideration of Chatter and Forced Vibration for Five-Axis Flank Milling. Int. J. Adv. Manuf. Technol. 2023, 125, 3159–3169. [Google Scholar] [CrossRef]
- Peng, J.; Yin, M.; Cao, L.; Xie, L.-F.; Wang, X.-J.; Yin, G.-F. Study on the Thermally Induced Spindle Angular Errors of a Five-Axis CNC Machine Tool. Adv. Manuf. 2023, 11, 75–92. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Wang, S.; Zhao, Z.; Yang, T.; Su, Z. Prediction of Five-Axis Machining-Induced Residual Stress Based on Cutting Parameter Identification. J. Manuf. Processes 2023, 103, 320–336. [Google Scholar] [CrossRef]
- Mao, W.; Liu, Y.; Ding, L.; Safian, A.; Liang, X. A New Structured Domain Adversarial Neural Network for Transfer Fault Diagnosis of Rolling Bearings under Different Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 3509013. [Google Scholar] [CrossRef]
- Xu, J.; Ma, B.; Fan, Y.; Ding, X. ATPRINPM: A Single-Source Domain Generalization Method for the Remaining Useful Life Prediction of Unknown Bearings. In Proceedings of the 2022 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), Harbin, China, 30 November–2 December 2022; pp. 1–6. [Google Scholar]
- Chen, J.; Huang, R.; Chen, Z.; Mao, W.; Li, W. Transfer Learning Algorithms for Bearing Remaining Useful Life Prediction: A Comprehensive Review from an Industrial Application Perspective. Mech. Syst. Signal Process. 2023, 193, 110239. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, X.; Liu, J.; Yang, Y.; Hei, X.; Shangguan, A. An Improved Nonlinear Health Index CRRMS for the Remaining Useful Life Prediction of Rolling Bearings. Actuators 2025, 14, 88. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, Y.; Yang, A.; Zhang, H.; Zhang, Z. Prediction of Remaining Service Life of Rolling Bearings Based on Convolutional and Bidirectional Long- and Short-Term Memory Neural Networks. Lubricants 2022, 10, 170. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, M.; Zhao, R.; Guretno, F.; Yan, R.; Li, X. Machine Remaining Useful Life Prediction via an Attention-Based Deep Learning Approach. IEEE Trans. Ind. Electron. 2021, 68, 2521–2531. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, D.; Pan, J.; Shi, J.; Yang, J. Adapt or Perish: Adaptive Sparse Transformer with Attentive Feature Refinement for Image Restoration. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16 June 2024; pp. 2952–2963. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, H.; Jin, M.; Jin, Z.; Wang, Q.; Mu, Y.; Hong, Z. RUL Prediction of Rolling Bearings Based on Fruit Fly Optimization Algorithm Optimized CNN-LSTM Neural Network. Lubricants 2025, 13, 81. [Google Scholar] [CrossRef]
- Shutin, D.; Bondarenko, M.; Polyakov, R.; Stebakov, I.; Savin, L. Method for On-Line Remaining Useful Life and Wear Prediction for Adjustable Journal Bearings Utilizing a Combination of Physics-Based and Data-Driven Models: A Numerical Investigation. Lubricants 2023, 11, 33. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, D.; Terpenny, J. Bearing Remaining Useful Life Prediction Using Self-Adaptive Graph Convolutional Networks with Self-Attention Mechanism. Mech. Syst. Signal Process. 2023, 188, 110010. [Google Scholar] [CrossRef]
- Rathore, M.S.; Harsha, S.P. An Attention-Based Stacked BiLSTM Framework for Predicting Remaining Useful Life of Rolling Bearings. Appl. Soft Comput. 2022, 131, 109765. [Google Scholar] [CrossRef]
- Park, Y.-I.; Song, J.W.; Kang, S.-J. Pseudo-Label-Vector-Guided Parallel Attention Network for Remaining Useful Life Prediction. IEEE Trans. Ind. Informat. 2023, 19, 5602–5611. [Google Scholar] [CrossRef]
- Nie, L.; Xu, S.; Zhang, L. Multi-Head Attention Network with Adaptive Feature Selection for RUL Predictions of Gradually Degrading Equipment. Actuators 2023, 12, 158. [Google Scholar] [CrossRef]
- Peng, H.; Jiang, B.; Mao, Z.; Liu, S. Local Enhancing Transformer with Temporal Convolutional Attention Mechanism for Bearings Remaining Useful Life Prediction. IEEE Trans. Instrum. Meas. 2023, 72, 3522312. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, X.; Wang, F.; Fan, P.; Mbeka, E. The Effect of the Head Number for Multi-Head Self-Attention in Remaining Useful Life Prediction of Rolling Bearing and Interpretability. Neurocomputing 2025, 616, 128946. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Chen, X. Information Guided Attention Network for Bearing Remaining Useful Life Prediction Adaptive to Working Conditions and Fault Modes. Eng. Appl. Artif. Intell. 2025, 147, 110197. [Google Scholar] [CrossRef]
- Gao, P.; Wang, J.; Shi, Z.; Ming, W.; Chen, M. Long-Term Temporal Attention Neural Network with Adaptive Stage Division for Remaining Useful Life Prediction of Rolling Bearings. Reliab. Eng. Syst. Saf. 2024, 251, 110218. [Google Scholar] [CrossRef]
- Xiang, S.; Qin, Y.; Zhu, C.; Wang, Y.; Chen, H. LSTM Networks Based on Attention Ordered Neurons for Gear Remaining Life Prediction. ISA Trans. 2020, 106, 343–354. [Google Scholar] [CrossRef]
- Zhou, K.; Tang, J. A Wavelet Neural Network Informed by Time-Domain Signal Preprocessing for Bearing Remaining Useful Life Prediction. Appl. Math. Modell. 2023, 122, 220–241. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, F.; Zhao, J.; Duan, Y.; Guo, X. Remaining Useful Life Prediction of Rolling Bearing Based on Multi-Domain Mixed Features and Temporal Convolutional Networks. Appl. Sci. 2024, 14, 2354. [Google Scholar] [CrossRef]
- Niazi, S.G.; Huang, T.; Zhou, H.; Bai, S.; Huang, H.-Z. Multi-Scale Time Series Analysis Using TT-ConvLSTM Technique for Bearing Remaining Useful Life Prediction. Mech. Syst. Signal Process. 2024, 206, 110888. [Google Scholar] [CrossRef]
- Yang, C.; Ma, J.; Wang, X.; Li, X.; Li, Z.; Luo, T. A Novel Based-Performance Degradation Indicator RUL Prediction Model and Its Application in Rolling Bearing. ISA Trans. 2022, 121, 349–364. [Google Scholar] [CrossRef]
- Cui, L.; Xiao, Y.; Liu, D.; Han, H. Digital Twin-Driven Graph Domain Adaptation Neural Network for Remaining Useful Life Prediction of Rolling Bearing. Reliab. Eng. Syst. Saf. 2024, 245, 109991. [Google Scholar] [CrossRef]
- Xu, Z.; Bashir, M.; Liu, Q.; Miao, Z.; Wang, X.; Wang, J.; Ekere, N. A Novel Health Indicator for Intelligent Prediction of Rolling Bearing Remaining Useful Life Based on Unsupervised Learning Model. Comput. Ind. Eng. 2023, 176, 108999. [Google Scholar] [CrossRef]
- Wen, L.; Su, S.; Li, X.; Ding, W.; Feng, K. GRU-AE-Wiener: A Generative Adversarial Network Assisted Hybrid Gated Recurrent Unit with Wiener Model for Bearing Remaining Useful Life Estimation. Mech. Syst. Signal Process. 2024, 220, 111663. [Google Scholar] [CrossRef]
- Wang, X.; Xie, G.; Zhang, Y.; Liu, H.; Zhou, L.; Liu, W.; Gao, Y. The Application of a BiGRU Model with Transformer-Based Error Correction in Deformation Prediction for Bridge SHM. Buildings 2025, 15, 542. [Google Scholar] [CrossRef]
- Zhang, B.; Yin, Y.; Li, B.; He, S.; Song, J. A Hybrid Algorithm for Predicting the Remaining Service Life of Hybrid Bearings Based on Bidirectional Feature Extraction. Measurement 2025, 242, 116152. [Google Scholar] [CrossRef]
- A Deep Transfer Network Based on Dual-Task Learning for Predicting the Remaining Useful Life of Rolling Bearings. Available online: https://colab.ws/articles/10.1088%2F1361-6501%2Fadafd2 (accessed on 20 March 2025).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An Experimental Platform for Bearings Accelerated Degradation Tests. In Proceedings of the Conference on Prognostics and Health Management, IEEE Catalog Number: CPF12PHM-CDR. Denver, CO, USA, 18–21 June 2012; pp. 1–8. [Google Scholar]
- Lei, Y.; Han, T.; Wang, B.; Li, N.; Yan, T.; Yang, J. XJTU-SY Rolling Element Bearing Accelerated Life Test Datasets: A Tutorial. Researchgate 2019, 16, 001. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Li, N. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings. IEEE Trans. Rel. 2020, 69, 401–412. [Google Scholar] [CrossRef]
- Meng, Z.; Ma, S.; Cao, W.; Li, J.; Cao, L.; Fan, F.; Wang, X. A Remaining Useful Life Prediction Method of Rolling Bearings by RSA-BAFT Combined with Copula Entropy Feature Selection. Expert Syst. Appl. 2025, 275, 127100. [Google Scholar] [CrossRef]
- Guo, W.; Li, F.; Zhang, P.; Luo, L. A Stage-Related Online Incremental Transfer Learning-Based Remaining Useful Life Prediction Method of Bearings. Appl. Soft Comput. 2025, 169, 112491. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Z. Deep-Convolution-Based LSTM Network for Remaining Useful Life Prediction. IEEE Trans. Ind. Informat. 2021, 17, 1658–1667. [Google Scholar] [CrossRef]
- Kim, S.; Seo, Y.-H.; Park, J. Transformer-Based Novel Framework for Remaining Useful Life Prediction of Lubricant in Operational Rolling Bearings. Reliab. Eng. Syst. Saf. 2024, 251, 110377. [Google Scholar] [CrossRef]
- Mu, H.; Zhai, X.; Yin, D.; Qiao, F. A Method of Remaining Useful Life Prediction of Multi-Source Signals Aero-Engine Based on RF-Transformer-LSTM. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 2502–2507. [Google Scholar]
- Jia, J.; Yan Yang, Y.Y.; Junyu Guo, J.G.; Le Dai, L.D. A Hybrid CNN-BiLSTM and Wiener Process-Based Prediction Approach of Remaining Useful Life for Rolling Bearings. Comput. Res. Prog. Appl. Sci. Eng. 2022, 8, 2817. [Google Scholar] [CrossRef]
- An, X.; Zhang, C.; Liu, C.; Liu, G.; Hao, J. Residual Life Prediction of Rolling Bearings Based on Transformer-BiGRU-Attention Model with Improved Sparrow Optimization Algorithm. In Proceedings of the TEPEN International Workshop on Fault Diagnostic and Prognostic, Qingdao, China, 8–11 May 2024; Springer Nature: Cham, Switzerland, 2024; pp. 23–33. [Google Scholar]
Datasets | Operating Conditions | ||
---|---|---|---|
Conditions 1 | Conditions 2 | Conditions 3 | |
Learning set | Bearing1_1 | Bearing2_1 | Bearing3_1 |
Bearing1_2 | Bearing2_2 | Bearing3_2 | |
Test set | Bearing1_3 | Bearing2_3 | Bearing3_3 |
Bearing1_4 | Bearing2_4 | ||
Bearing1_5 | Bearing2_5 | ||
Bearing1_6 | Bearing2_6 | ||
Bearing1_7 | Bearing2_7 |
Datasets | Operating Conditions | ||
---|---|---|---|
Conditions 1 | Conditions 2 | Conditions 3 | |
Learning set | Bearing1_1 Bearing1_2 | Bearing2_1 | Bearing3_1 |
Bearing2_2 | Bearing3_2 | ||
Bearing2_3 | Bearing3_3 | ||
Test set | Bearing1_3 | Bearing2_4 Bearing2_5 | Bearing3_4 Bearing3_5 |
Bearing1_4 | |||
Bearing1_5 |
Condition | Dataset | Sample Size | Work Time | Fault Type |
1 | Bearing1_1 | 123 | 2 h 3 min | Outer race fault |
Bearing1_2 | 161 | 2 h 41 min | Outer race fault | |
Bearing1_3 | 158 | 2 h 38 min | Outer race fault | |
Bearing1_4 | 122 | 2 h 2 min | Cage fault | |
Bearing1_5 | 52 | 52 min | Inner race fault | |
2 | Bearing2_1 | 491 | 8 h 11 min | Inner race fault |
Bearing2_2 | 161 | 2 h 41 min | Outer race fault | |
Bearing2_3 | 533 | 8 h 53 min | Cage fault | |
Bearing2_4 | 42 | 42 min | Outer race fault | |
Bearing2_5 | 339 | 5 h 39 min | Outer race fault | |
3 | Bearing3_1 | 2538 | 42 h 18 min | Outer race fault |
Bearing3_2 | 2496 | 41 h 18 min | Compound fault | |
Bearing3_3 | 371 | 6 h 11 min | Inner race fault | |
Bearing3_4 | 1515 | 25 h 15 min | Inner race fault | |
Bearing3_5 | 114 | 1 h 54 min | Outer race fault |
Test Bearing | LSTM | Transformer | Transformer-LSTM | CNN-BiLSTM | BiGRU-Transformer-Attention | BAIT-RUL | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
Bearing1_3 | 0.110 | 0.102 | 0.086 | 0.069 | 0.054 | 0.050 | 0.081 | 0.063 | 0.052 | 0.035 | 0.038 | 0.033 |
Bearing1_4 | 0.116 | 0.104 | 0.090 | 0.071 | 0.063 | 0.045 | 0.095 | 0.078 | 0.034 | 0.028 | 0.046 | 0.036 |
Bearing1_5 | 0.123 | 0.112 | 0.091 | 0.082 | 0.080 | 0.067 | 0.058 | 0.042 | 0.068 | 0.056 | 0.024 | 0.016 |
Bearing1_6 | 0.118 | 0.101 | 0.103 | 0.091 | 0.101 | 0.085 | 0.073 | 0.054 | 0.074 | 0.057 | 0.057 | 0.044 |
Bearing1_7 | 0.132 | 0.121 | 0.106 | 0.090 | 0.059 | 0.048 | 0.104 | 0.091 | 0.063 | 0.054 | 0.048 | 0.042 |
Bearing2_3 | 0.138 | 0.120 | 0.123 | 0.100 | 0.099 | 0.088 | 0.124 | 0.097 | 0.072 | 0.054 | 0.061 | 0.039 |
Bearing2_4 | 0.171 | 0.158 | 0.135 | 0.110 | 0.125 | 0.099 | 0.121 | 0.097 | 0.088 | 0.076 | 0.054 | 0.040 |
Bearing2_5 | 0.165 | 0.152 | 0.117 | 0.104 | 0.087 | 0.079 | 0.146 | 0.118 | 0.126 | 0.091 | 0.082 | 0.062 |
Bearing2_6 | 0.123 | 0.112 | 0.098 | 0.082 | 0.090 | 0.075 | 0.120 | 0.090 | 0.078 | 0.061 | 0.054 | 0.038 |
Bearing2_7 | 0.131 | 0.109 | 0.105 | 0.090 | 0.097 | 0.086 | 0.123 | 0.084 | 0.059 | 0.050 | 0.050 | 0.040 |
Bearing3_3 | 0.089 | 0.076 | 0.056 | 0.044 | 0.041 | 0.035 | 0.055 | 0.042 | 0.182 | 0.171 | 0.029 | 0.021 |
Test Bearing | LSTM | Transformer | Transformer-LSTM | CNN-BiLSTM | BiGRU-Transformer-Attention | BAIT-RUL | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
Bearing1_3 | 0.064 | 0.058 | 0.042 | 0.033 | 0.030 | 0.024 | 0.035 | 0.030 | 0.026 | 0.021 | 0.008 | 0.007 |
Bearing1_4 | 0.129 | 0.108 | 0.102 | 0.086 | 0.091 | 0.072 | 0.078 | 0.063 | 0.093 | 0.074 | 0.034 | 0.026 |
Bearing1_5 | 0.087 | 0.076 | 0.068 | 0.055 | 0.052 | 0.044 | 0.072 | 0.067 | 0.062 | 0.059 | 0.046 | 0.042 |
Bearing2_4 | 0.066 | 0.053 | 0.051 | 0.046 | 0.024 | 0.018 | 0.056 | 0.052 | 0.052 | 0.047 | 0.041 | 0.035 |
Bearing2_5 | 0.120 | 0.114 | 0.112 | 0.104 | 0.103 | 0.078 | 0.176 | 0.149 | 0.227 | 0.192 | 0.068 | 0.061 |
Bearing3_4 | 0.092 | 0.079 | 0.078 | 0.061 | 0.061 | 0.049 | 0.045 | 0.037 | 0.034 | 0.029 | 0.023 | 0.021 |
Bearing3_5 | 0.146 | 0.125 | 0.131 | 0.098 | 0.099 | 0.086 | 0.079 | 0.068 | 0.127 | 0.098 | 0.064 | 0.053 |
Test Bearing | BiGRU | BiGRU + iTransformer | BiGRU + ASSA | GRU + ASSA + iTransformer | BAIT-RUL | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | ||
PRONOSTIA | Bearing1_3 | 0.098 | 0.090 | 0.067 | 0.058 | 0.048 | 0.034 | 0.076 | 0.061 | 0.038 | 0.033 |
Bearing2_4 | 0.119 | 0.090 | 0.066 | 0.058 | 0.069 | 0.054 | 0.071 | 0.048 | 0.054 | 0.040 | |
XJTU-SY | Bearing1_3 | 0.068 | 0.055 | 0.014 | 0.012 | 0.024 | 0.020 | 0.018 | 0.015 | 0.008 | 0.007 |
Bearing2_5 | 0.199 | 0.168 | 0.071 | 0.063 | 0.150 | 0.130 | 0.187 | 0.156 | 0.068 | 0.061 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, Y.; Qiu, Q.; Chu, Y.; Zhang, J. An Adaptive BiGRU-ASSA-iTransformer Method for Remaining Useful Life Prediction of Bearing in Aerospace Manufacturing. Actuators 2025, 14, 238. https://doi.org/10.3390/act14050238
Lyu Y, Qiu Q, Chu Y, Zhang J. An Adaptive BiGRU-ASSA-iTransformer Method for Remaining Useful Life Prediction of Bearing in Aerospace Manufacturing. Actuators. 2025; 14(5):238. https://doi.org/10.3390/act14050238
Chicago/Turabian StyleLyu, Youlong, Qingpeng Qiu, Ying Chu, and Jie Zhang. 2025. "An Adaptive BiGRU-ASSA-iTransformer Method for Remaining Useful Life Prediction of Bearing in Aerospace Manufacturing" Actuators 14, no. 5: 238. https://doi.org/10.3390/act14050238
APA StyleLyu, Y., Qiu, Q., Chu, Y., & Zhang, J. (2025). An Adaptive BiGRU-ASSA-iTransformer Method for Remaining Useful Life Prediction of Bearing in Aerospace Manufacturing. Actuators, 14(5), 238. https://doi.org/10.3390/act14050238