Nonlinear Backstepping Fault-Tolerant Controllers with Extended State Observers for Aircraft Wing Failures
Abstract
:1. Introduction
2. Design of Expanded State Observer for Aircraft Airflow Angle
2.1. State Observer Design
2.2. Observer Stability Analysis
3. Backstepping-Based Fault-Tolerant Controller Design
4. Simulation Analysis of Fault-Tolerant Control for Wing Surface Failure
4.1. Simulation of Fault-Tolerant Control for Wing Damage
4.2. Simulation of Fault-Tolerant Control for Elevator Failures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Foster, J.; Cunningham, K.; Fremaux, C.; Shah, G.; Stewart, E.; Rivers, R.; Wilborn, J.; Gato, W. Dynamics modeling and simulation of large transport airplanes in upset conditions. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, 15–18 August 2005; p. 5933. [Google Scholar]
- Rajagopal, K.; Balakrishnan, S.; Nguyen, N.; Krishnakumar, K. Robust adaptive control of a structurally damaged aircraft. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Toronto, ON, Canada, 2–5 August 2010. [Google Scholar]
- Shah, G. Aerodynamic effects and modeling of damage to transport aircraft. In Proceedings of the AIAA atmospheric flight mechanics conference and exhibit, Honolulu, HI, USA, 18–21 August 2008. [Google Scholar]
- Yang, H.; Jiang, B.; Staroswiecki, M. Supervisory fault tolerant control for a class of uncertain nonlinear systems. Automatica 2009, 45, 2319–2324. [Google Scholar] [CrossRef]
- Lyu, Y.; Cao, Y.; Zhang, W. Dynamic surface control design of post-stall maneuver under unsteady aerodynamics. Aerosp. Sci. Technol. 2018, 80, 269–280. [Google Scholar] [CrossRef]
- Guerreiro, N.M.; Moutinho, A. Robust Incremental Backstepping Controller for the Attitude and Airspeed Tracking of a Commercial Airplane. In Proceedings of the 2019 IEEE 10th International Conference on Mechanical and Aerospace Engineering, Brussels, Belgium, 22–25 July 2019. [Google Scholar]
- Cordeiro, R.A.; Azinheira, J.R.; Moutinho, A. Robustness of Incremental Backstepping Flight Controllers: The Boeing 747 Case Study. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3492–3505. [Google Scholar] [CrossRef]
- Safwat, E.; Zhang, W.; Kassem, M.; Mohsen, A. Robust Nonlinear Flight Controller for Small Unmanned Aircraft Vehicle based on Incremental BackStepping. In Proceedings of the AIAA SciTech Forum, Orlando, FL, USA, 6–10 January 2020. [Google Scholar]
- Singh, P.; Salahudden, S.; Karnam, A.; Singh, A. Flight Path Angle Control using Backstepping Dynamic Surface for Non-Strict Feedback System. In Proceedings of the AIAA Aviation Forum and ASCEND co-located Conference Proceedings, Las Vegas, NA, USA, 29 July–2 August 2024. [Google Scholar]
- Wang, X.; Van Kampen, E.J. Incremental Backstepping Sliding Mode Fault-Tolerant Flight Control. In Proceedings of the AIAA SciTech Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Fei, A.L.; Li, N.; Li, S.Y. Active disturbance rejection backstepping control for UAVs. Control Theory Appl. 2016, 33, 1296–1302. [Google Scholar]
- Liu, Y. Research on Fixed-Wing UAV Control Method Based on Backstepping Adaptive; School of Automation, Harbin Engineering University: Harbin, China, 2015. [Google Scholar]
- Li, J.; Wang, N.; Hua, Y.; Song, X. Study on Disturbance Observer-Based Backstepping Control for Quadrotor. Comput. Simul. 2020, 37, 28–34. [Google Scholar]
- Zhang, Q.; Wang, C.; Xu, D. Robust adaptive backstepping control for a class of non-affine nonlinear system with full states constraints and input saturation. Control Decis. 2020, 35, 769–780. [Google Scholar]
- Zhuang, H. Research on Aircraft Attitude Control Method for Strong Disturbance and Maximum Allowable Damage; School of Artificial Intelligence, Nankai University: Tianjin, China, 2021. [Google Scholar]
- Zhang, Q.; Xu, H.; Xu, D.; Wang, C. Finite-time convergence backstepping control for a class of uncertain affine nonlinear systems based on disturbance observer. Control Theory Technol. 2020, 37, 747–757. [Google Scholar]
- Xu, H.; Yu, D.; Sui, S.; Zhao, Y.-P.; Chen, C.P.; Wang, Z. Nonsingular practical fixed-time adaptive output feedback control of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 7222–7234. [Google Scholar] [CrossRef] [PubMed]
- Al-Dujaili, A.Q.; Humaidi, A.J.; Pereira, D.A.; Ibraheem, I.K. Adaptive backstepping control design for ball and beam system. Int. Rev. Appl. Sci. Eng. 2021, 12, 211–221. [Google Scholar] [CrossRef]
- Hu, J.; Huang, J.; Gao, Z.; Gu, H. Position tracking control of a helicopter in ground effect using nonlinear disturbance observer-based incremental backstepping approach. Aerosp. Sci. Technol. 2018, 81, 167–178. [Google Scholar] [CrossRef]
- Wen, Y.; Zhou, Z.; Zhou, W.; Tang, X. Attitude Control of Quadrotor UAV Based on Extended State Observer and Backstepping Method. Meas. Control Technol. 2020, 39, 141–146. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Z.; Sun, M. Longitudinal Control of Nonlinear Supercavitating Vehicle Based on Extended State Observer and Backstepping Method. Control Theory Appl. 2023, 40, 373–380. [Google Scholar]
- Zhao, M.; Wang, Y.; Wang, Y. Adaptive Backstepping Sliding Mode Control of SMA Drive System Based on Extended Observer. Mech. Electr. Eng. Technol. 2025, 1–7. [Google Scholar]
- Li, X.; Wang, C.; Guo, Y.; Li, A. Cooperative control for flight formation of tandem-rotor wheeled UAVs. Acta Aeronaut. Astronaut. Sin. 2022, 45, 1–12. [Google Scholar]
- Li, Y.; Wen, C.Y.; Liu, X.; Zhang, W.; Zheng, Y. Prescribed-Time Fault-Tolerant Flight Control for Aircraft Subject to Structural Damage. IEEE Trans. Aerosp. Electron. Syst. 2024, 61, 1848–1859. [Google Scholar] [CrossRef]
- Ming, R.; Liu, X.; Li, Y.; Zhang, W. Research on a backstepping flight control method improved by STFT in atmospheric disturbance applications. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2024, 238, 1534–1547. [Google Scholar] [CrossRef]
State | Symbol | Unit | Trim Value |
---|---|---|---|
Thrust | 126,588.7576 | ||
Left Elevator Deflection Angle | 0.074002 | ||
Right Elevator Deflection Angle | 0.074002 | ||
Left Aileron Deflection Angle | 0 | ||
Right Aileron Deflection Angle | 0 | ||
Rudder Deflection Angle | 0 | ||
Flap Deflection Angle | 0 | ||
Angle of Attack | 0.94483 | ||
Sideslip Angle | 0 | ||
Flight Altitude | 4000 | ||
Flight Velocity | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Wang, B.; Liu, X. Nonlinear Backstepping Fault-Tolerant Controllers with Extended State Observers for Aircraft Wing Failures. Actuators 2025, 14, 206. https://doi.org/10.3390/act14050206
Geng Y, Wang B, Liu X. Nonlinear Backstepping Fault-Tolerant Controllers with Extended State Observers for Aircraft Wing Failures. Actuators. 2025; 14(5):206. https://doi.org/10.3390/act14050206
Chicago/Turabian StyleGeng, Yansheng, Bo Wang, and Xiaoxiong Liu. 2025. "Nonlinear Backstepping Fault-Tolerant Controllers with Extended State Observers for Aircraft Wing Failures" Actuators 14, no. 5: 206. https://doi.org/10.3390/act14050206
APA StyleGeng, Y., Wang, B., & Liu, X. (2025). Nonlinear Backstepping Fault-Tolerant Controllers with Extended State Observers for Aircraft Wing Failures. Actuators, 14(5), 206. https://doi.org/10.3390/act14050206