L2-Regularization-Based Kinematic Parameter Identification for Industrial Robots in Limited Measurement Space
Abstract
:1. Introduction
- Traditional least-squares methods for robot parameter identification often suffer from overfitting in constrained measurement spaces, resulting in poor positioning accuracy when applied to larger measurement spaces. The proposed -regularization framework addresses these issues by incorporating nominal kinematic parameters as prior knowledge. By introducing a penalty term based on deviations from nominal values, the method enhances the robustness of parameter identification and significantly improves the robot’s positioning accuracy.
- Unlike traditional calibration methods that rely on expensive equipment like laser trackers for large-space measurements, the proposed method utilizes a small-range measurement device, the R-test, in conjunction with the regularization technique for robot calibration. The experimental results show that the calibration accuracy achieved with the R-test is comparable to that obtained with a laser tracker in larger spaces. Additionally, the R-test allows for faster data collection and more convenient deployment, offering a practical and cost-effective solution for calibrating robots in complex industrial environments.
2. Kinematic Error Model
2.1. Forward Kinematic Modeling
2.2. Least-Squares Parameter Identification
3. -Regularization for Kinematic Parameter Identification
Algorithm 1 -regularization method for kinematic identification. |
|
4. Experimental Validation
4.1. Setup and Data Collection
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, M.; Cao, H.; Shi, J.; Guo, Y. An industry-oriented digital twin model for predicting posture-dependent FRFs of industrial robots. Mech. Syst. Signal Process. 2024, 212, 111251. [Google Scholar] [CrossRef]
- Weber, A.M.; Gambao, E.; Brunete, A. A Survey on Autonomous Offline Path Generation for Robot-Assisted Spraying Applications. Actuators 2023, 12, 403. [Google Scholar] [CrossRef]
- Rivera-Pinto, A.; Kildal, J.; Lazkano, E. Toward programming a collaborative robot by interacting with its digital twin in a mixed reality environment. Int. J. Hum. Interact. 2024, 40, 4745–4757. [Google Scholar] [CrossRef]
- Sigron, P.; Aschwanden, I.; Bambach, M. Compensation of Geometric, Backlash, and Thermal Drift Errors Using a Universal Industrial Robot Model. IEEE Trans. Autom. Sci. Eng. 2023, 21, 6615–6627. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Luo, X. An overview of calibration technology of industrial robots. IEEE/CAA J. Autom. Sin. 2021, 8, 23–36. [Google Scholar] [CrossRef]
- Chen, X.; Zhan, Q. The kinematic calibration of an industrial robot with an improved beetle swarm optimization algorithm. IEEE Robot. Autom. Lett. 2022, 7, 4694–4701. [Google Scholar] [CrossRef]
- Hollerbach, J.M.; Wampler, C.W. The Calibration Index and Taxonomy for Robot Kinematic Calibration Methods. Int. J. Robot. Res. 1996, 15, 573–591. [Google Scholar] [CrossRef]
- Alam, M.M.; Ibaraki, S.; Fukuda, K.; Morita, S.; Usuki, H.; Otsuki, N.; Yoshioka, H. Inclusion of bidirectional angular positioning deviations in the kinematic model of a Six-DOF articulated robot for static volumetric error compensation. IEEE/ASME Trans. Mechatron. 2022, 27, 4339–4349. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, W. An Integrated Kinematic Calibration and Dynamic Identification Method with Only Static Measurements for Serial Robot. IEEE/ASME Trans. Mechatron. 2023, 28, 2762–2773. [Google Scholar] [CrossRef]
- Nubiola, A.; Slamani, M.A.; Joubair, A.; Bonev, I.A. Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker. Robotica 2013, 32, 447–466. [Google Scholar] [CrossRef]
- Zhang, D.; Liang, H.; Li, X.; Jia, X.; Wang, F. Kinematic calibration of industrial robot using Bayesian modeling framework. Reliab. Eng. Syst. Saf. 2025, 253, 110543. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.; Luo, X. Efficient industrial robot calibration via a novel unscented Kalman filter-incorporated variable step-size Levenberg–Marquardt algorithm. IEEE Trans. Instrum. Meas. 2023, 72, 2510012. [Google Scholar] [CrossRef]
- Gao, G.; Li, Y.; Liu, F.; Han, S. Kinematic calibration of industrial robots based on distance information using a hybrid identification method. Complexity 2021, 2021, 8874226. [Google Scholar] [CrossRef]
- He, S.; Ma, L.; Yan, C.; Lee, C.H.; Hu, P. Multiple location constraints based industrial robot kinematic parameter calibration and accuracy assessment. Int. J. Adv. Manuf. Technol. 2019, 102, 1037–1050. [Google Scholar] [CrossRef]
- He, J.; Gu, L.; Yang, G.; Feng, Y.; Chen, S.; Fang, Z. A local POE-based self-calibration method using position and distance constraints for collaborative robots. Robot. Comput.-Integr. Manuf. 2024, 86, 102685. [Google Scholar] [CrossRef]
- Joubair, A.; Bonev, I.A. Kinematic calibration of a six-axis serial robot using distance and sphere constraints. Int. J. Adv. Manuf. Technol. 2015, 77, 515–523. [Google Scholar] [CrossRef]
- Joubair, A.; Bonev, I.A. Non-kinematic calibration of a six-axis serial robot using planar constraints. Precis. Eng. 2015, 40, 325–333. [Google Scholar] [CrossRef]
- Besnard, S.; Khalil, W.; Garcia, G. Geometric calibration of robots using multiple plane constraints. In Advances in Robot Kinematics; Springer: Dordrecht, The Netherlands, 2000; pp. 61–70. [Google Scholar]
- Stepanova, K.; Rozlivek, J.; Puciow, F.; Krsek, P.; Pajdla, T.; Hoffmann, M. Automatic self-contained calibration of an industrial dual-arm robot with cameras using self-contact, planar constraints, and self-observation. Robot. Comput.-Integr. Manuf. 2022, 73, 102250. [Google Scholar] [CrossRef]
- Wang, R.; Wu, A.; Chen, X.; Wang, J. A point and distance constraint based 6R robot calibration method through machine vision. Robot. Comput.-Integr. Manuf. 2020, 65, 101959. [Google Scholar] [CrossRef]
- Weikert, S. R-Test, a New Device for Accuracy Measurements on Five Axis Machine Tools. CIRP Ann. 2004, 53, 429–432. [Google Scholar] [CrossRef]
- Ibaraki, S.; Onodera, K.; Jywe, W.Y.; Hsu, C.M.; Chang, Y.W. Experimental comparison of non-contact and tactile R-Test instruments in dynamic measurement. Int. J. Adv. Manuf. Technol. 2023, 128, 5277–5288. [Google Scholar] [CrossRef]
- Guo, Y.; Song, B.; Tang, X.; Zhou, X.; Jiang, Z. A calibration method of non-contact R-test for error measurement of industrial robots. Measurement 2021, 173, 108365. [Google Scholar] [CrossRef]
- Cui, T.; Ibaraki, S. Calibration of rotary axis angular positioning deviations in a six-axis robotic manipulator by using the R-Test. Int. J. Adv. Manuf. Technol. 2024, 134, 3845–3862. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1989. [Google Scholar]
- Zhou, Y.; Chen, C.Y.; Tang, Y.; Wan, H.; Luo, J.; Yang, G.; Zhang, C. A Comprehensive On-Load Calibration Method for Industrial Robots Based on a Unified Kinetostatic Error Model and Gaussian Process Regression. IEEE Trans. Instrum. Meas. 2024, 73, 1003611. [Google Scholar] [CrossRef]
- Liu, F.; Gao, G.; Na, J.; Zhang, F. Kinematic Calibration for Serial Robots Based on a Vector Inner Product Error Model. IEEE Trans. Ind. Electron. 2024, 72, 2832–2841. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Liu, Y.; Chen, L.; Hu, Z.; Wei, P.; Li, Z. A logistic-tent chaotic mapping Levenberg Marquardt algorithm for improving positioning accuracy of grinding robot. Sci. Rep. 2024, 14, 9649. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Li, X. Study on redundancy in robot kinematic parameter identification. IEEE Access 2022, 10, 60572–60584. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S. Numerical Optimization; Springer Series in Operations Research and Financial Engineering; Springer: New York, NY, USA, 2006. [Google Scholar]
- Luo, J.; Chen, S.; Zhang, C.; Chen, C.Y.; Yang, G. Efficient Kinematic Calibration for Articulated Robot Based on Unit Dual Quaternion. IEEE Trans. Ind. Inform. 2023, 19, 11898–11909. [Google Scholar] [CrossRef]
- Sun, T.; Liu, C.; Lian, B.; Wang, P.; Song, Y. Calibration for Precision Kinematic Control of an Articulated Serial Robot. IEEE Trans. Ind. Electron. 2021, 68, 6000–6009. [Google Scholar] [CrossRef]
- Djennadi, S.; Shawagfeh, N.; Inc, M.; Osman, M.S.; Gómez-Aguilar, J.F.; Arqub, O.A. The Tikhonov regularization method for the inverse source problem of time fractional heat equation in the view of ABC-fractional technique. Phys. Scr. 2021, 96, 094006. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Luo, C.; Wu, H. A new improved fractional Tikhonov regularization method for moving force identification. Structures 2024, 60, 105840. [Google Scholar] [CrossRef]
- De, S.; Doostan, A. Neural network training using L1-regularization and bi-fidelity data. J. Comput. Phys. 2022, 458, 111010. [Google Scholar] [CrossRef]
- Yuan, X.; Kong, L.; Zhang, Z.; Huang, G.; Xie, A.; Chen, G. Analysis of the influence of passive joints on kinematic calibration of parallel manipulators based on complete error model. Precis. Eng. 2024, 90, 56–70. [Google Scholar] [CrossRef]
- Ye, H.; Wu, J.; Huang, T. Kinematic calibration of over-constrained robot with geometric error and internal deformation. Mech. Mach. Theory 2023, 185, 105345. [Google Scholar] [CrossRef]
- Gao, G.; Kuang, L.; Liu, F.; Xing, Y.; Shi, Q. Modeling and Parameter Identification of a 3D Measurement System Based on Redundant Laser Range Sensors for Industrial Robots. Sensors 2023, 23, 1913. [Google Scholar] [CrossRef]
- Wu, L.; Ren, H. Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3D Position Data. IEEE Trans. Autom. Sci. Eng. 2017, 14, 314–324. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, T.K.; Kim, K.; Hwang, J.H.; Kim, E. Mode Prediction and Adaptation for a Six-Wheeled Mobile Robot Capable of Curb-Crossing in Urban Environments. IEEE Access 2024, 12, 166474–166485. [Google Scholar] [CrossRef]
- Boby, R.A. Kinematic Identification of Industrial Robot Using End-Effector Mounted Monocular Camera Bypassing Measurement of 3-D Pose. IEEE/ASME Trans. Mechatron. 2022, 27, 383–394. [Google Scholar] [CrossRef]
i | (mm) | (mm) | (deg) | (deg) |
---|---|---|---|---|
1 | 0 | 95.5 | 0 | 0 |
2 | 0 | 138.0 | 0 | |
3 | 418 | 0 | 0 | |
4 | 398 | 98.0 | 0 | 0 |
5 | 0 | 98.0 | 0 | |
6 | 0 | 89.0 | 0 |
Calib. Space | Mean (mm) | Max (mm) | Std (mm) | |
---|---|---|---|---|
Calibration Set | ||||
Before Calib. | mm | 1.865 | 4.615 | 0.964 |
LS + R-test | mm | 0.206 | 0.496 | 0.089 |
-Reg + R-test | mm | 0.213 | 0.407 | 0.092 |
Valid. Space | ||||
Validation Set | ||||
Before Calib. | mm | 3.461 | 5.503 | 1.068 |
LS + R-test | mm | 7.278 | 10.366 | 1.151 |
-Reg + R-test | mm | 0.399 | 0.665 | 0.104 |
Calib. Space | Mean (mm) | Max (mm) | Std (mm) | |
---|---|---|---|---|
Calibration Set | ||||
Before Calib. | mm | 3.461 | 5.503 | 1.068 |
LS + Laser Tracker | mm | 0.113 | 0.257 | 0.046 |
Valid. Space | ||||
Validation Set | ||||
Before Calib. | mm | 3.461 | 5.503 | 1.068 |
LS + Laser Tracker | mm | 0.298 | 0.495 | 0.096 |
Parameter (Unit) | LS + R-Test | LS + Laser Tracker | Reg + R-Test |
---|---|---|---|
(mm) | 0.000 | 0.000 | 0.000 |
(mm) | |||
(mm) | 0.386 | 0.297 | |
(mm) | |||
(mm) | |||
(mm) | 2.691 | 1.263 | 0.034 |
(mm) | 0.000 | 0.000 | 0.000 |
(mm) | 0.000 | 0.045 | 0.000 |
(mm) | 0.000 | 0.253 | 0.000 |
(mm) | 0.842 | ||
(mm) | |||
(mm) | 0.000 | 0.000 | 0.000 |
(deg) | 0.000 | 0.000 | 0.000 |
(deg) | 0.042 | 0.045 | 0.047 |
(deg) | 0.281 | 0.253 | 0.279 |
(deg) | |||
(deg) | |||
(deg) | 0.010 | ||
(deg) | 0.000 | 0.000 | 0.000 |
(deg) | 0.471 | 0.568 | 0.440 |
(deg) | |||
(deg) | 0.713 | 0.747 | 0.711 |
(deg) | 0.609 | 0.548 | 0.137 |
(deg) | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Gao, G.; Na, J.; Zhang, F. L2-Regularization-Based Kinematic Parameter Identification for Industrial Robots in Limited Measurement Space. Actuators 2025, 14, 144. https://doi.org/10.3390/act14030144
Liu F, Gao G, Na J, Zhang F. L2-Regularization-Based Kinematic Parameter Identification for Industrial Robots in Limited Measurement Space. Actuators. 2025; 14(3):144. https://doi.org/10.3390/act14030144
Chicago/Turabian StyleLiu, Fei, Guanbin Gao, Jing Na, and Faxiang Zhang. 2025. "L2-Regularization-Based Kinematic Parameter Identification for Industrial Robots in Limited Measurement Space" Actuators 14, no. 3: 144. https://doi.org/10.3390/act14030144
APA StyleLiu, F., Gao, G., Na, J., & Zhang, F. (2025). L2-Regularization-Based Kinematic Parameter Identification for Industrial Robots in Limited Measurement Space. Actuators, 14(3), 144. https://doi.org/10.3390/act14030144