Abstract
As a core safety component in the hydraulic system of CNC stretching pads, the safety locking valve undertakes precise stamping position maintenance and emergency braking protection; its performance dictates the hydraulic system’s operational stability. Existing ones induce hydraulic oil volume dynamic changes during opening/closing, significantly affecting blank holder force control. To solve this, its structure is innovatively optimized. Based on the CFD method, a dynamic calculation framework integrating unsteady flow characteristics and structural motion characteristics has been constructed, realizing accurate simulation research on the dynamic characteristics of the safety locking valve. Through simulation analysis, the distribution law of the internal flow field during the transient opening and closing process of the locking valve has been thoroughly explored, the distribution mechanism of the transient flow field has been systematically revealed, and finally, the fluid regulation characteristic parameters of the safety locking valve have been obtained, providing an important theoretical basis for subsequent engineering applications.