MEC-Based Modeling and Design of Permanent Magnet Synchronous Machines with Axial–Radial Rotor Extensions Using Yoke and Rotor-Side Spaces
Abstract
1. Introduction
2. General Topology
- The blue line represents the flux passing through the magnet and rotor. The blue flux path () corresponds to the reluctance shown in blue ().
- The green line represents the flux flowing between the magnets on the same side of the rotor, the stator core, and the rotor core. The green flux path () corresponds to the reluctances shown in green (, , and ).
- 1.
- 2.
- 3.
- The combined model is applied to account for the effect of the stator tooth, as referenced in [16].
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Symbols
Magnet remanence | |
Rotor angular position | |
Outer arc width of each PM on the radial rotor | |
Inner arc width of each PM on the radial rotor | |
Inner arc width between adjacent PM poles on the radial rotor | |
Outer arc width between adjacent PM poles on the radial rotor | |
Arc width of each PM on the rotor side axial rotor | |
Arc width between adjacent PM poles on the rotor side axial rotor | |
Arc width of each PM on the yoke side axial rotor | |
Arc width between adjacent PM poles on the yoke side axial rotor | |
Magnet coverage ratio | |
p | Number of pole pairs |
Radial rotor radius | |
Radial magnet radius | |
Radial stator radius | |
Axial rotor radius at the rotor side | |
Axial rotor radius at the yoke side | |
Axial magnet radius at the rotor side | |
Axial magnet radius at the yoke side | |
Radial airgap length | |
Axial airgap length in rotor side | |
Axial airgap length in yoke side | |
Stack length | |
Radial rotor PM length | |
Axial rotor PM length in the rotor side | |
Axial rotor PM length in the yoke side | |
Axial rotor PM height | |
Relative magnetic permeability | |
Derivative with respect to the z-dimension |
References
- Wang, K.; Zhu, Z.; Ombach, G.; Chlebosz, W. Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape. IEEE Trans. Ind. Electron. 2013, 61, 5047–5057. [Google Scholar] [CrossRef]
- Hu, P.; Wang, D.; Jin, S.; Wei, Y.; Chen, C.; Lin, N.; Zhang, Q.; Wu, X.; Zhu, H.; Sun, F. The modified model of third-harmonic shaping for a surface-mounted permanent-magnet synchronous motor under parallel magnetization. IEEE Trans. Ind. Electron. 2020, 56, 4847–4856. [Google Scholar] [CrossRef]
- Suriano-Sánchez, S.I.; Ponce-Silva, M.; Olivares-Peregrino, V.H.; De León-Aldaco, S.E. A Review of Torque Ripple Reduction Design Methods for Radial Flux PM Motors. Eng 2022, 3, 646–661. [Google Scholar] [CrossRef]
- Du, Z.S.; Lipo, T.A. High torque density and low torque ripple shaped-magnet machines using sinusoidal plus third harmonic shaped magnets. IEEE Trans. Ind. Electron. 2019, 55, 2601–2610. [Google Scholar] [CrossRef]
- Kumar, S.; Zhao, W.; Du, Z.S.; Lipo, T.A.; Kwon, B.I. Design of ultrahigh speed axial-flux permanent magnet machine with sinusoidal back EMF for energy storage application. IEEE Trans. Magn. 2015, 51, 8113904. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Z.; Ombach, G. Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic. IEEE Trans. Magn. 2013, 50, 104–113. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Z.; Ombach, G. Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic. IEEE Trans. Energy Convers. 2014, 29, 735–747. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, L.; Zhu, J.; Fang, Y.; Qiu, L. Analysis of dual-armature flux reversal permanent magnet machines with Halbach array magnets. IEEE Trans. Energy Convers. 2021, 36, 3044–3052. [Google Scholar] [CrossRef]
- Yousefnejad, S.; Heydari, H.; Akatsu, K.; Ro, J.S. Analysis and design of novel structured high torque density magnetic-geared permanent magnet machine. IEEE Access 2021, 9, 64574–64586. [Google Scholar] [CrossRef]
- Yousefnejad, S.; Heidary, H.; Ro, J.S.; Amiri, E.; Afjei, S.E.; Akatsu, K. A Novel Structure of Magnetic-Geared Permanent Magnet Machine Based on Halbach Array. In Proceedings of the 2022 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 25–26 April 2022; pp. 1–6. [Google Scholar]
- Jin, J.; Wang, X.; Zhao, C.; Xu, F.; Pei, W.; Liu, Y.; Sun, F. Characteristics Analysis of an Electromagnetic Actuator for Magnetic Levitation Transportation. Actuators 2022, 11, 377. [Google Scholar] [CrossRef]
- Yousefnejad, S.; Amiri, E. Consequent-Pole Dual-Layer Axial Flux Magnetic Gear with Halbach Array. In Proceedings of the 2023 IEEE International Electric Machines & Drives Conference (IEMDC), San Francisco, CA, USA, 15–18 May 2023; pp. 1–5. [Google Scholar]
- Zhang, Z.; Yu, S.; Zhang, F.; Jin, S.; Wang, X. Electromagnetic and structural design of a novel low-speed high-torque motor with dual-stator and PM-reluctance rotor. IEEE Trans. Appl. Supercond. 2020, 30, 5203605. [Google Scholar] [CrossRef]
- Niu, S.; Chau, K.; Li, J.; Li, W. Eddy-current analysis of double-stator inset-type permanent magnet brushless machines. IEEE Trans. Appl. Supercond. 2010, 20, 1097–1101. [Google Scholar]
- Chen, J.; Liu, K.; Zhou, S.; Cai, H.; Chen, Y.; Huang, C.; Zhang, D. Torque Enhancement of Surface-mounted Permanent Magnet Synchronous Machines via Axial Assisted Magnets. In Proceedings of the 2022 Second International Conference on Sustainable Mobility Applications, Renewables and Technology (SMART), Cassino, Italy, 23–25 November 2022; pp. 1–8. [Google Scholar]
- Yeo, H.K.; Ro, J.S. Novel analytical method for overhang effects in surface-mounted permanent-magnet machines. IEEE Access 2019, 7, 148453–148461. [Google Scholar] [CrossRef]
- Yeo, H.K.; Lim, D.K.; Jung, H.K. Magnetic equivalent circuit model considering the overhang structure of an interior permanent-magnet machine. IEEE Trans. Magn. 2019, 55, 8201404. [Google Scholar] [CrossRef]
- Wang, X.; Fan, Y.; Chen, Q.; Wu, Z. Magnetic circuit feature investigation of a radial–axial brushless hybrid excitation machine for electric vehicles. IEEE Trans. Transp. Electrif. 2022, 9, 382–393. [Google Scholar] [CrossRef]
- Seo, J.M.; Ro, J.; Rhyu, S.H.; Jung, I.S.; Jung, H.K. Novel hybrid radial and axial flux permanent-magnet machine using integrated windings for high-power density. IEEE Trans. Magn. 2015, 51, 8100804. [Google Scholar] [CrossRef]
- Woo, D.K.; Lim, D.K.; Yeo, H.K.; Ro, J.S.; Jung, H.K. A 2-D finite-element analysis for a permanent magnet synchronous motor taking an overhang effect into consideration. IEEE Trans. Magn. 2013, 49, 4894–4899. [Google Scholar] [CrossRef]
- Yeo, H.K.; Woo, D.K.; Lim, D.K.; Ro, J.S.; Jung, H.K. Analysis of a surface-mounted permanent-magnet machine with overhang structure by using a novel equivalent magnetic circuit model. J. Electr. Eng. Technol. 2014, 9, 1960–1966. [Google Scholar] [CrossRef]
- Wu, D.; Shi, J.T.; Zhu, Z.; Liu, X. Electromagnetic performance of novel synchronous machines with permanent magnets in stator yoke. IEEE Trans. Magn. 2014, 50, 8102009. [Google Scholar] [CrossRef]
- Qu, R.; Lipo, T.A. Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine. IEEE Trans. Ind. Electron. 2004, 40, 121–127. [Google Scholar] [CrossRef]
- Seo, J.; Seo, J.M. Analysis of an interior permanent-magnet machines with an axial overhang structure based on lumped magnetic circuit model. J. Magn. 2016, 21, 94–101. [Google Scholar] [CrossRef]
- Seo, J.M.; Jung, I.S.; Jung, H.K.; Ro, J. Analysis of overhang effect for a surface-mounted permanent magnet machine using a lumped magnetic circuit model. IEEE Trans. Magn. 2013, 50, 8201207. [Google Scholar] [CrossRef]
- Yeo, H.K.; Lim, D.K.; Woo, D.K.; Ro, J.; Jung, H.K. Magnetic equivalent circuit model considering overhang structure of a surface-mounted permanent-magnet motor. IEEE Trans. Magn. 2015, 51, 8201004. [Google Scholar] [CrossRef]
- Zarko, D.; Ban, D.; Lipo, T.A. Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance. IEEE Trans. Magn. 2006, 42, 1828–1837. [Google Scholar] [CrossRef]
Parameters | Dual-Stator PMSM |
---|---|
Axial length (mm) | 40 |
Overall radius (mm) | 82 |
Radial airgap length (mm) | 0.5 |
Axial airgap length adjacent to inner PM (mm) | 0.5 |
Axial airgap length adjacent to outer PM (mm) | 0.5 |
No. of phase | 3 |
No. of stator slot | 36 |
No. of pole pairs | 3 |
No. of conductor | 50 |
Inner rotor PM width (mm) | 0.6 |
Outer rotor PM width (mm) | 1.1 |
Rotor PM height (mm) | 0.6 |
Radial rotor PM outer radius (mm) | 52 |
Radial rotor PM inner radius (mm) | 48 |
Axial rotor core height (mm) | 14 |
Axial rotor core width (mm) | 4 |
Axial rotor core inner radius (mm) | 52.5 |
Axial rotor core outer radius (mm) | 74 |
Axial rotor inner PM inner radius (mm) | 52.5 |
Axial rotor Outer PM outer radius (mm) | 74 |
Magnet Flux Density | 1.07T |
Core material | steel 1010 |
(mm) | (mm) | (mm) | Proposed Model (V) | 3D FEM (V) |
---|---|---|---|---|
4 | 1 | 1 | 18.71 | 18.86 |
4 | 1 | 2 | 18.83 | 18.71 |
4 | 2 | 1 | 19.10 | 19.25 |
4 | 2 | 2 | 19.35 | 19.06 |
8 | 1 | 1 | 18.74 | 18.91 |
8 | 2 | 1 | 19.14 | 19.29 |
8 | 1 | 2 | 18.85 | 18.71 |
8 | 2 | 2 | 19.40 | 19.15 |
Structure | PM Volume (m3) | Cogging Torque (mNm) |
---|---|---|
Non-overhang | 4.26 × 10−5 | 628 |
Conventional overhang | 4.26 × 10−5 | 692 |
Proposed structure | 4.26 × 10−5 | 740 |
Non-overhang | 4.33 × 10−5 | 665 |
Conventional overhang | 4.33 × 10−5 | 727 |
Proposed structure | 4.33 × 10−5 | 765 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousefnejad, S.; Mehrasa, M.; Rastgoufard, P. MEC-Based Modeling and Design of Permanent Magnet Synchronous Machines with Axial–Radial Rotor Extensions Using Yoke and Rotor-Side Spaces. Actuators 2025, 14, 507. https://doi.org/10.3390/act14100507
Yousefnejad S, Mehrasa M, Rastgoufard P. MEC-Based Modeling and Design of Permanent Magnet Synchronous Machines with Axial–Radial Rotor Extensions Using Yoke and Rotor-Side Spaces. Actuators. 2025; 14(10):507. https://doi.org/10.3390/act14100507
Chicago/Turabian StyleYousefnejad, Soheil, Majid Mehrasa, and Parviz Rastgoufard. 2025. "MEC-Based Modeling and Design of Permanent Magnet Synchronous Machines with Axial–Radial Rotor Extensions Using Yoke and Rotor-Side Spaces" Actuators 14, no. 10: 507. https://doi.org/10.3390/act14100507
APA StyleYousefnejad, S., Mehrasa, M., & Rastgoufard, P. (2025). MEC-Based Modeling and Design of Permanent Magnet Synchronous Machines with Axial–Radial Rotor Extensions Using Yoke and Rotor-Side Spaces. Actuators, 14(10), 507. https://doi.org/10.3390/act14100507