Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation
Abstract
:1. Introduction
- SOF controllers are designed to reduce the az and ωy of an SPM over the frequency range of 0.8 to 8.0 Hz. Using the vertical velocities at the front/rear corners of an SPM and SSE from a half-car model, three SOF controllers are proposed.
- To reduce the ωy of an SPM over the frequency range of 0.8 to 8.0 Hz, an FxLMS algorithm is applied to the framework of a WBPCS.
- With SOF controllers and an FxLMS algorithm, simulation is conducted on CarSim. From simulation results, it is observed which SOF controller is better for ride comfort enhancement and whether FxLMS is effective or not for motion sickness mitigation.
2. Design of LQ SOF Controllers
2.1. Half-Car Model and State-Space Equation
2.2. Design of LQR
2.3. Design of LQ SOF Controllers
3. Design of Adaptive Feedforward Algorithm
4. Simulation and Discussion
4.1. Simulation Environment
4.2. Frequency Response Analysis with the LQ SOF Controllers
4.3. Simulation with the LQ SOF Controllers on CarSim
4.4. Simulation with FxLMS and LQ SOF Controllers on CarSim
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
LQR | Linear quadratic regulator |
LQSOF | Linear quadratic static output feedback |
LQSSOF | Linear quadratic structured static output feedback |
SOF | Static output feedback |
SPM | Sprung mass or vehicle body |
SPMFC | Front corner of sprung mass |
SPMRC | Rear corner of sprung mass |
SSE | State-space equation |
SSOF | Structured static output feedback |
WBPCS | Wheelbase preview control scheme |
a, b | Distances from center of gravity of sprung mass to front/rear corners (m) |
az = | Vertical or heave acceleration of sprung mass (m/s2) |
bsf, bsr | Damping coefficient of damper at front/rear suspensions (N·s/m) |
Iy | Pitch moment of inertia (kg·m2) |
J | LQ cost function used for LQR, LQSOF and LQSSOF |
ksf, ksr | Stiffness of spring at front/rear suspensions (N/m) |
ktf, ktr | Stiffness of front/rear tires (N/m) |
ms | Sprung mass (kg) |
muf, mur | Unsprung mass under front/rear suspensions (kg) |
uf, ur | Forces generated by actuator at front/rear suspensions (N) |
zc | Heave displacement at center of gravity of sprung mass (m) |
zrf, zrr | Road elevation acting on front/rear tires (m) |
zsf, zsr | Vertical displacement of front/rear corners of sprung mass (m) |
zuf, zur | Vertical displacement of front/rear wheel centers (m) |
ξi | Maximum allowable value (MAV) of weight in LQ cost function |
ωy = | Pitch rate of sprung mass (rad/s) |
ρi | Weight in LQ cost function |
θ | Pitch angle of sprung mass (rad) |
References
- Khan, M.A.; Sayed, H.E.; Malik, S.; Zia, T.; Khan, J.; Alkaabi, N.; Ignatious, H. Level-5 autonomous driving—Are we there yet? a review of research literature. ACM Comput. Surv. 2022, 55, 1–38. [Google Scholar] [CrossRef]
- Omeiza, D.; Webb, H.; Jirotka, M.; Kunze, L. Explanations in autonomous driving: A survey. IEEE Trans. Intell. Trans. Sys. 2022, 23, 10142–10162. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, W.; Deng, B.; Wang, Z.; Zhang, F.; Zheng, W.; Cao, W.; Nan, J.; Lian, Y.; Burke, A.F. Autonomous driving system: A comprehensive survey. Expert Syst. Appl. 2024, 242, 122836. [Google Scholar] [CrossRef]
- Diels, C.; Bos, J.E. Self-driving carsickness. Appl. Ergon. 2016, 53, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Asua, E.; Gutiérrez-Zaballa, J.; Mata-Carballeira, O.; Ruiz, J.A.; del Campo, I. Analysis of the motion sickness and the lack of comfort in car passengers. Appl. Sci. 2022, 12, 3717. [Google Scholar] [CrossRef]
- Xie, W.; He, D.; Wu, G. Inducers of motion sickness in vehicles: A systematic review of experimental evidence and meta-analysis. Transp. Res. Part F Traffic Psychol. Behav. 2023, 99, 167–188. [Google Scholar] [CrossRef]
- ISO 2631-1; Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 1997.
- Rimell, A.N.; Mansfield, N.J. Design of digital filters for frequency weightings required for risk assessments of workers exposed to vibration. Ind. Health 2007, 45, 512–519. [Google Scholar] [CrossRef]
- Kim, J.; Yim, S. Design of static output feedback suspension controllers for ride comfort improvement and motion sickness reduction. Processes 2024, 12, 968. [Google Scholar] [CrossRef]
- Ekchian, J.; Graves, W.; Anderson, Z.; Giovanardi, M.; Godwin, O.; Kaplan, J.; Ventura, J.; Lackner, J.R.; DiZio, P. A High-Bandwidth Active Suspension for Motion Sickness Mitigation in Autonomous Vehicles; SAE Technical Paper 2016-01-1555; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- DiZio, P.; Ekchian, J.; Kaplan, J.; Ventura, J.; Graves, W.; Giovanardi, M.; Anderson, Z.; Lackner, J.R. An active suspension system for mitigating motion sickness and enabling reading in a car. Aerosp. Med. Hum. Perform. 2018, 89, 822–829. [Google Scholar] [CrossRef]
- Jeong, Y.; Yim, S. Design of active suspension controller for ride comfort enhancement and motion sickness mitigation. Machines 2024, 12, 254. [Google Scholar] [CrossRef]
- Poussot-Vassal, C.; Spelta, C.; Sename, O.; Savaresi, S.M.; Dugard, L. Survey and performance evaluation on some automotive semi-active suspension control methods: A comparative study on a single-corner model. Annu. Rev. Control 2012, 36, 148–160. [Google Scholar] [CrossRef]
- Tseng, H.E.; Hrovat, D. State of the art survey: Active and semi-active suspension control. Veh. Syst. Dyn. 2015, 53, 1034–1062. [Google Scholar] [CrossRef]
- Cao, D.; Song, X.; Ahmadian, M. Editors’ perspectives: Road vehicle suspension design, dynamics, and control. Veh. Syst. Dyn. 2011, 49, 3–28. [Google Scholar] [CrossRef]
- Wilson, D.A.; Sharp, R.S.; Hassan, S.A. The application of linear optimal control theory to the design of active automobile suspensions. Veh. Syst. Dyn. 1987, 15, 105–118. [Google Scholar] [CrossRef]
- Hac, A. Optimal linear preview control of active vehicle suspension. Veh. Syst. Dyn. 1992, 21, 167–195. [Google Scholar] [CrossRef]
- Abdel-Hady, M.B.A.; Crolla, D.A. Active suspension control algorithms for a four wheel vehicle model. Int. J. Veh. Des. 1992, 13, 144–158. [Google Scholar]
- Mudduluru, S.R.; Chizari, M. Quarter and Full Car Models Optimisation of Passive and Active Suspension System Using Genetic Algorithm. arXiv 2021, arXiv:2101.12629. [Google Scholar]
- Theunissen, J.; Tota, A.; Gruber, P.; Dhaens, M.; Sorniotti, A. Preview-based techniques for vehicle suspension control: A state-of-the-art review. Annu. Rev. Control 2021, 51, 206–235. [Google Scholar] [CrossRef]
- Camino, J.F.; Zampieri, D.E.; Peres, P.L.D. Design of a vehicular suspension controller by static output feedback. In Proceedings of the American Control Conference, San Diego, CA, USA, 2–4 June 1999; pp. 3168–3171. [Google Scholar]
- Elmadany, M.M.; Al-Majed, M.I. Quadratic synthesis of active controls for a quarter-car model. J. Vib. Control 2001, 7, 1237–1252. [Google Scholar] [CrossRef]
- Park, M.; Yim, S. Design of static output feedback and structured controllers for active suspension with quarter-car model. Energies 2021, 14, 8231. [Google Scholar] [CrossRef]
- Jeong, Y.; Shon, Y.; Chang, S.; Yim, S. Design of static output feedback controllers for an active suspension system. IEEE Access 2022, 10, 26948–26964. [Google Scholar] [CrossRef]
- Hansen, N.; Muller, S.D.; Koumoutsakos, P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 2003, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation. Advances in Estimation of Distribution Algorithms; Lozano, J.A., Larrañga, P., Inza, I., Bengoetxea, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–102. [Google Scholar]
- Widrow, B.; Stearns, S.D. Adaptive Signal Processing; Prentice Hall, International (UK) Limited: London, UK, 1985. [Google Scholar]
- Kuo, S.M.; Morgan, D.R. Active Noise Control Systems-Algorithms and DSP Implementations; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Lu, L.; Yin, K.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A survey on active noise control in the past decade—Part I: Linear systems. Signal Process. 2021, 183, 108039. [Google Scholar] [CrossRef]
- Lu, L.; Yin, K.; de Lamare, R.C.; Zheng, Z.; Yu, Y.; Yang, X.; Chen, B. A survey on active noise control in the past decade–Part II: Nonlinear systems. Signal Process. 2021, 181, 107929. [Google Scholar] [CrossRef]
- Kwak, B.H.; Kim, H.S.; Park, Y. Adaptive control of active suspension systems with preview. In Proceedings of the 13th Korean Automatic Control Conference (KACC), Busan, Republic of Korea, 15–17 October 1998. (In Korean). [Google Scholar]
- Feng, J.; Bei, S.; Yuan, C.; Zhang, L. Research on wheelbase preview control for vehicle semi-active suspension based on neural networks, 2009. In Proceedings of the Third International Symposium on Intelligent Information Technology Application, Nanchang, China, 21–22 November 2009. [Google Scholar]
- Krauze, P.; Kasprzyk, J. FxLMS algorithm with preview for vibration control of a half-car model with magnetorheological dampers. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Besançon, France, 8–11 July 2014. [Google Scholar]
- Strohm, J.N.; Lohmann, B. A fast convergence FxLMS algorithm for vibration damping of a quarter car. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018. [Google Scholar]
- Krauze, P.; Kasprzyk, J. FxLMS control of an off-road vehicle model with magnetorheological dampers. In Advanced, Contemporary Control. Advances in Intelligent Systems and Computing; Bartoszewicz, A., Kabziński, J., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 1196. [Google Scholar]
- An, K.; Kim, D.; Kim, S.; Choi, J.; Lee, S.K.; Im, M.; Cho, H.S.; An, C. Active vibration control system for attenuation of structure borne road noise by tire cavity resonance using piezoelectric stack actuators. SAE Tech. Pap. 2024. [Google Scholar] [CrossRef]
- Okda, S.; Nampally, S.R.; Fontana, M.; Herold, S.; Nordmann, R.; Rinderknecht, S.; Melz, T. Active vibration control of gearbox housing using inertial mass actuators. Smart Mater. Struct. 2024, 33, 095008. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, Z.; Zhang, H.; Zhu, X. Research on active vibration control of blade using variable-step-size filtered-x least mean square algorithm. J. Vib. Control 2024. Online First. [Google Scholar] [CrossRef]
- Wu, T.; Chen, T.; Yan, H.; Qu, J. An Improved FXLMS algorithm based on error weight for active vibration control of plates. J. Vib. Eng. Technol. 2024, 12, 3289–3303. [Google Scholar] [CrossRef]
- Chai, K.; Liu, Y.S.; Hu, B.J. Multi-channel decentralized decoupling FxLMS algorithm and active vibration control experiment. J. Low Freq. Noise Vib. Act. Control 2024. Online First. [Google Scholar] [CrossRef]
- Liu, T.; Liu, C.; Zhang, Z. Adaptive active vibration control for composite laminated plate: Theory and experiments. Mech. Syst. Signal Process. 2024, 206, 110876. [Google Scholar] [CrossRef]
- Bryson, A.E., Jr.; Ho, Y. Applied Optimal Control; Hemisphere: New York, NY, USA, 1975. [Google Scholar]
- Hong, K.; Sohn, H.; Hedrick, J.K. Modified skyhook control of semi-active suspensions: A new model, gain scheduling, and hardware-in-the-loop tuning. J. Dyn. Syst. Meas. Control 2002, 124, 158–167. [Google Scholar] [CrossRef]
- Ding, R.; Wang, R.; Meng, X.; Chen, L. Energy consumption sensitivity analysis and energy-reduction control of hybrid electromagnetic active suspension. Mech. Syst. Signal Process. 2019, 134, 106301. [Google Scholar] [CrossRef]
- Liu, W.; Wang, R.; Ding, R.; Meng, X.; Yang, L. On-line estimation of road profile in semi-active suspension based on unsprung mass acceleration. Mech. Syst. Signal Process. 2020, 135, 106370. [Google Scholar] [CrossRef]
- Akhtar, M.T. Developing a new filtered-X recursive least squares adaptive algorithm based on a robust objective function for impulsive active noise control systems. Appl. Sci. 2023, 13, 2715. [Google Scholar] [CrossRef]
- Mechanical Simulation Corporation. CarSim Data Manual; Version 8; Mechanical Simulation Corporation: Ann Arbor, MI, USA, 2009. [Google Scholar]
ξ1 | 0.5 m/s2 | ξ2 | 30.0 deg/s2 | ξ3 | 10.0 deg/s |
ξ4 | 2.0 deg | ξ5 | 0.1 m | ξ6 | 0.1 m |
ξ7 | 10,000.0 N |
LQSOF KSOF | LQSSOF1 KSSOF1 | ||
LQSSOF2 KSSOF2 |
Controller | Max |az| (m/s2) | Max |ωy| (deg/s) |
---|---|---|
No Control | 5.9 | 35.2 |
LQSOF | 3.5 (41%) | 16.0 (55%) |
LQSSOF1 | 3.5 (41%) | 15.8 (55%) |
LQSSOF2 | 4.0 (32%) | 14.2 (60%) |
Controller | Max |az| (m/s2) | Max |ωy| (deg/s) |
---|---|---|
No Control | 6.2 | 26.5 |
LQSOF | 1.9 (69%) | 7.7 (71%) |
LQSSOF1 | 1.9 (69%) | 7.6 (71%) |
LQSSOF2 | 2.4 (61%) | 6.7 (75%) |
Controller | Max |az| (m/s2) | Max |ωy| (deg/s) |
---|---|---|
No Control | 6.2 | 26.5 |
LQSSOF1 | 2.0 (68%) | 7.6 (71%) |
FxLMS | 8.6 (−39%) | 12.3 (54%) |
LQSSOF1 + FxLMS | 2.6 (58%) | 4.3 (84%) |
Controller | Max |az| (m/s2) | Max |ωy| (deg/s) |
---|---|---|
No Control | 14.2 | 34.8 |
LQSSOF1 | 2.6 (82%) | 9.7 (72%) |
FxLMS | 14.8 (−4%) | 11.9 (66%) |
LQSSOF1 + FxLMS | 2.0 (86%) | 5.8 (83%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Yim, S. Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation. Actuators 2024, 13, 315. https://doi.org/10.3390/act13080315
Kim J, Yim S. Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation. Actuators. 2024; 13(8):315. https://doi.org/10.3390/act13080315
Chicago/Turabian StyleKim, Jinwoo, and Seongjin Yim. 2024. "Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation" Actuators 13, no. 8: 315. https://doi.org/10.3390/act13080315
APA StyleKim, J., & Yim, S. (2024). Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation. Actuators, 13(8), 315. https://doi.org/10.3390/act13080315