Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios
Abstract
:1. Introduction
- (1)
- Multi-Level Cooperative Intent Modeling
- (2)
- Actuator-Feasible Dynamic Trajectory Risk Assessment
- (3)
- Improved Trajectory Planning and Reduced Collisions
2. Autonomous Vehicle Trajectory Planning Model Considering Cooperative Intent
2.1. Autonomous Vehicle (AV) Trajectory Planning Problem Description
2.2. Model Framework
2.2.1. Cooperative Intent Reasoning and Cooperation Area Interaction
2.2.2. Cooperative Intent Inference and Cooperative Area Interaction
2.3. Feasible Dynamic Trajectory Risk Characterization Mechanism for Actuator
3. Experimental Setup
3.1. Data Set
3.2. Trajectory Prediction Evaluation Metrics
3.3. Trajectory Planning Evaluation Metrics
3.3.1. Safety Indicators of Ego Vehicle and Surrounding Vehicles
- Collision Time (TTC)
- Minimum Distance
3.3.2. Feasible Risk of Ego Vehicle Actuator
- Curvature
- Acceleration
- Lateral Agitation (LA)
3.4. Comparison with Baseline Model
- IR-STP [25]
- LAM [26]
3.5. Experimental Details
4. Analysis of Experimental Results
4.1. Baseline Comparison of Trajectory Prediction and Planning
4.1.1. Baseline Comparison of Trajectory Prediction
4.1.2. Baseline Comparison of Trajectory Planning
4.2. Ablation Experiment Analysis
4.3. Actuator-Feasible Dynamic Trajectory Risk Assessment and Visualization
4.3.1. Research on Dynamic Trajectory Safety Assessment in Turning Lane Scenarios Considering Actuator Constraints
4.3.2. Research on Dynamic Safety Assessment of Intersection Scenario Trajectories Considering Actuator Feasibility
4.4. Comparative Study: Three Planning Models for Turns and Intersections
4.4.1. Verification of Different Vehicle Densities in Turning Lane Scenario
4.4.2. Verification of Different Vehicle Densities in Turning Lane Scenario
4.4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahajan, N.; Zhang, Q. Intent-aware autonomous driving: A case study on highway merging scenarios. arXiv 2023, arXiv:2309.13206. [Google Scholar]
- Lim, W.; Lee, S.; Sunwoo, M.; Jo, K. Hybrid trajectory planning for autonomous driving in on-road dynamic scenarios. IEEE Trans. Intell. Transp. Syst. 2019, 22, 341–355. [Google Scholar] [CrossRef]
- Ma, C.; Yu, C.; Yang, X. Trajectory planning for connected and automated vehicles at isolated signalized intersections under mixed traffic environment. Transp. Res. Part C Emerg. Technol. 2021, 130, 103309. [Google Scholar] [CrossRef]
- Luo, W.; Park, C.; Cornman, A.; Sapp, B.; Anguelov, D. Jfp: Joint future prediction with interactive multi-agent modeling for autonomous driving. In Proceedings of the Conference on Robot Learning, Atlanta, GA, USA, 6–9 November 2023; pp. 1457–1467. [Google Scholar]
- Liu, Y.; Zhang, J.; Fang, L.; Jiang, Q.; Zhou, B. Multimodal motion prediction with stacked transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7577–7586. [Google Scholar]
- Lee, D.; Gu, Y.; Hoang, J.; Marchetti-Bowick, M. Joint interaction and trajectory prediction for autonomous driving using graph neural networks. arXiv 2019, arXiv:1912.07882. [Google Scholar]
- Liu, Z.; Chen, J.; Xia, H.; Lan, F. Human-like trajectory planning for autonomous vehicles based on spatiotemporal geometric transformation. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20160–20176. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhang, J.; Wang, J.; Lu, K.; Hong, J. Integrating algorithmic sampling-based motion planning with learning in autonomous driving. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 1–27. [Google Scholar] [CrossRef]
- Jia, H.; Zhang, L.; Wang, Z. A dynamic lane-changing trajectory planning scheme for autonomous vehicles on structured road. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 2222–2227. [Google Scholar]
- Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of MAPPO in cooperative, multi-agent games. CoRR. arXiv 2021, arXiv:2103.01955. [Google Scholar]
- Lefkopoulos, V.; Menner, M.; Domahidi, A.; Zeilinger, M.N. Interaction-aware motion prediction for autonomous driving: A multiple model kalman filtering scheme. IEEE Robot. Autom. Lett. 2020, 6, 80–87. [Google Scholar] [CrossRef]
- Hubmann, C.; Becker, M.; Althoff, D.; Lenz, D.; Stiller, C. Decision making for autonomous driving considering interaction and uncertain prediction of surrounding vehicles. In Proceedings of the 2017 IEEE intelligent vehicles symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1671–1678. [Google Scholar]
- Gupta, P.; Isele, D.; Lee, D.; Bae, S. Interaction-aware trajectory planning for autonomous vehicles with analytic integration of neural networks into model predictive control. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 7794–7800. [Google Scholar]
- Liu, Q.; Gao, C.; Wang, H.; Cai, Y.; Chen, L.; Lv, C. Learning from Trajectories: How Heterogeneous CACC Platoons Affect the Traffic Flow in Highway Merging Area. IEEE Trans. Veh. Technol. 2024, 1–13. [Google Scholar] [CrossRef]
- Ming, Z.; Jun, L. Smarts: Scalable multi-agent reinforcement learning training school for autonomous driving. arXiv 2020, arXiv:2010.09776. [Google Scholar]
- Li, H.; Wu, C.; Chu, D.; Lu, L.; Cheng, K. Combined trajectory planning and tracking for autonomous vehicle considering driving styles. IEEE Access 2021, 9, 9453–9463. [Google Scholar] [CrossRef]
- He, X.; Lv, C. Toward personalized decision making for autonomous vehicles: A constrained multi-objective reinforcement learning technique. Transp. Res. Part C Emerg. Technol. 2023, 156, 104352. [Google Scholar] [CrossRef]
- Yang, B.; Yan, S.; Wang, Z.; Nakano, K. Prediction Based Trajectory Planning for Safe Interactions between Autonomous Vehicles and Moving Pedestrians in Shared Spaces. IEEE Trans. Intell. Transp. Syst. 2023, 24, 10513–10524. [Google Scholar] [CrossRef]
- Xu, D.; Ding, Z.; He, X.; Zhao, H.; Moze, M.; Aioun, F.; Guillemard, F. Learning from naturalistic driving data for human-like autonomous highway driving. IEEE Trans. Intell. Transp. Syst. 2020, 22, 7341–7354. [Google Scholar] [CrossRef]
- Fang, J.; Wang, F.; Xue, J.; Chua, T.-S. Behavioral intention prediction in driving scenes: A survey. IEEE Trans. Intell. Transp. Syst. 2024, 1–13. [Google Scholar] [CrossRef]
- de Andrade Both, L.; Lange, F. A New Trajectory Planning Approach With Motion Duration Control for Kinematic Constrained Systems. IEEE Robot. Autom. Lett. 2023, 9, 467–474. [Google Scholar] [CrossRef]
- Ben-Asher, J.Z.; Rimon, E.D. Time optimal trajectories for a car-like mobile robot. IEEE Trans. Robot. 2021, 38, 421–432. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, H.; Wu, J.; Lv, C. Differentiable integrated motion prediction and planning with learnable cost function for autonomous driving. IEEE Trans. Neural Netw. Learn. Syst. 2023. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Wang, P.; Chan, C.-Y.; Chen, J.; Li, S.E.; Cheng, B. Intention-aware long horizon trajectory prediction of surrounding vehicles using dual LSTM networks. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1441–1446. [Google Scholar]
- Chen, Y.; Cheng, J.; Gan, L.; Wang, S.; Liu, H.; Mei, X.; Liu, M. IR-STP: Enhancing Autonomous Driving with Interaction Reasoning in Spatio-Temporal Planning. IEEE Trans. Intell. Transp. Syst. 2024. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, H.; Wu, J.; Huang, W.; Lv, C. Learning interaction-aware motion prediction model for decision-making in autonomous driving. In Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), Bilbao, Spain, 24–28 September 2023; pp. 4820–4826. [Google Scholar]
- Naveed, K.B.; Qiao, Z.; Dolan, J.M. Trajectory planning for autonomous vehicles using hierarchical reinforcement learning. In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 601–606. [Google Scholar]
Th = 0.4 (s) | Th = 0.8 (s) | Th = 1.2 (s) | |
---|---|---|---|
FDE (m) | |||
IR-STP | 1.267 ± 0.023 | 1.432 ± 0.034 | 1.677 ± 0.048 |
LAM | 1.195 ± 0.018 | 1.288 ± 0.034 | 1.439 ± 0.035 |
CMGNN | 1.032 ± 0.019 | 1.197 ± 0.023 | 1.373 ± 0.026 |
ADE (m) | |||
IR-STP | 1.012 ± 0.016 | 1.154 ± 0.014 | 1.337 ± 0.027 |
LAM | 0.954 ± 0.011 | 0.971 ± 0.012 | 1.175 ± 0.022 |
CMGNN | 0.941 ± 0.013 | 0.963 ± 0.011 | 1.002 ± 0.017 |
Th = 0.4 (s) | Th = 0.8 (s) | Th = 1.2 (s) | |
---|---|---|---|
FDE (m) | |||
IR-STP | 1.275 ± 0.031 | 1.444 ± 0.034 | 1.689 ± 0.046 |
LAM | 1.207 ± 0.018 | 1.311 ± 0.047 | 1.457 ± 0.042 |
CMGNN | 1.167 ± 0.021 | 1.185 ± 0.033 | 1.307 ± 0.032 |
ADE (m) | |||
IR-STP | 1.019 ± 0.027 | 1.166 ± 0.020 | 1.341 ± 0.033 |
LAM | 1.065 ± 0.026 | 1.107 ± 0.012 | 1.191 ± 0.026 |
CMGNN | 0.998 ± 0.014 | 1.011 ± 0.015 | 1.009 ± 0.031 |
Th = 0.4 (s) | Th = 0.8 (s) | Th = 1.2 (s) | |
---|---|---|---|
TTC (s) | |||
IR-STP | 2.955 ± 0.016 | 2.116 ± 0.014 | 2.018 ± 0.018 |
LAM | 3.234 ± 0.021 | 2.451 ± 0.015 | 2.223 ± 0.017 |
CMGNN | 3.392 ± 0.027 | 3.124 ± 0.013 | 2.932 ± 0.016 |
MD (m) | |||
IR-STP | 2.347 ± 0.432 | 3.928 ± 0.715 | 3.589 ± 0.725 |
LAM | 3.784 ± 0.589 | 4.832 ± 0.724 | 3.248 ± 0.987 |
CMGNN | 3.981 ± 0.357 | 3.872 ± 0.823 | 4.529 ± 0.941 |
Curvature (1/m) | |||
IR-STP | −0.024 ± 0.013 | 0.087 ± 0.005 | 0.079 ± 0.021 |
LAM | −0.054 ± 0.009 | 0.068 ± 0.092 | 0.092 ± 0.004 |
CMGNN | 0.037 ± 0.010 | −0.018 ± 0.003 | 0.052 ± 0.011 |
Acceleration (m/s2) | |||
IR-STP | −1.732 ± −0.732 | 1.219 ± 0.428 | −2.004 ± 0.083 |
LAM | −2.174 ± 0.310 | −2.203 ± 0.094 | 1.981 ± 0.487 |
CMGNN | 1.724 ± 0.039 | −1.349 ± 0.178 | 1.412 ± 0.265 |
LA (m/s2) | |||
IR-STP | 0.112 ± 0.137 | 0.184 ± 0.029 | 0.219 ± 0.392 |
LAM | −0.174 ± 0.129 | 0.214 ± 0.205 | 0.188 ± 0.014 |
CMGNN | −0.121 ± 0.078 | −0.112 ± 0.037 | −0.109 ± 0.021 |
Th = 0.4 (s) | Th = 0.8 (s) | Th = 1.2 (s) | |
---|---|---|---|
TTC (s) | |||
IR-STP | 2.969 ± 0.016 | 2.432 ± 0.014 | 2.729 ± 0.024 |
LAM | 3.253 ± 0.023 | 2.679 ± 0.017 | 2.538 ± 0.021 |
CMGNN | 3.415 ± 0.027 | 3.285 ± 0.013 | 3.087 ± 0.025 |
MD (m) | |||
IR-STP | 4.966 ± 0.424 | 4.945 ± 0.734 | 5.632 ± 0.751 |
LAM | 4.797 ± 0.577 | 5.854 ± 0.742 | 4.271 ± 0.931 |
CMGNN | 3.789 ± 0.363 | 4.594 ± 0.811 | 4.157 ± 0.957 |
Curvature (1/m) | |||
IR-STP | −0.023 ± 0.012 | 0.046 ± 0.007 | 0.076 ± 0.024 |
LAM | −0.042 ± 0.011 | 0.140 ± 0.094 | 0.091 ± 0.012 |
CMGNN | 0.032 ± 0.009 | −0.036 ± 0.005 | 0.025 ± 0.009 |
Acceleration (m/s2) | |||
IR-STP | −0.744 ± −0.769 | −1.727 ± 0.462 | −1.016 ± 0.389 |
LAM | −0.997 ± 0.578 | −1.008 ± 0.389 | −1.295 ± 0.617 |
CMGNN | −0.636 ± 0.179 | −0.759 ± 0.211 | −0.879 ± 0.376 |
LA (m/s2) | |||
IR-STP | −0.112 ± 0.112 | 0.240 ± 0.034 | 0.199 ± 0.382 |
LAM | −0.242 ± 0.117 | −0.332 ± 0.197 | 0.152 ± 0.023 |
CMGNN | 0.141 ± 0.054 | −0.157 ± 0.034 | 0.140 ± 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Lv, J.; Liu, Q. Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios. Actuators 2024, 13, 260. https://doi.org/10.3390/act13070260
Zhu Y, Lv J, Liu Q. Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios. Actuators. 2024; 13(7):260. https://doi.org/10.3390/act13070260
Chicago/Turabian StyleZhu, Yuquan, Juntong Lv, and Qingchao Liu. 2024. "Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios" Actuators 13, no. 7: 260. https://doi.org/10.3390/act13070260
APA StyleZhu, Y., Lv, J., & Liu, Q. (2024). Leveraging Cooperative Intent and Actuator Constraints for Safe Trajectory Planning of Autonomous Vehicles in Uncertain Traffic Scenarios. Actuators, 13(7), 260. https://doi.org/10.3390/act13070260