Structure and Gait Design of a Lunar Exploration Hexapod Robot Based on Central Pattern Generator Model
Abstract
:1. Introduction
2. Structural Design of a Lunar Exploration Hexapod Robot
2.1. Design of the Bottom Plate of the Lunar Exploration Hexapod Robot
- (1)
- When moving, the interference between each leg is as follows: the rectangular layout has the highest overlap in the swing range of the legs, while the circular layout has the smallest overlap. This means that while ensuring no interference between adjacent legs, the circular layout has the largest swing space of the legs, followed by the elliptical layout, while the rectangular layout has the smallest overlap.
- (2)
- Effective distance for straight walking: The maximum effective distance that a single leg can walk is L, while ensuring that adjacent legs do not interfere. Figure 1 shows that the step effective distance of a circular layout is consistent with that of an ellipse, while the step effective distance of a rectangular layout is the smallest.
2.2. Structural Design of the Legs of a Lunar Exploration Hexapod Robot
3. Kinematic Analysis of the Lunar Exploration Hexapod Robot
4. Generation of CPG Tripod Gait Signal
4.1. Establishment of CPG Unit Model
4.2. Generation of Single Leg Signals
4.3. Three-Legged Gait Signal Generation
5. Prototype Experiment of a Lunar Exploration Hexapod Robot
5.1. Motion of Traditional Hexapod Robots
5.2. Movement of the Lunar Hexapod Robot
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wedler, A.; Schuster, M.J.; Müller, M.G.; Vodermayer, B.; Meyer, L.; Giubilato, R.; Vayugundla, M.; Smisek, M.; Dömel, A.; Steidle, F.; et al. German Aerospace Center’s Advanced Robotic Technology for Future Lunar Scientific Missions. Phil. Trans. R. Soc. A. 2021, 379, 20190574. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y.; Zhang, Y. Numerical Investigation of the Ground-Based Thermal Environment Experimental Approaches to Reveal the Ice-Sublimation Phenomenon inside Lunar Regolith. Acta Astronaut. 2023, 205, 295–309. [Google Scholar] [CrossRef]
- Belo, F.A.W.; Birk, A.; Brunskill, C.; Kirchner, F.; Lappas, V.; Remy, C.D.; Roccella, S.; Rossi, C.; Tikanmäki, A.; Visentin, G. The ESA Lunar Robotics Challenge: Simulating Operations at the Lunar South Pole. J. Field Robot 2012, 29, 601–626. [Google Scholar] [CrossRef]
- Bo, Z.; Feng, Y.; Huang, W.; Cui, Y. Diffusion Phenomenon of Lunar Soil Particles under a Plume in a Vacuum Environment by Numerical Simulation. Acta Astronaut. 2020, 171, 403–414. [Google Scholar] [CrossRef]
- Dunker, P.A.; Lewinger, W.A.; Hunt, A.J.; Quinn, R.D. A Biologically Inspired Robot for Lunar In-Situ Resource Utilization. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; IEEE: St. Louis, MO, USA, 2009; pp. 5039–5044. [Google Scholar]
- Martinez Rocamora, B.; Kilic, C.; Tatsch, C.; Pereira, G.A.S.; Gross, J.N. Multi-Robot Cooperation for Lunar In-Situ Resource Utilization. Front. Robot. AI 2023, 10, 1149080. [Google Scholar] [CrossRef]
- Xiong, G.; Guo, X.; Yuan, S.; Xia, M.; Wang, Z. The Mechanical and Structural Properties of Lunar Regolith Simulant Based Geopolymer under Extreme Temperature Environment on the Moon through Experimental and Simulation Methods. Constr. Build. Mater. 2022, 325, 126679. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Dung, V.T.; Sato, H.; Vo-Doan, T.T. Efficient Autonomous Navigation for Terrestrial Insect-Machine Hybrid Systems. Sens. Actuators B Chem. 2023, 376, 132988. [Google Scholar] [CrossRef]
- Jiang, S.; Song, W.; Zhou, Z.; Sun, S. Stability Analysis of the Food Delivery Robot with Suspension Damping Structure. Heliyon 2022, 8, e12127. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Sato, H.; Vo-Doan, T.T. Burst Stimulation for Enhanced Locomotion Control of Terrestrial Cyborg Insects. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–3 June 2023; IEEE: London, UK, 2023; pp. 1170–1176. [Google Scholar]
- Si, W.; Zhu, Z.; Wu, G.; Zhang, Y.; Chen, Y.; Sha, J. Encoding Manipulation of DNA-Nanoparticle Assembled Nanorobot Using Independently Charged Array Nanopores. Small Methods 2022, 6, 2200318. [Google Scholar] [CrossRef]
- Zhu, Y.; Chu, K.; Chen, X.; Wang, X.; Su, H. Research and Application of a Multi-Degree-of-Freedom Soft Actuator. Sens. Actuators A Phys. 2022, 338, 113492. [Google Scholar] [CrossRef]
- Manoonpong, P.; Patanè, L.; Xiong, X.; Brodoline, I.; Dupeyroux, J.; Viollet, S.; Arena, P.; Serres, J.R. Insect-Inspired Robots: Bridging Biological and Artificial Systems. Sensors 2021, 21, 7609. [Google Scholar] [CrossRef]
- Chen, J.; Xie, F.; Huang, L.; Yang, J.; Liu, X.; Shi, J. A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes. Remote Sens. 2022, 14, 2114. [Google Scholar] [CrossRef]
- Larsen, A.D.; Büscher, T.H.; Chuthong, T.; Pairam, T.; Bethge, H.; Gorb, S.N.; Manoonpong, P. Self-Organized Stick Insect-Like Locomotion under Decentralized Adaptive Neural Control: From Biological Investigation to Robot Simulation. Adv. Theory Simul. 2023, 6, 2300228. [Google Scholar] [CrossRef]
- Büschges, A.; Akay, T.; Gabriel, J.P.; Schmidt, J. Organizing Network Action for Locomotion: Insights from Studying Insect Walking. Brain Res. Rev. 2008, 57, 162–171. [Google Scholar] [CrossRef]
- Cao, F.; Sato, H. Remote Radio Controlled Insect-Computer Hybrid Legged Robot. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; IEEE: Kaohsiung, Taiwan, 2017; pp. 59–62. [Google Scholar]
- Niemeier, M.; Jeschke, M.; Dürr, V. Effect of Thoracic Connective Lesion on Inter-Leg Coordination in Freely Walking Stick Insects. Front. Bioeng. Biotechnol. 2021, 9, 628998. [Google Scholar] [CrossRef] [PubMed]
- van der Meer, D.; Chovet, L.; Bera, A.; Richard, A.; Sánchez Cuevas, P.J.; Sánchez-Ibáñez, J.R.; Olivares-Mendez, M. REALMS: Resilient Exploration and Lunar Mapping System. Front. Robot. AI 2023, 10, 1127496. [Google Scholar] [CrossRef] [PubMed]
- Tran-Ngoc, P.T.; Le, D.L.; Chong, B.S.; Nguyen, H.D.; Dung, V.T.; Cao, F.; Li, Y.; Kai, K.; Gan, J.H.; Vo-Doan, T.T.; et al. Intelligent Insect–Computer Hybrid Robot: Installing Innate Obstacle Negotiation and Onboard Human Detection onto Cyborg Insect. Adv. Intell. Syst. 2023, 5, 2200319. [Google Scholar] [CrossRef]
- Lordos, G.; Brown, M.J.; Latyshev, K.; Liao, A.; Shah, S.; Meza, C.; Bensche, B.; Cao, C.; Chen, Y.; Miller, A.S.; et al. WORMS: Field-Reconfigurable Robots for Extreme Lunar Terrain. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; IEEE: Big Sky, MT, USA, 2023; pp. 1–21. [Google Scholar]
- Sun, C.; Yang, G.; Yao, S.; Liu, Q.; Wang, J.; Xiao, X. RHex-T3: A Transformable Hexapod Robot with Ladder Climbing Function. IEEE/ASME Trans. Mechatron. 2023, 28, 1939–1947. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B.; Chen, W.; Song, R. The Design and Analysis of Cockroach Robot Based on the Couple Four-Bar Linkage Mechanism. In Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; IEEE: Taichung, Taiwan, 2010; pp. 109–114. [Google Scholar]
- Pinto, C.M.A.; Rocha, D.; Santos, C.P.; Matos, V. A New CPG Model for the Generation of Modular Trajectories for Hexapod Robots. AIP Conf. Proc. 2011, 1389, 504–508. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Zhang, D.; Jiao, X.; Wang, J.; Zhang, M. Accurate Perception and Representation of Rough Terrain for a Hexapod Robot by Analysing Foot Locomotion. Measurement 2022, 193, 110904. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, Q.; Yang, H.; Tang, Y. CPG Modulates the Omnidirectional Motion of a Hexapod Robot in Unstructured Terrain. J. Bionic. Eng. 2023, 20, 558–567. [Google Scholar] [CrossRef]
θi | ||||
---|---|---|---|---|
1 | 0 | 0 | ||
2 | L1 | 0 | 0 | |
3 | L2 | 0 | 0 | |
4 | 0 | L3 | 0 | 0 |
Parameters | Lunar Exploration Robot | Traditional Robot |
---|---|---|
Length | 200 mm | 200 mm |
Width | 150 mm | 150 mm |
Weight | 1.42 kg | 1.84 kg |
Maximum height | 140 mm | 160 mm |
Minimum height | 120 mm | 125 mm |
Body material | Nylon | Nylon |
Servo torque | 0.43 N·m | 0.43 N·m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, B.-M.; Guo, Y.-Q.; Luo, W.-H.; Xu, Z.-D.; Xu, Q. Structure and Gait Design of a Lunar Exploration Hexapod Robot Based on Central Pattern Generator Model. Actuators 2024, 13, 79. https://doi.org/10.3390/act13020079
Shu B-M, Guo Y-Q, Luo W-H, Xu Z-D, Xu Q. Structure and Gait Design of a Lunar Exploration Hexapod Robot Based on Central Pattern Generator Model. Actuators. 2024; 13(2):79. https://doi.org/10.3390/act13020079
Chicago/Turabian StyleShu, Bin-Ming, Ying-Qing Guo, Wen-Hao Luo, Zhao-Dong Xu, and Qiang Xu. 2024. "Structure and Gait Design of a Lunar Exploration Hexapod Robot Based on Central Pattern Generator Model" Actuators 13, no. 2: 79. https://doi.org/10.3390/act13020079
APA StyleShu, B. -M., Guo, Y. -Q., Luo, W. -H., Xu, Z. -D., & Xu, Q. (2024). Structure and Gait Design of a Lunar Exploration Hexapod Robot Based on Central Pattern Generator Model. Actuators, 13(2), 79. https://doi.org/10.3390/act13020079