Multi-Objective Optimization for Forming Quality of Laser and CMT-P Arc Hybrid Additive Manufacturing Aluminum Alloy Using Response Surface Methodology
Abstract
:1. Introduction
2. Experimental Procedures
Additive Manufacturing and Forming Quality Analysis Methods
3. Results and Discussion
3.1. Effect of Process Parameters on Forming Accuracy
3.1.1. Regression Model for Forming Accuracy and Process Parameters
3.1.2. Effect of Wire Feeding Speed on Forming Accuracy
3.1.3. Effect of Scanning Speed on Forming Accuracy
3.1.4. Effect of Laser Power on Forming Accuracy
3.1.5. Mutual Interaction between Process Parameters on Forming Accuracy
3.2. Effect of Process Parameters on Spattering Degree
3.2.1. Regression Model for Spattering Degree and Process Parameters
3.2.2. Effect of Wire Feeding Speed on Spattering Degree
3.2.3. Effect of Scanning Speed on Spattering Degree
3.2.4. Effect of Laser Power on Spattering Degree
3.2.5. Mutual Interaction between Process Parameters on Spattering Degree
3.3. Effect of Process Parameters on Porosity
3.3.1. Regression Model for Porosity and Process Parameters
3.3.2. Effect of Wire Feeding Speed on Porosity
3.3.3. Effect of Scanning Speed on Porosity
3.3.4. Effect of Laser Power on Porosity
3.3.5. Mutual Interaction between Process Parameters on Porosity
3.4. Multi-Objective Optimization on Forming Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montanari, R.; Palombi, A.; Richetta, M.; Varone, A. Additive manufacturing of aluminum alloys for aeronautic applications: Advantages and problems. Metals 2023, 13, 716. [Google Scholar] [CrossRef]
- Elelwi, M.; Pinto, F.S.; Botez, R.M.; Dao, T.-M. Multidisciplinary optimization for weight saving in a variable tapered span-morphing wing using composite materials—Application to the UAS-S4. Actuators 2022, 11, 121. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, B.; Zhang, S. The advancement of 7XXX series aluminum alloys for aircraft structures: A review. Metals 2021, 11, 718. [Google Scholar] [CrossRef]
- Chen, S.; Cao, D.; Wei, J.; He, G.; Fang, B.; Li, Y. Investigations on nonlinear dynamic modeling and vibration responses of T-shaped beam structures. Actuators 2022, 11, 293. [Google Scholar] [CrossRef]
- Soliman, H.A.; Elbestawi, M. Titanium aluminides processing by additive manufacturing—A review. Int. J. Adv. Manuf. Technol. 2022, 119, 5583–5614. [Google Scholar] [CrossRef]
- Jin, B.; Wang, Q.; Zhao, L.; Pan, A.; Ding, X.; Gao, W.; Song, Y.; Zhang, X. A review of additive manufacturing techniques and post-processing for high-temperature titanium alloys. Metals 2023, 13, 1327. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, F.; Cao, S.; Fan, Y.; Xie, R. Preparation and characterization of CMT wire arc additive manufacturing Al-5%Mg alloy depositions through assisted longitudinal magnetic field. J. Manuf. Process. 2023, 101, 576–588. [Google Scholar] [CrossRef]
- Xi, X.; Lin, D.; Song, X.; Luo, X.; Ma, R.; Shi, Z.; Bian, H.; Fu, W.; Dong, Z.; Tan, C. Strength-plasticity transition mechanism after the solution treatment of GH3230 superalloy fabricated via laser powder bed fusion. Mater. Sci. Eng. A 2023, 15, 145124. [Google Scholar] [CrossRef]
- Tomar, B.; Shiva, S. Cold metal transfer-based wire arc additive manufacturing. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 157. [Google Scholar] [CrossRef]
- Eyers, D.R.; Potter, A.T. Industrial additive manufacturing: A manufacturing systems perspective. Comput. Ind. 2017, 92–93, 208–218. [Google Scholar] [CrossRef]
- Thapliyal, S. Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. Mater. Res. Express 2019, 6, 112006. [Google Scholar] [CrossRef]
- Jensen, P.D.L.; Wang, F.; Dimino, I.; Sigmund, O. Topology optimization of large-scale 3D morphing wing structures. Actuators 2021, 10, 217. [Google Scholar] [CrossRef]
- Gong, G.; Ye, J.; Chi, Y.; Zhao, Z.; Wang, Z.; Xia, G.; Du, X.; Tian, H.; Yu, H.; Chen, C. Research status of laser additive manufacturing for metal: A review. J. Mater. Res. Technol. 2021, 15, 855–884. [Google Scholar] [CrossRef]
- Chang, T.; Fang, X.; Liu, G.; Zhang, H.; Huang, K. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys. J. Mater. Sci. Technol. 2022, 124, 65–75. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing. Mater. Sci. 2021, 27, 18–26. [Google Scholar] [CrossRef]
- Huang, W.; Chen, S.; Xiao, J.; Jiang, X.; Jia, Y. Laser wire-feed metal additive manufacturing of the Al alloy. Opt. Laser Technol. 2021, 134, 106627. [Google Scholar] [CrossRef]
- Xi, X.; Yan, M.; Ma, R.; Shi, Z.; Tang, Z.; Li, Z.; Tan, C.; Dong, Z.; Song, X. Significantly improved weldability in laser welding of additively manufactured haynes 230 superalloys by tailoring microstructure. J. Mater. Res. Technol. 2023, 26, 7873–7892. [Google Scholar] [CrossRef]
- Wieczorowski, M.; Pereira, A.; Carou, D.; Gapinski, B.; Ramírez, I. Characterization of 5356 aluminum walls produced by wire arc additive manufacturing (WAAM). Materials 2023, 16, 2570. [Google Scholar] [CrossRef]
- Näsström, J.; Brueckner, F.; Kaplan, A.F.H. Laser enhancement of wire arc additive manufacturing. J. Laser 2019, 31, 022307. [Google Scholar] [CrossRef]
- Gong, M.; Meng, Y.; Zhang, S.; Zhang, Y.; Zeng, X.; Gao, M. Laser-arc hybrid additive manufacturing of stainless steel with beam oscillation. Addit. Manuf. 2020, 33, 101180. [Google Scholar] [CrossRef]
- Wang, C.; Suder, W.; Ding, J.; Williams, S. Wire based plasma arc and laser hybrid additive manufacture of Ti-6Al-4V. J. Mater. Process. Technol. 2021, 293, 117080. [Google Scholar] [CrossRef]
- Liu, D.; Wu, D.; Wang, R.; Shi, J.; Niu, F.; Ma, G. Formation mechanism of Al-Zn-Mg-Cu alloy fabricated by laser-arc hybrid additive manufacturing: Microstructure evaluation and mechanical properties. Addit. Manuf. 2022, 50, 102554. [Google Scholar] [CrossRef]
- Ma, G.; Wang, R.; Liu, D.; Wu, S.; Niu, F.; Wu, D. Laser-arc hybrid additive manufactured Al Cu alloy for T-shaped structure: Microstructure evaluation and molten pool behavior. J. Manuf. Process. 2022, 79, 442–459. [Google Scholar] [CrossRef]
- Ma, S.; Chen, X.; Jiang, M.; Li, B.; Wang, Z.; Lei, Z.; Chen, Y. Surface morphology, microstructure and mechanical properties of Al–Mg–Sc alloy thin wall produced by laser-arc hybrid additive manufacturing. Thin-Walled Struct. 2023, 186, 110674. [Google Scholar] [CrossRef]
- Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold metal transfer (CMT) technology—An overview. Def. Technol. 2018, 14, 28–44. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Z.; Gou, G.; Peng, L.; Liu, Y.; Yang, T.; Gao, W. Arc characteristics and metal transfer behavior of CMT+P process for Q235 steel of titanium-steel composite plate. Int. J. Mod. Phys. B 2019, 33, 1940040. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Langelandsvik, G.; Akselsen, O.M.; Furu, T.; Roven, H.J. Review of aluminum alloy development for wire arc additive manufacturing. Materials 2021, 14, 5370. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Yin, J.; Li, Y.; Nie, Z.; Li, X.; You, D.; Guan, K.; Duan, W.; Cao, L.; et al. A review of spatter in laser powder bed fusion additive manufacturing:In situ detection, generation, effects, and countermeasures. Micromachines 2022, 13, 1366. [Google Scholar] [CrossRef]
- Basu, D.; Wu, Z.; Meyer, J.L.L.; Larson, E.; Kuo, R.; Rollett, A. Entrapped gas and process parameter-induced porosity formation in additively manufactured 17-4 PH stainless steel. J. Mater. Eng. Perform. 2021, 30, 5195–5202. [Google Scholar] [CrossRef]
- Wu, D.; Hua, X.; Ye, Y.; Huang, L.; Li, F.; Huang, Y. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy. J. Phys. D Appl. Phys. 2018, 51, 185604. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Liu, X.; Cao, Y.; Wu, D. Numerical study of spatter formation during fiber laser welding of aluminum alloy. J. Manuf. Process. 2018, 31, 72–79. [Google Scholar] [CrossRef]
- Anwar, A.B.; Ibrahim, I.H.; Pham, Q. Spatter transport by inert gas flow in selective laser melting: A simulation study. Powder Technol. 2019, 352, 103–116. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Gao, M.; Yan, J.; Zeng, X.Y. Microstructure and process characterization of laser-cold metal transfer hybrid welding of AA6061 aluminum alloy. Int. J. Adv. Manuf. Technol. 2013, 68, 1253–1260. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, M.; Zeng, X. Influences of synergy effect between laser and arc on laser-arc hybrid welding of aluminum alloys. Opt. Laser Technol. 2019, 120, 105766. [Google Scholar] [CrossRef]
- Han, X.; Yang, Z.; Ma, Y.; Shi, C.; Xin, Z. Comparative study of laser-arc hybrid welding for AA6082-T6 aluminum alloy with two different arc modes. Metals 2020, 10, 407. [Google Scholar] [CrossRef]
- Derekar, K.S.; Addison, A.; Joshi, S.S.; Zhang, X.; Lawrence, J.; Xu, L.; Melton, G.; Griffiths, D. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int. J. Adv. Manuf. Technol. 2020, 107, 311–331. [Google Scholar] [CrossRef]
- Cong, B.; Ding, J.; Williams, S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int. J. Adv. Manuf. Technol. 2015, 76, 1593–1606. [Google Scholar] [CrossRef]
- Wang, D.; Lu, J.; Tang, S.; Yu, L.; Fan, H.; Ji, L.; Liu, C. Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current. Materials 2018, 11, 1344. [Google Scholar] [CrossRef]
- Liu, M.; Ma, G.; Liu, D.; Yu, J.; Niu, F.; Wu, D. Microstructure and mechanical properties of aluminum alloy prepared by laser-arc hybrid additive manufacturing. J. Laser Appl. 2020, 32, 022052. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Lu, X.; Zhang, T.; Wang, H. Optimization of porosity and surface roughness of CMT-P wire arc additive manufacturing of AA2024 using response surface methodology and NSGA-II. J. Mater. Res. Technol. 2023, 24, 6923–6941. [Google Scholar] [CrossRef]
- Pang, J.; Hu, S.; Shen, J.; Wang, P.; Liang, Y. Arc characteristics and metal transfer behavior of CMT+P welding process. J. Mater. Process. Technol. 2016, 238, 212–217. [Google Scholar] [CrossRef]
Element | Cu | Mg | Mn | Fe | Zn | Si | Al |
---|---|---|---|---|---|---|---|
2A12-T351 (Substrate) | 4.54 | 1.65 | 0.61 | 0.17 | 0.16 | 0.075 | Bal. |
2024 (Deposited Wire) | 4.57 | 1.59 | 0.668 | 0.111 | 0.0092 | 0.0422 | Bal. |
Coding Levels | Factors | ||
---|---|---|---|
A: Wire Feeding Speed Vw/m·min−1 | B: Scanning Speed Vs/mm·s−1 | C: Laser Power P/W | |
−1.5 | 4.0 | 10 | 1700 |
−1 | 4.2 | 12 | 2000 |
0 | 4.6 | 16 | 2500 |
+1 | 5.0 | 20 | 3000 |
+1.5 | 5.2 | 22 | 3300 |
No. | Input Factor | Response Value | ||||
---|---|---|---|---|---|---|
Wire Feeding Speed (Vw/m·min−1) | Scanning Speed (Vs/mm·s−1) | Laser Power (P/W) | Forming Accuracy (%) | Spattering Degree (%) | Porosity (%) | |
1 | 4.2 | 12 | 2000 | 87.33 | 1.52 | 1.75 |
2 | 5.0 | 12 | 2000 | 84.40 | 2.05 | 0.84 |
3 | 4.2 | 20 | 2000 | 84.91 | 1.24 | 1.48 |
4 | 5.0 | 20 | 2000 | 78.74 | 1.67 | 0.51 |
5 | 4.2 | 12 | 3000 | 78.15 | 2.04 | 1.92 |
6 | 5.0 | 12 | 3000 | 80.33 | 2.60 | 1.99 |
7 | 4.2 | 20 | 3000 | 75.79 | 1.88 | 0.96 |
8 | 5.0 | 20 | 3000 | 75.62 | 2.11 | 1.30 |
9 | 4.0 | 16 | 2500 | 79.34 | 1.24 | 0.55 |
10 | 5.2 | 16 | 2500 | 78.33 | 1.78 | 0.42 |
11 | 4.6 | 10 | 2500 | 85.48 | 2.76 | 2.48 |
12 | 4.6 | 22 | 2500 | 77.84 | 2.10 | 1.23 |
13 | 4.6 | 16 | 1700 | 87.49 | 1.11 | 0.45 |
14 | 4.6 | 16 | 3300 | 75.62 | 2.02 | 1.14 |
15 | 4.6 | 16 | 2500 | 75.35 | 1.93 | 0.64 |
16 | 4.6 | 16 | 2500 | 79.47 | 1.97 | 0.24 |
17 | 4.6 | 16 | 2500 | 76.51 | 1.64 | 0.76 |
18 | 4.6 | 16 | 2500 | 77.80 | 1.22 | 0.21 |
19 | 4.6 | 16 | 2500 | 78.16 | 2.04 | 0.38 |
20 | 4.6 | 16 | 2500 | 77.08 | 1.21 | 0.50 |
Source | Sum of Squares | DOF | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 286.20 | 9 | 31.80 | 21.01 | <0.0001 | Yes |
A | 5.93 | 1 | 5.93 | 3.92 | 0.0760 | Yes |
B | 56.73 | 1 | 56.73 | 37.47 | 0.0001 | Yes |
C | 150.74 | 1 | 150.74 | 99.57 | <0.0001 | Yes |
AB | 3.92 | 1 | 3.92 | 2.59 | 0.1388 | No |
AC | 15.44 | 1 | 15.44 | 10.20 | 0.0096 | Yes |
BC | 0.1264 | 1 | 0.1264 | 0.0835 | 0.7785 | No |
A2 | 1.50 | 1 | 1.50 | 0.9917 | 0.3428 | No |
B2 | 27.52 | 1 | 27.52 | 18.18 | 0.0017 | Yes |
C2 | 25.17 | 1 | 25.17 | 16.63 | 0.022 | Yes |
Residual | 15.14 | 10 | 1.51 | - | - | - |
Lack of Fit | 5.00 | 5 | 1.00 | 0.4936 | 0.7716 | No |
Pure Error | 10.14 | 5 | 2.03 | - | - | - |
Cor Total | 301.34 | 19 | - | - | - | - |
R2 = 0.9498 | Adjusted R2 = 0.9045 | |||||
Predicted R2 = 0.8294 | Adeq Precision = 14.2745 |
Source | Sum of Squares | DOF | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 3.20 | 9 | 0.3560 | 4.87 | 0.0105 | Yes |
A | 0.5243 | 1 | 0.5243 | 7.18 | 0.0231 | Yes |
B | 0.4232 | 1 | 0.4232 | 5.79 | 0.0369 | Yes |
C | 0.9911 | 1 | 0.9911 | 13.57 | 0.0042 | Yes |
AB | 0.0231 | 1 | 0.0231 | 0.3164 | 0.5862 | No |
AC | 0.0036 | 1 | 0.0036 | 0.0495 | 0.8285 | No |
BC | 0.0000 | 1 | 0.0000 | 0.0002 | 0.9898 | No |
A2 | 0.0542 | 1 | 0.0542 | 0.7418 | 0.4093 | No |
B2 | 1.17 | 1 | 1.17 | 15.97 | 0.0025 | Yes |
C2 | 0.0221 | 1 | 0.0221 | 0.3025 | 0.5944 | No |
Residual | 0.7304 | 10 | 0.0730 | - | - | - |
Lack of Fit | 0.0209 | 5 | 0.0042 | 0.0295 | 0.9993 | No |
Pure Error | 0.7095 | 5 | 0.1419 | - | - | - |
Cor Total | 3.93 | 19 | - | - | - | - |
R2 = 0.8143 | Adjusted R2 = 0.6472 | |||||
Predicted R2 = 0.6985 | Adeq Precision = 8.2691 |
Source | Sum of Squares | DOF | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 7.70 | 9 | 0.8556 | 21.37 | <0.0001 | Yes |
A | 0.2218 | 1 | 0.2218 | 5.54 | 0.0404 | Yes |
B | 1.36 | 1 | 1.36 | 33.99 | 0.0002 | Yes |
C | 0.5532 | 1 | 0.5532 | 13.81 | 0.0040 | Yes |
AB | 0.0055 | 1 | 0.0055 | 0.1377 | 0.7184 | No |
AC | 0.6555 | 1 | 0.6555 | 16.37 | 0.0023 | Yes |
BC | 0.1378 | 1 | 0.1378 | 3.44 | 0.0933 | Yes |
A2 | 0.024 | 1 | 0.024 | 0.5993 | 0.4568 | No |
B2 | 4.45 | 1 | 4.45 | 111.14 | <0.0001 | Yes |
C2 | 0.3215 | 1 | 0.3215 | 8.03 | 0.0177 | Yes |
Residual | 0.4004 | 10 | 0.0400 | - | - | - |
Lack of Fit | 0.1593 | 5 | 0.0319 | 0.6605 | 0.6699 | not significant |
Pure Error | 0.2412 | 5 | 0.0482 | - | - | - |
Cor Total | 8.10 | 19 | - | - | - | - |
R2 = 0.9506 | Adjusted R2 = 0.9061 | |||||
Predicted R2 = 0.8095 | Adeq Precision = 14.5924 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Zhang, Z.; Li, H.; Zhang, T.; Lu, X.; Kang, J. Multi-Objective Optimization for Forming Quality of Laser and CMT-P Arc Hybrid Additive Manufacturing Aluminum Alloy Using Response Surface Methodology. Actuators 2024, 13, 23. https://doi.org/10.3390/act13010023
He S, Zhang Z, Li H, Zhang T, Lu X, Kang J. Multi-Objective Optimization for Forming Quality of Laser and CMT-P Arc Hybrid Additive Manufacturing Aluminum Alloy Using Response Surface Methodology. Actuators. 2024; 13(1):23. https://doi.org/10.3390/act13010023
Chicago/Turabian StyleHe, Shiwei, Zhiqiang Zhang, Hanxi Li, Tiangang Zhang, Xuecheng Lu, and Jiajie Kang. 2024. "Multi-Objective Optimization for Forming Quality of Laser and CMT-P Arc Hybrid Additive Manufacturing Aluminum Alloy Using Response Surface Methodology" Actuators 13, no. 1: 23. https://doi.org/10.3390/act13010023
APA StyleHe, S., Zhang, Z., Li, H., Zhang, T., Lu, X., & Kang, J. (2024). Multi-Objective Optimization for Forming Quality of Laser and CMT-P Arc Hybrid Additive Manufacturing Aluminum Alloy Using Response Surface Methodology. Actuators, 13(1), 23. https://doi.org/10.3390/act13010023