Electromechanical Actuators for Haptic Feedback with Fingertip Contact
Abstract
:1. Introduction
2. Different Actuators in Haptic Feedback
2.1. Haptic Requirements
2.2. Different Kinds of Haptic Actuators
3. Piezoelectric/Electrostrictive Actuators
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Logozzo, S.; Valigi, M.C.; Malvezzi, M. Modelling the Human Touch: A Basic Study for Haptic Technology. Tribol. Int. 2022, 166, 107352. [Google Scholar] [CrossRef]
- Delhaye, B.P.; Jarocka, E.; Barrea, A.; Thonnard, J.-L.; Edin, B.; Lefèvre, P. High-resolution Imaging of Skin Deformation Shows that Afferents from Human Fingertips Signal Slip Onset. eLife 2021, 10, e64679. [Google Scholar] [CrossRef] [PubMed]
- van Kuilenburg, J.; Masen, M.A.; van der Heide, E. A Review of Fingerpad Contact Mechanics and Friction and How this Affects Tactile Perception. Proc. Inst. Mech. Eng. J: J. Eng. Tribol. 2015, 229, 243–258. [Google Scholar] [CrossRef]
- Saddik, A.E.; Orozco, M.; Eid, M.; Cha, J. Haptics: General Principles. In Haptics Technologies: Bringing Touch to Multimedia; El Saddik, A., Orozco, M., Eid, M., Cha, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; pp. 1–20. [Google Scholar]
- Broström, C. Development of Tactile Actuators. Master of Science in Mechanical Engineering, Karlstad University, Karlstad, Sweden, 6 July 2020. [Google Scholar]
- Global Haptic Technology Market would Register a Healthy Growth USD 41.42 billion by 2027: Fior Markets. Financial Services Monitor Worldwide. 2022. Available online: https://remotexs.ntu.edu.sg/user/login?url=https://www.proquest.com/wire-feeds/global-haptic-technology-market-would-register/docview/2665531514/se-2 (accessed on 16 February 2023).
- Technavio Issues Report on the Haptics Market. Entertainment Close-up. 2020. Available online: https://link.gale.com/apps/doc/A624015449/ITOF?u=nantecun&sid=bookmark-ITOF&xid=1036ecd8 (accessed on 16 February 2023).
- Research and Markets Offers Report: Haptic Technology Market. Entertainment Close-up. 2021. Available online: https://link.gale.com/apps/doc/A652520028/ITOF?u=nantecun&sid=bookmark-ITOF&xid=18731156 (accessed on 16 February 2023).
- Basdogan, C.; Giraud, F.; Levesque, V.; Choi, S. A Review of Surface Haptics: Enabling Tactile Effects on Touch Surfaces. IEEE Trans. Haptics 2020, 13, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Adilkhanov, A.; Rubagotti, M.; Kappassov, Z. Haptic Devices: Wearability-Based Taxonomy and Literature Review. IEEE Access 2022, 10, 1. [Google Scholar] [CrossRef]
- Tang, X.; Li, H.; Ma, T.; Yang, Y.; Luo, J.; Wang, H.; Jiang, P. A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications. Actuators 2022, 11, 331. [Google Scholar] [CrossRef]
- Jin, H.; Kim, Y.; Youm, W.; Min, Y.; Seo, S.; Lim, C.; Hong, C.-H.; Kwon, S.; Park, G.; Park, S.; et al. Highly Pixelated, Untethered Tactile Interfaces for an Ultra-flexible On-skin Telehaptic System. npj Flex. Electron. 2022, 6, 82. [Google Scholar] [CrossRef]
- Kern, T.A. Engineering Haptic Devices: A Beginner’s Guide for Engineers; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jarocka, E.; Pruszynski, J.A.; Johansson, R.S. Human Touch Receptors Are Sensitive to Spatial Details on the Scale of Single Fingerprint Ridges. J. Neurosci. 2021, 41, 3622. [Google Scholar] [CrossRef]
- Kuroki, S.; Watanabe, J.; Nishida, S.y. Integration of Vibrotactile Frequency Information beyond the Mechanoreceptor Channel and Somatotopy. Sci. Rep. 2017, 7, 2758. [Google Scholar] [CrossRef] [Green Version]
- Brooks, T.L. Telerobotic Response Requirements. In Proceedings of the 1990 IEEE International Conference on Systems, Man, and Cybernetics, Los Angeles, CA, USA, 4–7 November 1990; pp. 113–120. [Google Scholar]
- Hatzfeld, C. Haptics as an Interaction Modality. In Engineering Haptic Devices: A Beginner’s Guide; Hatzfeld, C., Kern, T.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–100. [Google Scholar]
- Yin, J.; Hinchet, R.; Shea, H.; Majidi, C. Wearable Soft Technologies for Haptic Sensing and Feedback. Adv. Funct. Mater. 2021, 31, 2007428. [Google Scholar] [CrossRef]
- Kontarinis, D.A. Tactile Displays for Dextrous Telemanipulation; ProQuest Dissertations Publishing: Cambridge, MA, USA, 1995. [Google Scholar]
- De Fazio, R.; Mastronardi, V.M.; Petruzzi, M.; De Vittorio, M.; Visconti, P. Human–Machine Interaction through Advanced Haptic Sensors: A Piezoelectric Sensory Glove with Edge Machine Learning for Gesture and Object Recognition. Future Internet 2023, 15, 14. [Google Scholar] [CrossRef]
- Gueorguiev, D.; Vezzoli, E.; Mouraux, A.; Lemaire-Semail, B.; Thonnard, J.-L. The Tactile Perception of Transient Changes in Friction. J. R. Soc. Interface 2017, 14, 20170641. [Google Scholar] [CrossRef]
- Saddik, A.E.; Orozco, M.; Eid, M.; Cha, J. Human Haptic Perception. In Haptics Technologies: Bringing Touch to Multimedia; El Saddik, A., Orozco, M., Eid, M., Cha, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2011; pp. 45–66. [Google Scholar]
- Lawrence, D.A.; Pao, L.Y.; Dougherty, A.M.; Pavlou, Y.; Brown, S.W.; Wallace, S.A. Human Perception of Friction in Haptic Interfaces. In Proceedings of the ASME 1998 International Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Anaheim, CA, USA, 15–20 November 1998; pp. 287–294. [Google Scholar]
- Korres, G.; Eid, M. Characterization of Ultrasound Tactile Display. In Proceedings of the 10th International Conference, EuroHaptics 2016: Haptics: Perception, Devices, Control, and Applications, London, UK, 4–7 July 2016; pp. 78–89. [Google Scholar]
- Nara, T.; Takasaki, M.; Maeda, T.; Higuchi, T.; Ando, S.; Tachi, S. Surface Acoustic Wave Tactile Display. IEEE Comput. Graph. Appl. 2001, 21, 56–63. [Google Scholar] [CrossRef]
- Mullenbach, J.; Johnson, D.; Colgate, J.E.; Peshkin, M.A. ActivePaD Surface Haptic Device. In Proceedings of the 2012 IEEE Haptics Symposium (HAPTICS), Vancouver, BC, Canada, 4–7 March 2012; pp. 407–414. [Google Scholar]
- Casset, F.; Danel, J.S.; Renaux, P.; Chappaz, C.; Bernard, F.; Sednaoui, T.; Basrour, S.; Desloges, B.; Fanget, S. 4-inch Transparent Plates Based on Thin-film AlN Actuators for Haptic Applications. Mechatronics (Oxford) 2016, 40, 264–269. [Google Scholar] [CrossRef]
- Bernard, F.; Casset, F.; Danel, J.S.; Chappaz, C.; Basrour, S. Characterization of a Smartphone Size Haptic Rendering System Based on Thin-film AlN Actuators on Glass Substrates. J. Micromech. Microeng. 2016, 26, 84007. [Google Scholar] [CrossRef]
- Watanabe, T.; Fukui, S. A Method for Controlling Tactile Sensation of Surface Roughness Using Ultrasonic Vibration. In Proceedings of the 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, 21–27 May 1995; Volume 1131, pp. 1134–1139. [Google Scholar]
- Wiertlewski, M.; Friesen, R.F.; Colgate, J.E. Partial Squeeze Film Levitation Modulates Fingertip Friction. Proc. Natl. Acad. Sci. USA 2016, 113, 9210–9215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vezzoli, E.; Vidrih, Z.; Giamundo, V.; Lemaire-Semail, B.; Giraud, F.; Rodic, T.; Peric, D.; Adams, M. Friction Reduction through Ultrasonic Vibration Part 1: Modelling Intermittent Contact. IEEE Trans. Haptics 2017, 10, 196–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sednaoui, T.; Vezzoli, E.; Dzidek, B.; Lemaire-Semail, B.; Chappaz, C.; Adams, M. Friction Reduction through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation. IEEE Trans. Haptics 2017, 10, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Ghenna, S.; Vezzoli, E.; Giraud-Audine, C.; Giraud, F.; Amberg, M.; Lemaire-Semail, B. Enhancing Variable Friction Tactile Display Using an Ultrasonic Travelling Wave. IEEE Trans. Haptics 2017, 10, 296–301. [Google Scholar] [CrossRef] [Green Version]
- Willemet, L.; Kanzari, K.; Monnoyer, J.; Birznieks, I.; Wiertlewski, M. Initial Contact Shapes the Perception of Friction. Proc. Natl. Acad. Sci. USA 2021, 118, 1. [Google Scholar] [CrossRef]
- Emgin, S.E.; Aghakhani, A.; Sezgin, T.M.; Basdogan, C. HapTable: An Interactive Tabletop Providing Online Haptic Feedback for Touch Gestures. IEEE Trans. Vis. Comput. Graph. 2019, 25, 2749–2762. [Google Scholar] [CrossRef] [Green Version]
- Hua, H.; Chen, Y.; Tao, Y.; Qi, D.; Li, Y. A Highly Transparent Haptic Device with an Extremely Low Driving Voltage Based on Piezoelectric PZT Films on Glass. Sens. Actuators A: Phys. 2022, 335, 113396. [Google Scholar] [CrossRef]
- Biet, M.; Giraud, F.; Lemaire-Semail, B. Squeeze Film Effect for the Eesign of an Ultrasonic Tactile Plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 2678–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinsek, S.; Mahjoub, M.A.; Rupin, M.; Schenk, T.; Godard, N.; Girod, S.; Chemin, J.B.; Leturcq, R.; Valle, N.; Klein, S.; et al. Fully Transparent Friction-Modulation Haptic Device Based on Piezoelectric Thin Film. Adv. Funct. Mater. 2020, 30, 2003539. [Google Scholar] [CrossRef]
- Guide to Haptic Actuators in Product Design—Haptic Actuators & Types. Available online: https://engineeringproductdesign.com/knowledge-base/haptic-actuators/ (accessed on 16 February 2023).
- Gao, S.; Yan, S.; Zhao, H.; Nathan, A. Haptic Feedback. In Touch-Based Human-Machine Interaction: Principles and Applications; Gao, S., Yan, S., Zhao, H., Nathan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 91–108. [Google Scholar]
- Pyo, D.; Yang, T.-H.; Ryu, S.; Kwon, D.-S. Novel Linear Impact-Resonant Actuator for Mobile Applications. Sens. Actuators A Phys. 2015, 233, 460–471. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Q. A Review on Actuation and Sensing Techniques for MEMS-based Microgrippers. J. Micro-Bio Robot. 2017, 13, 1–14. [Google Scholar] [CrossRef]
- Tan, C.K.I.; Sharifzadeh Mirshekarloo, M.; Lai, S.C.; Zhang, L.; Yao, K. PNN-PZN-PMN-PZ-PT Multilayer Piezoelectric Ceramic with Low Sintering Temperature. Int. J. Appl. Ceram. Technol. 2016, 13, 889–895. [Google Scholar] [CrossRef]
- Della Schiava, N.; Thetpraphi, K.; Le, M.-Q.; Lermusiaux, P.; Millon, A.; Capsal, J.-F.; Cottinet, P.-J. Enhanced Figures of Merit for a High-Performing Actuator in Electrostrictive Materials. Polymers 2018, 10, 263. [Google Scholar] [CrossRef] [Green Version]
- Koo, J.-H.; Schuster, J.M.; Tantiyartyanontha, T.; Kim, Y.-M.; Yang, T.-H. Enhanced Haptic Sensations Using a Novel Electrostatic Vibration Actuator With Frequency Beating Phenomenon. IEEE Robot. Autom. Lett. 2020, 5, 1826–1833. [Google Scholar] [CrossRef]
- Poyraz, G.G.; Tamer, O. Different Haptic Senses with Multiple Vibration Motors. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 870–874. [Google Scholar]
- Doerger, S.R.; Harnett, C.K. Force-Amplified Soft Electromagnetic Actuators. Actuators 2018, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Understanding ERM Vibration Motor Characteristics. Available online: https://www.precisionmicrodrives.com/ab-004 (accessed on 16 February 2023).
- Rantala, J.; Majaranta, P.; Kangas, J.; Isokoski, P.; Akkil, D.; Špakov, O.; Raisamo, R. Gaze Interaction With Vibrotactile Feedback: Review and Design Guidelines. Hum.-Comput. Interact. 2020, 35, 1–39. [Google Scholar] [CrossRef]
- Gourishetti, R.; Kuchenbecker, K.J. Evaluation of Vibrotactile Output From a Rotating Motor Actuator. IEEE Trans. Haptics 2022, 15, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kuchenbecker, K.J. Vibrotactile Display: Perception, Technology, and Applications. Proc. IEEE 2013, 101, 2093–2104. [Google Scholar] [CrossRef]
- Hassanian, R.; Riedel, M.; Yeganeh, N. Numerical Investigation on the Acceleration Vibration Response of Linear Actuator. Open Access Library J. 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Kim, S.; Son, B.; Lee, Y.; Choi, H.; Lee, W.; Park, J. A Two-DOF Impact Actuator for Haptic Interaction. In Haptic Interaction: Perception, Devices and Algorithms; Springer: Singapore, 2019; pp. 173–177. [Google Scholar]
- Yang, J.J. Efficient Magnetic Microactuator with an Enclosed Magnetic Core. J. Micro/Nanopatterning Mater. Metrol. 2002, 1. Available online: https://www.spiedigitallibrary.org/journals/Journal-of-MicroNanolithography-MEMS-and-MOEMS/volume-1/issue-2/0000/Efficient-magnetic-microactuator-with-an-enclosed-magnetic-core/10.1117/1.1484161.short?SSO=1 (accessed on 16 February 2023).
- Guo, W.; Hu, Y.; Yin, Z.; Wu, H. On-Skin Stimulation Devices for Haptic Feedback and Human–Machine Interfaces. Adv. Mater. Technol. 2022, 7, 2100452. [Google Scholar] [CrossRef]
- Song, K.; Kim, S.; Cha, Y. Soft Electromagnetic Actuator for Assembly Robots. Smart Mater. Struct. 2020, 29, 67001. [Google Scholar] [CrossRef]
- Mao, G.; Drack, M.; Karami-Mosammam, M.; Wirthl, D.; Stockinger, T.; Schwödiauer, R.; Kaltenbrunner, M. Soft Electromagnetic Actuators. Sci. Adv. 2020, 6, eabc0251. [Google Scholar] [CrossRef]
- Do, T.N.; Phan, H.; Nguyen, T.Q.; Visell, Y. Miniature Soft Electromagnetic Actuators for Robotic Applications. Adv. Funct. Mater. 2018, 28, 1800244. [Google Scholar] [CrossRef]
- Nagai, S.; Ogura, S.; Shimazu, A.; Kawamura, A. Basic Study on 1D Array Actuator Using Solenoid Actuators for 2D Haptic Display Realization. In Proceedings of the 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, 9–11 March 2018; pp. 217–222. [Google Scholar]
- Kim, S.-Y.; Yang, T.-H. Miniature Impact Actuator for Haptic Interaction with Mobile Devices. Int. J. Control Autom. Syst. 2014, 12, 1283–1288. [Google Scholar] [CrossRef]
- Maluf, N.; Williams, K. Introduction to Microelectromechanical Systems Engineering, 2nd ed.; Artech House: Boston, UK, 2004. [Google Scholar]
- Tang, W.C.; Nguyen, T.-C.H.; Judy, M.W.; Howe, R.T. Electrostatic-comb Drive of Lateral Polysilicon Resonators. Sens. Actuators A Phys. 1990, 21, 328–331. [Google Scholar] [CrossRef]
- Ceyssens, F.; Sadeghpour, S.; Fujita, H.; Puers, R. Actuators: Accomplishments, Opportunities and Challenges. Sens. Actuators A Phys. 2019, 295, 604–611. [Google Scholar] [CrossRef]
- Conrad, H.; Kaiser, B.; Gaudet, M.; Langa, S.; Stolz, M.; Uhlig, S.; Schimmanz, K.; Schenk, H. A Novel Electrostatic Actuator Class. Procedia Eng. 2016, 168, 1533–1536. [Google Scholar] [CrossRef]
- Elshenety, A.; El-Kholy, E.E.; Abdou, A.F.; Soliman, M.; Elhagry, M.M. A Flexible Model for Studying Fringe Field Effect on Parallel Plate Actuators. J. Electr. Syst. Inf. Technol. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Algamili, A.S.; Khir, M.H.M.; Dennis, J.O.; Ahmed, A.Y.; Alabsi, S.S.; Ba Hashwan, S.S.; Junaid, M.M. A Review of Actuation and Sensing Mechanisms in MEMS-Based Sensor Devices. Nanoscale Res. Lett. 2021, 16, 16. [Google Scholar] [CrossRef]
- Joo, Y.-B.; Shin, E.-J.; Heo, Y.; Park, W.-H.; Yang, T.-H.; Kim, S.-Y. Development of an Electrostatic Beat Module for Various Tactile Sensations in Touch Screen Devices. Appl. Sci. 2019, 9, 1229. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-g.; Kim, S.-Y.; Kim, K.-B.; Kim, J. A Film-type Haptic Actuator for Mobile Devices. Proc. SPIE 2012, 8344, 83440V. [Google Scholar] [CrossRef]
- Yun, G.-y.; Kim, S.-Y.; Jang, S.-D.; Kim, D.-G.; Kim, J. Haptic Device Development Based on Electro Static Force of Cellulose Electro Active Paper. In Proceedings of the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, CA, USA, 6–10 March 2011; p. 797617. [Google Scholar]
- Yun, S.; Yun, G.-Y.; Kim, K.-B.; Kang, B.-W.; Kim, J.; Kim, S.-Y. Film-type Haptic Actuator Made with Cellulose Acetate Layers. J. Intell. Mater. Syst. Struct. 2014, 25, 1289–1294. [Google Scholar] [CrossRef]
- Watson, B.; Friend, J.; Yeo, L. Piezoelectric Ultrasonic Micro/Milli-scale Actuators. Sens. Actuators A Phys. 2009, 152, 219–233. [Google Scholar] [CrossRef]
- Uchino, K. Piezoelectric Devices. In Ferroelectric Devices & Piezoelectric Actuators - Research Misconceptions and Rectifications; DEStech Publications: Lancaster, PA, USA, 2017. [Google Scholar]
- Uchino, K. Ferroelectric Devices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Miniaturized Piezo Actuators With Haptic Feedback. ECN. 2017. Available online: https://remotexs.ntu.edu.sg/user/login?url=https://www.proquest.com/trade-journals/miniaturized-piezo-actuators-with-haptic-feedback/docview/2006921579/se-2 (accessed on 16 February 2023).
- Uchino, K. Piezoelectric Actuators 2006. J. Electroceram. 2008, 20, 301–311. [Google Scholar] [CrossRef]
- Poupyrev, I.; Rekimoto, J.; Maruyama, S. TouchEngine: A Tactile Display for Handheld Devices. In Proceedings of the Conference on Human Factors in Computing Systems, Minneapolis, MN, USA, 20–25 April 2002; pp. 644–645. [Google Scholar]
- Wagner, M.; Roosen, A.; Oostra, H.; Hoppener, R.; De, M.M. Novel Low Voltage Piezoactuators for High Displacements. J. Electroceram. 2005, 14, 231–238. [Google Scholar] [CrossRef]
- Kwon, D.-S.; Yang, T.-H.; Cho, J. Trend & Prospects of Haptic Technology in Mobile Devices. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 4–7 July 2010; pp. 3778–3783. [Google Scholar]
- Damjanovic, D.; Newnham, R.E. Electrostrictive and Piezoelectric Materials for Actuator Applications. J. Intell. Mater. Syst. Struct. 1992, 3, 190–208. [Google Scholar] [CrossRef]
- Hu, M.; Du, H.; Ling, S.-F.; Zhou, Z.; Li, Y. Motion control of an Electrostrictive Actuator. Mechatronics (Oxford) 2004, 14, 153–161. [Google Scholar] [CrossRef]
- Ngernchuklin, P. PMN-PT Piezoelectric-Electrostrictive Bi-Layer Composite Actuators; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2010. [Google Scholar]
- Hall, A.; Allahverdi, M.; Akdogan, E.K.; Safari, A. Piezoelectric/Electrostrictive Multimaterial PMN-PT Monomorph Actuators. J. Eur. Ceram. Soc. 2005, 25, 2991–2997. [Google Scholar] [CrossRef]
- Uchino, K. Glory of Piezoelectric Perovskites. Sci. Technol. Adv. Mater. 2015, 16, 046001–046016. [Google Scholar] [CrossRef] [Green Version]
- Uchino, K. Electroactive Polymers as Actuators. In Advanced Piezoelectric Materials—Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 319–352. [Google Scholar]
- Guyomar, D.; Cottinet, P.-J.; Lebrun, L.; Sebald, G. Characterization of an Electroactive Polymer Simultaneously Driven by an Electrical Field and a Mechanical Excitation: An Easy Means of Measuring the Dielectric Constant, the Young Modulus and the Electrostrictive Coefficients. Phys. Lett. A 2011, 375, 1699–1702. [Google Scholar] [CrossRef]
- Ganet, F.; Le, M.Q.; Capsal, J.F.; Gérard, J.F.; Pruvost, S.; Duchet, J.; Livi, S.; Lermusiaux, P.; Millon, A.; Cottinet, P.J. Haptic Feedback Using an All-organic Electroactive Polymer Composite. Sens. Actuators B Chem. 2015, 220, 1120–1130. [Google Scholar] [CrossRef]
- Capsal, J.-F.; Lallart, M.; Galineau, J.; Cottinet, P.-J.; Sebald, G.; Guyomar, D. Evaluation of Macroscopic Polarization and Actuation Abilities of Electrostrictive Dipolar Polymers Using the Microscopic Debye/Langevin Formalism. J. Phys. D Appl. Phys. 2012, 45, 205401. [Google Scholar] [CrossRef]
- Capsal, J.-F.; Galineau, J.; Lallart, M.; Cottinet, P.-J.; Guyomar, D. Plasticized Relaxor Fferroelectric Terpolymer: Toward Giant Electrostriction, High Mechanical Energy and Low Electric Field Actuators. Sens. Actuators A Phys. 2014, 207, 25–31. [Google Scholar] [CrossRef]
- Thetpraphi, K.; Le, M.Q.; Houachtia, A.; Cottinet, P.J.; Petit, L.; Audigier, D.; Kuhn, J.; Moretto, G.; Capsal, J.F. Surface Correction Control Based on Plasticized Multilayer P(VDF-TrFE-CFE) Actuator—Live Mirror. Adv. Opt. Mater. 2019, 7, 1900210. [Google Scholar] [CrossRef]
- Ozioko, O.; Navaraj, W.; Hersh, M.; Dahiya, R. Tacsac: A Wearable Haptic Device with Capacitive Touch-Sensing Capability for Tactile Display. Sensors 2020, 20, 4780. [Google Scholar] [CrossRef]
- Conrad, H.; Schenk, H.; Kaiser, B.; Langa, S.; Gaudet, M.; Schimmanz, K.; Stolz, M.; Lenz, M. A Small-gap Electrostatic Micro-Actuator for Large Deflections. Nat. Commun. 2015, 6, 10078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Yao, K. Crystallization Mechanism and Piezoelectric Properties of Solution-derived Ferroelectric Poly(vinylidene fluoride) Thin Films. Appl. Phys. Lett. 2006, 89, 112909. [Google Scholar] [CrossRef]
- Kim, J.; Song, C.-S.; Yun, S.-R. Cellulose Based Electro-active Papers: Performance and Environmental Effects. Smart Mater. Struct. 2006, 15, 719–723. [Google Scholar] [CrossRef]
- Haptic Energy Consumption. Available online: https://www.ti.com/lit/an/sloa194a/sloa194a.pdf?ts=1675427849728&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 14 February 2023).
- Boréas Technologies’ Ultra-Low-Power Haptic Chip Solves Power Problem with HD Touch. NASDAQ OMX’s News Release Distribution Channel. 2018. Available online: https://remotexs.ntu.edu.sg/user/login?url=https://www.proquest.com/wire-feeds/boréas-technologies-ultra-low-power-haptic-chip/docview/2117114145/se-2 (accessed on 16 February 2023).
- Heo, Y.H.; Choi, D.-S.; Kim, D.E.; Kim, S.-Y. Flexible Vibrotactile Actuator Based on Dielectric Elastomer for Smart Handheld Devices. Appl. Sci. 2021, 11, 12020. [Google Scholar] [CrossRef]
- Trase, I.; Tan, H.Z.; Chen, Z.; Zhang, J.X.J. Wearable Haptic Array of Flexible Electrostatic Transducers. In Proceedings of the Human Interface and the Management of Information. Information Presentation and Visualization: Thematic Area, HIMI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; pp. 369–385. [Google Scholar]
- Liang, K.; Li, C.; Tong, Y.; Fang, J.; Zhong, W. Design of a Low-Frequency Harmonic Rotary Piezoelectric Actuator. Actuators 2020, 10, 4. [Google Scholar] [CrossRef]
- Qiu, W.; Zhong, J.; Jiang, T.; Li, Z.; Yao, M.; Shao, Z.; Cheng, Q.; Liang, J.; Wang, D.; Peng, Y.; et al. A Low Voltage-Powered Soft Electromechanical Stimulation Patch for Haptics Feedback in Human-machine Interfaces. Biosens. Bioelectron. 2021, 193, 113616. [Google Scholar] [CrossRef]
- Leroy, E.; Hinchet, R.; Shea, H. Multimode Hydraulically Amplified Electrostatic Actuators for Wearable Haptics. Adv. Mater. (Weinheim) 2020, 32, 2002564. [Google Scholar] [CrossRef]
- Gao, P.; Yao, K.; Tang, X.; He, X.; Shannigrahi, S.; Lou, Y.; Zhang, J.; Okada, K. A Piezoelectric Micro-actuator with a Three-dimensional Structure and its Micro-fabrication. Sens. Actuators A Phys. 2006, 130, 491–496. [Google Scholar] [CrossRef]
- Yun, G.-Y.; Kim, J.; Kim, J.-H.; Kim, S.-Y. Fabrication and Testing of Cellulose EAPap Actuators for Haptic Application. Sens. Actuators A Phys. 2010, 164, 68–73. [Google Scholar] [CrossRef]
- Schmidt, G.C.; Werner, J.M.; Weissbach, T.; Strutwolf, J.; Eland, R.; Drossel, W.-G.; Hübler, A.C. Printed Multilayer Piezoelectric Transducers on Paper for Haptic Feedback and Dual Touch-Sound Sensation. Sensors 2022, 22, 3796. [Google Scholar] [CrossRef]
- Hosobata, T.; Yamamoto, A.; Higuchi, T. Transparent Synchronous Electrostatic Actuator for Long-Stroke Planar Motion. IEEE/ASME Trans. Mechatron 2015, 20, 1765–1776. [Google Scholar] [CrossRef]
- Liu, T.; Wallace, M.; Trolier-McKinstry, S.; Jackson, T.N. Piezoelectric Thin Films on Polyimide Substrates for Flexible Piezoelectric Devices. In Proceedings of the 2017 75th Annual Device Research Conference (DRC), South Bend, IN, USA, 25–28 June 2017; pp. 1–2. [Google Scholar]
- Seo, I.-T.; Lee, T.-G.; Kim, D.-H.; Hur, J.; Kim, J.-H.; Nahm, S.; Ryu, J.; Choi, B.-Y. Multilayer Piezoelectric Haptic Actuator with CuO-modified PZT-PZNN Ceramics. Sens. Actuators A: Phys. 2016, 238, 71–79. [Google Scholar] [CrossRef]
- Wu, J. Perovskite Lead-free Piezoelectric Ceramics. J. Appl. Phys. 2020, 127, 190901. [Google Scholar] [CrossRef]
- Irish State Gazette: S.I. No. 23 of 2020. European Union (Restriction of Certain Hazardous Substances in Electrical and Electronic Equipment) (Amendment) Regulations 2020. Available online: https://link.gale.com/apps/doc/A614274864/ITOF?u=nantecun&sid=bookmark-ITOF&xid=90358b5f (accessed on 16 February 2023).
- Council of the European Union:Proposal for a Directive of the European Parliament and of the Council amending Directive 2011/65/EU on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment ST 5708 2017 INIT. European Union News, 28 December 2017.
- Uchino, K. Lead Zirconate Titanate-Based Piezoceramics. In Advanced Piezoelectric Materials—Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 95–97. [Google Scholar]
- Schlögl, M.; Schneider, M.; Schmid, U. Piezoelectricity in Y0.09Al0.91N Thin Films. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2022, 276, 1. [Google Scholar] [CrossRef]
- Neff, B.; Casset, F.; Millet, A.; Agache, V.; Verplanck, N.; Boizot, F.; Fanget, S. Development of a MEMS Plate Based on Thin-Film Piezoelectric AlN Actuators for Biological Applications. Proceedings 2017, 1, 386. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Feng, J.; Zhao, Y.; Wang, J.; Xu, C. Ultrathin Flexible Linear-piezoelectric ZnO Thin Film Actuators: Tuning the Piezoelectric Responses by In-plane Epitaxial Strain. Appl. Surf. Sci. 2022, 599, 153969. [Google Scholar] [CrossRef]
- Xu, W.; Han, Z.; Liu, Y.; Chen, X.; Li, H.; Ren, L.; Zhang, Q.; Wang, Q. Composition Dependence of Microstructures and Ferroelectric Properties in Poly(vinylidene fluoride-ter-trifluoroethylene-ter-chlorodifluoroethylene) Terpolymers. Macromolecules 2020, 53, 3139–3147. [Google Scholar] [CrossRef]
- Zhao, J.; You, Z. Models for 31-Mode PVDF Energy Harvester for Wearable Applications. Sci. World 2014, 2014, 893496. [Google Scholar] [CrossRef]
- Bar-Cohen, Y.; Zhang, Q. Electroactive Polymer Actuators and Sensors. MRS Bull. 2008, 33, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Maccabi, N.; Grinberg, I.; Kassie, A.; Shmulevich, S.; Elata, D. Bulk PZT Actuator for Parallel out-of-plane motion: The Superiority of Torsion Deformation over Bending Deformation. Procedia Eng. 2016, 168, 1513–1516. [Google Scholar] [CrossRef]
- Petit, L.; Gonnard, P. Industrial Design of a Centimetric “TWILA” Ultrasonic Motor. Sens. Actuators A Phys. 2005, 120, 211–224. [Google Scholar] [CrossRef]
- Ciubotariu, D.A.; Ivan, I.A.; Clevy, C.; Lutz, P. Size-dependent Analysis and Experiments of Bulk PMN-PT [001] Piezoelectric Actuator for MOEMS Micro-mirrors. In Proceedings of the 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besacon, France, 8–11 July 2014; pp. 1267–1272. [Google Scholar]
- Benouhiba, A.; Belharet, D.; Bienaimé, A.; Chalvet, V.; Rakotondrabe, M.; Clévy, C. Development and Characterization of Thinned PZT bulk Technology Based Actuators Devoted to a 6-DOF Micropositioning Platform. Microelectron. Eng. 2018, 197, 53–60. [Google Scholar] [CrossRef]
- Yao, K.; Zhu, W.; Uchino, E.; Zhang, Z.; Lim, L.C. Design and Fabrication of a High Performance Multilayer Piezoelectric Actuator with Bending Deformation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-J.; Jeong, S.-J.; Seo, C.-E.; Cho, K.-H.; Koh, J.-H. Multi-layered Piezoelectric Energy Harvesters Based on PZT Ceramic Actuators. Ceram. Int. 2015, 41, S686–S690. [Google Scholar] [CrossRef]
- Randall, C.A.; Kelnberger, A.; Yang, G.Y.; Eitel, R.E.; Shrout, T.R. High Strain Piezoelectric Multilayer Actuators - A Material Science and Engineering Challenge. J. Electroceram. 2005, 14, 177–191. [Google Scholar] [CrossRef]
- TDK Extends Portfolio of Mini PowerHap Haptic Feedback Actuators. ECN. 2019. Available online: https://remotexs.ntu.edu.sg/user/login?url=https://www.proquest.com/trade-journals/tdk-extends-portfolio-mini-powerhap-haptic/docview/2259525014/se-2 (accessed on 16 February 2023).
- Yoo, J.-H.; Kim, S.; Jeong, Y.-H. Displacement Distribution Properties of Force Feedback Multilayer Piezoelectric Actuator. Ferroelectrics 2020, 554, 49–55. [Google Scholar] [CrossRef]
- Yoo, J.; Im, J.; Yu, I. Physical Properties of Pb(Mg1/2W1/2)O3-Pb(Ni1/3Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics Doped with Tungsten Oxide for Haptic Display Actuator. Ferroelectrics Lett. Section 2021, 48, 56–63. [Google Scholar] [CrossRef]
- Jeon, I.; Nam, H.; Lee, H.; Ahn, Y.; Roh, J. An 80-V Integrated Boost Converter for Piezoelectric Actuators in Smartphones. Analog Integr. Circuits Signal Process. 2013, 75, 531–537. [Google Scholar] [CrossRef]
- Piezo Haptic Driver Features Integrated Boost Converter. Product News Network. 2011. Available online: https://link.gale.com/apps/doc/A262559849/ITOF?u=nantecun&sid=bookmark-ITOF&xid=c5f3588b (accessed on 16 February 2023).
- TI Introduces Industry’s Most Highly Integrated Piezo Haptic Driver. 2011, p. 179. Available online: https://link.gale.com/apps/doc/A263531433/STND?u=nantecun&sid=bookmark-STND&xid=87221a4b (accessed on 16 February 2023).
- Yuan, H.; Li, L.; Hong, H.; Ying, Z.; Zheng, X.; Zhang, L.; Wen, F.; Xu, Z.; Wu, W.; Wang, G. Low Sintering Temperature, Large Strain and Reduced Strain Hysteresis of BiFeO3–BaTiO3 Ceramics for Piezoelectric Multilayer Actuator Applications. Ceram. Int. 2021, 47, 31349–31356. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.-H.; Seo, I.-T.; Kim, J.-H.; Park, J.-S.; Ryu, J.; Han, S.H.; Jang, B.-y.; Nahm, S. Large Strain in CuO-added (Na0.2K0.8)NbO3 Ceramic for Use in Piezoelectric Multilayer Actuators. J. Am. Ceram. Soc. 2016, 99, 938–945. [Google Scholar] [CrossRef]
- Xu, T.-B.; Tolliver, L.; Jiang, X.; Su, J. A Single Crystal Lead Magnesium Niobate-lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator. Appl. Phys. Lett. 2013, 102, 42906. [Google Scholar] [CrossRef]
- Jang, J.; Park, S.; Huh, J.; Lee, K.H.; Lee, H.-Y.; Choi, J.-J.; Min, Y.; Yoon, W.-H. Design, Fabrication, and Characterization of Piezoelectric Single Crystal Stack Actuators Based on PMN-PT. Sens. Actuators A Phys. 2022, 342, 113617. [Google Scholar] [CrossRef]
- Tran, K.S.; Phan, H.V.; Lee, H.Y.; Kim, Y.; Park, H.C. Blocking Force of a Piezoelectric Stack Actuator Made of Single Crystal Layers (PMN-29PT). Smart Mater. Struct. 2016, 25, 95038–95045. [Google Scholar] [CrossRef]
- Kim, J.H.; Oh, J.H.; Kwon, J.H.; Lim, K.J. Haptic Actuator Design Using PMN-PT Ceramic. Ferroelectrics 2014, 469, 105–110. [Google Scholar] [CrossRef]
- Xu, T.-B. Review on PMN-PT Relaxor Piezoelectric Single Crystal Materials for Cryogenic Actuators. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA USA & Virtual, 3–7 January 2022. [Google Scholar] [CrossRef]
- Zhang, L.; Oh, S.R.; Wong, T.C.; Tan, C.Y.; Yao, K. Piezoelectric polymer multilayer on flexible substrate for energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 2013–2020. [Google Scholar] [CrossRef]
- Liew, W.H.; Ke, Q.; Tan, C.Y.; Chen, S.; Yao, K. Ultrasonic Transducer From Piezoelectric Polymer Multilayer Through Electrophoretic Deposition for Photoacoustic Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2741–2748. [Google Scholar] [CrossRef]
- Ueda, K.; Kweon, S.-H.; Hida, H.; Mukouyama, Y.; Kanno, I. Transparent Piezoelectric Thin-Film Devices: Pb(Zr, Ti)O3 Thin Films on Glass Substrates. Sens. Actuators A Phys. 2021, 327, 112786. [Google Scholar] [CrossRef]
- Trolier-McKinstry, S.; Muralt, P. Thin Film Piezoelectrics for MEMS. J. Electroceramics 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Shetty, S.; Yang, J.I.; Stitt, J.; Trolier-McKinstry, S. Quantitative and High Spatial Resolution d33 Measurement of Piezoelectric Bulk and Thin Films. J. Appl. Phys. 2015, 118, 174104. [Google Scholar] [CrossRef] [Green Version]
- Bienaimé, A.; Chalvet, V.; Clévy, C.; Gauthier-Manuel, L.; Baron, T.; Rakotondrabe, M. Static/Dynamic Trade-off Performance of PZT Thick film Micro-Actuators. J. Micromech. Microeng. 2015, 25, 75017–75018. [Google Scholar] [CrossRef] [Green Version]
- Casset, F.; Danel, J.S.; Chappaz, C.; Civet, Y.; Amberg, M.; Gorisse, M.; Dieppedale, C.; Le Rhun, G.; Basrour, S.; Renaux, P.; et al. Low Voltage Actuated Plate for Haptic Applications with PZT Thin-film. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, Spain, 16–20 June 2013; pp. 2733–2736. [Google Scholar] [CrossRef]
- Casset, F.; Danel, J.; Renaux, P.; Chappaz, C.; Le Rhun, G.; Dieppedale, C.; Gorisse, M.; Basrour, S.; Fanget, S.; Ancey, P.; et al. Characterization and Post Simulation of Thin-film PZT Actuated Plates for Haptic Applications. In Proceedings of the 2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Ghent, Belgium, 7–9 April 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Z.D.; Lai, Z.Q.; Hu, Z.G. Low-temperature Preparation and Characterization of the PZT ferroelectric Thin Films Sputtered on FTO Glass Substrate. J. Alloys Compd. 2014, 583, 452–454. [Google Scholar] [CrossRef]
- Le Rhun, G.; Dieppedale, C.; Wagué, B.; Querne, C.; Enyedi, G.; Perreau, P.; Montméat, P.; Licitra, C.; Fanget, S. Transparent PZT MIM Capacitors on Glass for Piezoelectric Transducer Applications. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1800–1802. [Google Scholar]
- Goh, P.C.; Yao, K.; Chen, Z. Lead-free Piezoelectric (K0.5Na0.5)NbO3 Thin Films Derived from Chemical Solution Modified with Stabilizing Agents. Appl. Phys. Lett. 2010, 97, 102901. [Google Scholar] [CrossRef]
- Wang, Y.; Yao, K.; Qin, X.; Mirshekarloo, M.S.; Liu, X.; Tay, F.E.H. High Piezoelectric Performance and Phase Transition in Stressed Lead-Free (1-x)(K, Na)(Sb, Nb)O3-x(Bi, Na, K)ZrO3 Thin Films. Adv. Electron. Mater. 2017, 3, 1700033. [Google Scholar] [CrossRef]
- Chin Goh, P.; Yao, K.; Chen, Z. Lithium Diffusion in (Li, K, Na)NbO3 Piezoeletric Thin Films and the Resulting Approach for Enhanced Performance Properties. Appl. Phys. Lett. 2011, 99, 092902. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Niu, G.; Ren, W.; Zhang, N.; Zheng, K.; Quan, Y.; Wang, L.; Zhuang, J.; Cai, H.; et al. Giant Strain Responses and Relaxor Characteristics in Lead-free (Bi0.5Na0.5)TiO3-BaZrO3 Ferroelectric Thin Films. J. Mater. Chem. C Mater. Opt. Electron. Devices 2022, 10, 7449–7459. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Qin, X.; Yao, K.; Pennycook, S.J.; Tay, F.E.H. Outstanding Piezoelectric Performance in Lead-Free 0.95(K,Na)(Sb,Nb)O3-0.05(Bi,Na,K)ZrO3 Thick Films with Oriented Nanophase Coexistence. Adv. Electron. Mater. 2019, 5, 1800691. [Google Scholar] [CrossRef]
- Xu, T.-B.; Siochi, E.J.; Kang, J.H.; Zuo, L.; Zhou, W.; Tang, X.; Jiang, X. Energy Harvesting Using a PZT Ceramic Multilayer Stack. Smart Mater. Struct. 2013, 22, 065015. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Seo, I.-T.; Nahm, S. Enhanced Energy Harvesting Using Multilayer Piezoelectric Ceramics. J. Electron. Mater. 2019, 48, 6964–6971. [Google Scholar] [CrossRef]
- Ernst, D.; Bramlage, B.; Gebhardt, S.E.; Schönecker, A.J. High Performance PZT Thick Film Actuators Using in Plane Polarisation. Adv. Appl. Ceram. 2015, 114, 237–242. [Google Scholar] [CrossRef]
- Chalvet, V.; Habineza, D.; Rakotondrabe, M.; Clévy, C. Presentation and Characterization of Novel Thick-film PZT Microactuators. Phys. B Condens. Matter 2016, 486, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Zhu, W. Improved Preparation Procedure and Properties for a Multilayer Piezoelectric Thick-Film Actuator. Sens. Actuators A Phys. 1998, 71, 139–143. [Google Scholar] [CrossRef]
- Yao, K.; He, X.; Xu, Y.; Chen, M. Screen-printed Piezoelectric Ceramic Thick Films with Sintering Additives Introduced through a Liquid-Phase Approach. Sens. Actuators A Phys. 2005, 118, 342–348. [Google Scholar] [CrossRef]
- Chen, S.; Tan, C.K.I.; Tan, S.Y.; Guo, S.; Zhang, L.; Yao, K. Potassium sodium niobate (KNN)-based lead-free piezoelectric ceramic coatings on steel structure by thermal spray method. J. Am. Ceram. Soc. 2018, 101, 5524–5533. [Google Scholar] [CrossRef]
- Glinsek, S.; Song, L.; Kovacova, V.; Mahjoub, M.A.; Godard, N.; Girod, S.; Biagi, J.L.; Quintana, R.; Schleeh, T.; Guedra, M.; et al. Inkjet-Printed Piezoelectric Thin Films for Transparent Haptics. Adv. Mater. Technol. 2022, 7, 2200147. [Google Scholar] [CrossRef]
- Song, L.; Glinsek, S.; Drnovsek, S.; Kovacova, V.; Malic, B.; Defay, E. Piezoelectric Thick Film for Power-efficient Haptic Actuator. Appl. Phys. Lett. 2022, 121. [Google Scholar] [CrossRef]
- Chen, S.; Tan, C.K.I.; Yao, K. Potassium-Sodium Niobate-Based Lead-Free Piezoelectric Ceramic Coatings by Thermal Spray Process. J. Am. Ceram. Soc. 2016, 99, 3293–3299. [Google Scholar] [CrossRef]
- Yao, K.; Chen, S.; Guo, K.; Tan, C.K.I.; Mirshekarloo, M.S.; Tay, F.E.H. Lead-Free Piezoelectric Ceramic Coatings Fabricated by Thermal Spray Process. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1758–1765. [Google Scholar] [CrossRef]
Vibrotactile | Ultrasonic | ||||
---|---|---|---|---|---|
Frequency (Hz) 1 | Range | 5–1000 | Range | 20,000–40,000 | |
Max sensitivity | 250 | ||||
Force (mN) | Out-of-plane (normal) | >10–100 2 | In-plan (tangential) | >40–50 2 | |
Displacement (μm) | Out-of-plane (normal) | Static | >10–100 2 | Out-of-plane (normal) | >1 |
Dynamic | >0.85 | In-plan (tangential) | >0.2 | ||
Wavelength (mm) 1 | N.A. | In-plan (tangential) | <15 |
Actuator Type | Electromagnetic | Electrostatic | Piezoelectric/Electrostrictive | ||
---|---|---|---|---|---|
ERM | LRA | Ceramic | Polymer | ||
Driving field | Magnetic | Electric | Electric | ||
Driven voltage (V) | 3–5 [90] | 1–3 | ~ 10 [91] | 10–120 | 10 [92]–1000 [93] |
Energy consumption | High [94] | Medium | Low | Low [95] | Low [86] |
Vibration frequency (Hz) | 90–200 [46] | 150–300 | 100–2000 [96,97] | 5 [98]–25,000 | 0.1–500 [99] |
Haptic types | Vibrotactile | Vibrotactile | Vibrotactile | Vibrotactile/Ultrasonic | Vibrotactile |
Responding time (ms) | ~100 | 20–30 [45] | ~5 [100] | ~1–4 [28] | 10 |
Displacement (µm) | >1000 [90] | 10–40 [70] | 0.5 [101]–100 [77] | 75 [102]–200 [103] | |
Transparency (potential) | No | No | Yes [104] | Yes | Yes |
Flexible (potential) | No | No | Yes | Limited [105] | Yes |
Suitable application | Vibration notification | Haptic wearable MEMS | High-definition haptic sensation for touching screen | Medical wearable device | |
Commercialized [94] | Yes | Yes | No | Yes | No |
Material Structure | Thickness Range (μm) | Driving Voltage (V) | (Effective) Piezoelectric Coefficient d33 (pm/V) | Remarks |
---|---|---|---|---|
Bulk | >~200 | 100–300 | 200–700 | Commercialized; large displacement and force; not compatible with MEMSs |
Multilayer | Each layer: 10–70 Overall: >200 | 10–150 | 150–500 | Commercialized; large displacements and forces; reduced driving voltage to tens of volts |
Thick film | 10–200 | 10–150 | 50–200 | Adequate displacements; reduced driving voltages to several volts; suitable for MEMSs |
Thin film | 0.2–5 | 4–150 | 70–200 | Adequate displacements; high power consumption; suitable for MEMSs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Teo, E.H.T.; Yao, K. Electromechanical Actuators for Haptic Feedback with Fingertip Contact. Actuators 2023, 12, 104. https://doi.org/10.3390/act12030104
Chen J, Teo EHT, Yao K. Electromechanical Actuators for Haptic Feedback with Fingertip Contact. Actuators. 2023; 12(3):104. https://doi.org/10.3390/act12030104
Chicago/Turabian StyleChen, Jueyu, Edwin Hang Tong Teo, and Kui Yao. 2023. "Electromechanical Actuators for Haptic Feedback with Fingertip Contact" Actuators 12, no. 3: 104. https://doi.org/10.3390/act12030104
APA StyleChen, J., Teo, E. H. T., & Yao, K. (2023). Electromechanical Actuators for Haptic Feedback with Fingertip Contact. Actuators, 12(3), 104. https://doi.org/10.3390/act12030104