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Abstract: Haptic technology that provides tactile sensation feedback by utilizing actuators to achieve
the purpose of human–computer interaction is obtaining increasing applications in electronic devices.
This review covers four kinds of electromechanical actuators useful for achieving haptic feedback:
electromagnetic, electrostatic, piezoelectric, and electrostrictive actuators. The driving principles,
working conditions, applicable scopes, and characteristics of the different actuators are fully com-
pared. The designs and values of piezoelectric actuators to achieve sophisticated and high-definition
haptic effect sensations are particularly highlighted. The current status and directions for future
development of the different types of haptic actuators are discussed.
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1. Introduction

Touch is one of the most important human senses for perceiving environmental
information, and “tactile” is the term raised to describe the sense of touch. Haptics, also
connected with touch sensing, refers to the ability to apply both tactile and kinesthetic
sensations to human–computer interactions, which often relies on the largest active organ of
the human body—skin, typically the skin on the fingers, as illustrated in Figure 1. The skin
and underlying tissues can receive mechanical vibrating signals and deform subtlety, which
will be detected by nerve fibers and transmitted to the perceptual system [1–3]. Haptic
technology [4,5] is an emerging interdisciplinary scientific field that uses haptic devices
such as sensors or actuators to combine the interaction between physical human touching
and the virtual computer environment. It aims to reproduce the sense of touch through the
force, vibration, and motion transmitted to the user.
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Figure 1. Schematic illustration of a vibrating surface as a haptic interface with finger touching.

The global haptic technology market size remains large and growing. The market
reached USD 8.1 billion value in the year 2021 globally, and it is forecasted to progress at
a compound annual growth rate (CAGR) of 13.9% during the years 2022–2026 and will
reach USD 17.7 billion by 2027, as shown in Figure 2. According to the different total

Actuators 2023, 12, 104. https://doi.org/10.3390/act12030104 https://www.mdpi.com/journal/actuators

https://doi.org/10.3390/act12030104
https://doi.org/10.3390/act12030104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/actuators
https://www.mdpi.com
https://orcid.org/0000-0003-0528-1764
https://orcid.org/0000-0001-5875-4815
https://doi.org/10.3390/act12030104
https://www.mdpi.com/journal/actuators
https://www.mdpi.com/article/10.3390/act12030104?type=check_update&version=1


Actuators 2023, 12, 104 2 of 16

market estimations, while the final value by 2027 may change from USD 17.7 billion to
USD 41.42 billion, the CAGR of at least more than 10% during the forecast period is a
consensus [6,7].
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For the most simple haptic technology, we only need short vibrations for notification
or confirmation. For more advanced requirements, which would enhance user experience,
high-definition haptic feedback mechanisms would be needed to communicate with the
user’s sense of touch. These are the prime reasons that drive the haptic market growth [7].

The emergence of touch surfaces has led to its wide use in devices utilizing touch-
sensitive displays (TSDs) which include mobile phones, smart watches, laptops, TVs, ATMs,
vending machines, electronic kiosks, and car navigation systems [9]. At the same time,
haptic applications in grounded, hand-held, and wearable devices such as game controllers,
VR, joysticks, steering wheels, haptic teleoperation, underground exploration, and soft
robots also promote the growth of the market [10–12]. Currently, due to the promotion of
electronic devices, especially mobile phones, consumer electronic products have occupied
the largest share of the haptic market. Potential needs in fields such as education, research,
medical care, automotive, transportation, and engineering manufacturing also provide
opportunities to boost the haptic industry.

As the core component to realizing haptic feedback, the actuators’ design [13] signifi-
cantly influences the quality of the haptic impression. Therefore, in this review, we will
summarize current research states, characteristics, advantages, disadvantages, and suitable
applications of different electromechanical haptic actuators with the materials they use,
especially highlighting the piezoelectric actuators, discussing current developments, and
exploring their future direction.

2. Different Actuators in Haptic Feedback
2.1. Haptic Requirements

Basically, haptic actuators should meet the fundamental tactile sensation needs of
humans. Skin perception varies widely in different parts of the human body [14,15]. Taking
the human fingers used for sensory interaction as an example, although the frequency of
human tactile sensing is verified from 5 Hz to 10 kHz, the maximum sensitive noticing
is in the 200–300 Hz range, in which peak sensitivity is approximately 250 Hz [16,17].
The stimuli on the order of 10–100 mN and 10–100 µm are the typical perception thresholds
in a static position; but if hand movement (dynamic condition) is permitted, 0.85 µm in the
height of surface vertically could also be perceived [17–20]. When considering the friction
perception in the horizontal direction, humans can detect the changes in tangential force
and displacement at around 40–50 mN [21] and 0.2 µm [22,23] in the ultrasonic vibration
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range, such as in 20 kHz–40 kHz [24]. Further increased ultrasonic frequency may lead to
degradation in spatial resolution and attenuation of sound pressure in the air.

Thus, in terms of haptic types, there are two important routes to provide surface haptic
feedback: One is vibrotactile haptic, which only provides simple vibration prompts and
can be perceived well when the frequency is below 1 kHz. The other is ultrasonic haptic,
which provides more expressive tactile control and more complicated haptic effects by
creating friction modulation when the fingers slide on the surface [9,25,26]. When the
touch panels are excited and vibrated in ultrasonic frequency, standing Lamb waves are
generated to produce the out-of-plane displacement which enables haptic interfaces [27,28].
This vibration traps a thin layer of air at the skin–surface interface, which is known as
the squeeze film effect [21,29,30]. The friction between the air film and the surface is
reduced by vibration (illustrated in Figure 3), and its degree of decline will depend on
the vibration amplitude [31–33]. This frictional tactile impression can be transferred into
fingers by “air smoothness” [29]. Therefore, the dynamic adjustment between the ultrasonic
wave amplitude and frictional sensation makes it possible to provide complex tactile
sensations [34,35].
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Figure 3. Schematic illustration of friction shift on a surface without and with ultrasonic wave.

Therefore, when further considering the ultrasonic vibrating surface, the commercial
requirements change to a resonance frequency above 20 kHz, an out-of-plane displace-
ment amplitude larger than 1 µm, and an in-plane half wavelength below 15 mm [36–38].
We summarize the requirements of two different haptic feedback methods in Table 1. In ad-
dition, a smaller driving voltage, lower power consumption, simpler device structure, and
lower costs are also desired for realizing practical applications.

Table 1. Requirements of actuators for haptic feedback.

Vibrotactile Ultrasonic

Frequency (Hz) 1 Range 5–1000 Range 20,000–40,000Max sensitivity 250

Force (mN) Out-of-plane (normal) >10–100 2 In-plan (tangential) >40–50 2

Displacement (µm) Out-of-plane
(normal)

Static >10–100 2 Out-of-plane (normal) >1
Dynamic >0.85 In-plan (tangential) >0.2

Wavelength (mm) 1 N.A. In-plan (tangential) <15
1 The parameters here refer to the actuator excitation. 2 The minimum sensation values may vary from the contact
sites of skin, gender, age and individual.

2.2. Different Kinds of Haptic Actuators

Nowadays, several different types of actuators [39] are used to generate haptic vi-
brations, including electromagnetic actuators, electrostatic actuators, piezoelectric actua-
tors, and electrostrictive actuators (shown in Figure 4), all of which have their respective
strengths and weaknesses.



Actuators 2023, 12, 104 4 of 16

Actuators 2023, 12, x FOR PEER REVIEW 4 of 20 
 

 

2.2. Different Kinds of Haptic Actuators 

Nowadays, several different types of actuators [39] are used to generate haptic vibra-

tions, including electromagnetic actuators, electrostatic actuators, piezoelectric actuators, 

and electrostrictive actuators (shown in Figure 4), all of which have their respective 

strengths and weaknesses. 

 

Figure 4. Different types of actuators: (a) Electromagnetic actuators: (1) eccentric rotary mass (ERM) 

vibration motor. Reproduced with permission [40]. Copyright 2021, Springer Nature. (2) Linear res-

onant actuators (LRAs). Reproduced with permission [41]. Copyright 2015, Elsevier. (b) Electro-

static comb-drive actuators. Reproduced with permission [42]. Copyright 2017, Springer Nature. (c) 

Piezoelectric actuators based on ceramics: (1) multilayer cross-section structure and samples. Re-

produced with permission [43]. Copyright 2016, John Wiley and Sons. (2) Transparent thin-film 

structure. Reproduced with permission [38]. Copyright 2021, John Wiley and Sons. (d) Electrostric-

tive actuators in the fabrication process based on electroactive polymers (EAPs). Reproduced with 

permission [44]. 

Electromagnetic actuators are based on electromagnetic field for electromechanical 

energy conversion. There are two common types of electromagnetic haptic actuators used 

in the market which are eccentric rotary mass (ERM) and linear resonant actuators (LRAs) 

[45-48]. The ERM actuators (with one sample shown in Figure 4(a1)) are direct current 

(DC) motors. After turning on the power, the vibrations will be activated by the rotating 

of eccentric mass inside, whose frequency and amplitude cannot be controlled inde-

pendently [49,50]. When increasing the input voltage, the generated rotation becomes 

faster and the vibration frequency and the amplitude turn larger. Therefore, this type of 

actuator cannot achieve a random combination of frequencies and amplitudes, which ex-

tremely limits the diversity of vibration waveforms. Due to the time required to complete 

this rotation, the response speed of this design is relatively hysteretic, which will further 

be aggravated by the increase in device sizes. In general, ERM actuators are only available 

for simple vibration needs in small device parts [45,51]. In the LRAs (shown in Figure 

4(a2)), alternating currents (ACs) pass through the voice coils enclosing one movable per-

manent magnet, and the forces generated by the electromagnet act on a small mass 

mounted on the springs to generate resonant frequency, thereby utilizing a small input to 

gain a large output vibration [52]. Even though the response speeds of these designs are 

faster than ERMs, they only work in a very narrow frequency range and have the problem 

Figure 4. Different types of actuators: (a) Electromagnetic actuators: (1) eccentric rotary mass (ERM)
vibration motor. Reproduced with permission [40]. Copyright 2021, Springer Nature. (2) Linear reso-
nant actuators (LRAs). Reproduced with permission [41]. Copyright 2015, Elsevier. (b) Electrostatic
comb-drive actuators. Reproduced with permission [42]. Copyright 2017, Springer Nature. (c) Piezo-
electric actuators based on ceramics: (1) multilayer cross-section structure and samples. Reproduced
with permission [43]. Copyright 2016, John Wiley and Sons. (2) Transparent thin-film structure.
Reproduced with permission [38]. Copyright 2021, John Wiley and Sons. (d) Electrostrictive actuators
in the fabrication process based on electroactive polymers (EAPs). Reproduced with permission [44].

Electromagnetic actuators are based on electromagnetic field for electromechanical
energy conversion. There are two common types of electromagnetic haptic actuators
used in the market which are eccentric rotary mass (ERM) and linear resonant actuators
(LRAs) [45–48]. The ERM actuators (with one sample shown in Figure 4(a1)) are direct
current (DC) motors. After turning on the power, the vibrations will be activated by the
rotating of eccentric mass inside, whose frequency and amplitude cannot be controlled
independently [49,50]. When increasing the input voltage, the generated rotation becomes
faster and the vibration frequency and the amplitude turn larger. Therefore, this type
of actuator cannot achieve a random combination of frequencies and amplitudes, which
extremely limits the diversity of vibration waveforms. Due to the time required to complete
this rotation, the response speed of this design is relatively hysteretic, which will further be
aggravated by the increase in device sizes. In general, ERM actuators are only available for
simple vibration needs in small device parts [45,51]. In the LRAs (shown in Figure 4(a2)),
alternating currents (ACs) pass through the voice coils enclosing one movable permanent
magnet, and the forces generated by the electromagnet act on a small mass mounted on
the springs to generate resonant frequency, thereby utilizing a small input to gain a large
output vibration [52]. Even though the response speeds of these designs are faster than
ERMs, they only work in a very narrow frequency range and have the problem of the
residual vibration [53]. At the same time, the larger sizes also lead to slower response
speeds and increased energy consumption. [41,54] Researchers [47,55–58] have tried to use
liquid–metal coils to replace the copper wires or change the supporting hard shells with
flexible polydimethylsiloxane (PDMS) substrates, which allows LRAs to become better
potential candidates for soft robotic and wearable devices. However, complex equipment
designs, limited deformability, and insufficient durability are challenges that are needed to
be overcome. Currently, there are various new types of electromagnetic actuators proposed
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to overcome the traditional weaknesses, such as impact actuators, seismic mass actuators,
solenoid actuators, and so on [59,60].

Electrostatic actuators use the attractive forces of electrical charges between two ca-
pacitor plates, which is based on Coulomb’s law [61]. The most common structure in
electrostatic actuators is the comb-drive structure with two comb sets of interdigitated
fingers, as illustrated in Figure 4b. This simple design makes it possible to reduce the
diameters to as small as 100 µm and beyond, which is particularly suitable for producing
micro-electro-mechanical systems (MEMSs) [62–64]. However, with the movable planes
driven by the electrostatic force and the interactions between the mechanical and electro-
static forces, it is possible for pull-in instability, which is when the two plates collide with
each other or even initiate collapse [65,66]. Most research studies on utilizing electrostatic
actuators to provide haptic feedback focus on soft dielectric elastomers. Yong-Bok et al. [67]
tried to excite two glass panels with input electric beats and created beat-patterned vi-
bration to realize tactile sensing. There are also some film-type actuators with flexible
and transparent cellulose acetate (CA) films showing promise for wearable device applica-
tion [68–70]. However, the electrode surface areas in MEMSs are generally small, which
results in weak outputs of electrostatic forces, vibration amplitudes, and sensory feedback.
These non-linear outputs may contribute to a significant decline in performance at the
end of the output range. Meanwhile, the electrostatic fields used by electro-vibration are
dramatically affected by the external environment. Small changes in humidity or ambient
gas contents will greatly impact the performance of the actuators and even cause electric
shocks, which restricts the commercialization of electrostatic actuators [45,71].

Piezoelectric actuators (shown in Figure 4c) [72,73] utilize the piezoelectric effect in
ferroelectric ceramics or polymers to convert input electrical signals into physical displace-
ments or forces. The resonance frequencies of piezoelectric elements can conveniently reach
tens of kHz, which enables piezoelectric actuators to work over a wide frequency range.
At frequencies close to resonance, piezoelectric actuators can generate ultrasonic waves and
weaken the surface frictions to supply complex tactile feedback. At low frequency range,
such as about 250 Hz, which is far below the resonant frequency, piezoelectric actuators
can provide maximum sensitive vibrational stimulations of human fingers. A variety of
piezoelectric actuators using bulk, multilayer, and film piezoelectric materials are available,
in which the most common commercialized material and structure for the piezoelectric
actuator applications is the lead zirconate titanate (Pb(ZrxTi1−x)O3, PZT)-based ceramic
multilayers. Compared with the traditional ERMs and LRAs, piezoelectric actuators are
more accurate with faster responses, higher acceleration rates, and forces and have more
convenience for miniaturization, and most importantly, the unique ability to achieve high-
definition tactile sensation [74–78]. Piezoelectric actuators are considered to be the most
suitable for haptic feedback applications, whose specific materials and research studies will
be discussed in the next section. The current problem with this type of haptic actuator is
that they generate larger forces but with smaller displacements, which leads to high voltage
input requirements. Furthermore, the fragility of some piezoelectric designs with ceramic
materials is also problematic.

The device structures and characteristics of electrostrictive actuators are very similar
to those of piezoelectric actuators, which is the reason why they are at times classified into
one category [79]. Strictly speaking, the distinction is that electrostrictive actuators use
electrostrictive relaxor ferroelectrics such as lead magnesium niobate (Pb(Mg1/3Nb2/3)O3,
PMN) or some electrostrictive polymers [44] rather than piezoceramics. Compared with
liner responses in piezoelectric actuators, the quadratic relationships between driven
voltage and output stroke in electrostrictive actuators cause the hysteresis non-linearity and
drift behavior, which make it more difficult to realize precise motion controls, impeding
their commercial applications [80]. Using PMN ceramic as an example, they usually form
piezoelectric solid solutions with lead titanate (PbTiO3, PT) as 0.65 Pb(Mg1/3Nb2/3)O3–0.35
PbTiO3 turning into similar piezoelectric characteristics for usage [81–83]. Therefore, we
will also group these materials with piezoelectric actuators for discussion. Nowadays, most
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electrostrictive haptic actuators are based on electroactive polymers (EAPs) [84] (shown in
Figure 4d), in which a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene/
chlorotrifluoro ethylene) P(VDF-TrFE-CFE/CTFE) fluorinated terpolymer is used. Differing
from typical inorganic piezoelectric material, EAPs are light, flexible, lower cost, and easy
to manufacture in a large area [85,86]. However, the displacement magnitude of EAPs
is usually smaller than those of inorganic piezoelectric materials, which results in the
requirement of an extremely high driving electric field to satisfy the tactile requirements.
In previous studies, the property measurements of P(VDF–TrFE–CFE) are often conducted
in the low-frequency range of around 100 mHz [87–89] because its electrostrictive coefficient
will drop with the increasing frequency with deteriorating performance. At present, the
utilization of this type of material in haptic devices is still under exploration, and its most
promising actuation application may be in artificial muscles.

To sum up, the characteristics and current states of the four types of actuators for
haptic applications as described above are summarized in Table 2.

Table 2. Comparison of four types of actuators for haptic feedback application.

Actuator Type Electromagnetic Electrostatic Piezoelectric/Electrostrictive
ERM LRA Ceramic Polymer

Driving field Magnetic Electric Electric

Driven voltage (V) 3–5 [90] 1–3 ~ 10 [91] 10–120 10 [92]–1000 [93]

Energy consumption High [94] Medium Low Low [95] Low [86]

Vibration frequency
(Hz) 90–200 [46] 150–300 100–2000 [96,97] 5 [98]–25,000 0.1–500 [99]

Haptic types Vibrotactile Vibrotactile Vibrotactile Vibrotactile/Ultrasonic Vibrotactile

Responding time
(ms) ~100 20–30 [45] ~5 [100] ~1–4 [28] 10

Displacement (µm) >1000 [90] 10–40 [70] 0.5 [101]–100 [77] 75 [102]–200 [103]

Transparency
(potential) No No Yes [104] Yes Yes

Flexible (potential) No No Yes Limited [105] Yes

Suitable application Vibration notification Haptic wearable
MEMS

High-definition
haptic sensation for

touching screen

Medical wearable
device

Commercialized [94] Yes Yes No Yes No

3. Piezoelectric/Electrostrictive Actuators

For haptic feedback actuator applications, there are several requirements for the
characteristics of the piezoelectric materials inside: Firstly, piezoelectric materials should
have large piezoelectric strain constants (dij) or high electrostrictive strain coefficients
Q33 to generate enough displacement. Secondly, materials are desired to have small
dielectric permittivity, or dielectric constant εT

33/εo values (preferably less than 2000) and
low leakage, which correspond to a low power consumption [106]. Since the dielectric
constant is proportional to capacitance, the increase in capacitance will result in an elevation
of power consumption.

Piezoelectric actuators, based on the material classification, could be divided into
piezoceramic actuators and piezopolymer actuators. Piezoceramic, PZT, which typically
has the best cost-effective piezoelectric property, is most commonly used in haptic actuators
and is commercialized. However, the release of the toxic element, lead, during their
preparation and disposal is causing concerns for health and the environment. The same
problem also exists in other lead-based piezoelectric and electrostrictive ceramics, such
as PMN-PT [107]. The “Restriction of Hazardous Substances in Electrical and Electronic
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Equipment” (RoHS) rules of the European Union have raised prohibition for the use of
lead in electrical and electronic products, but currently allowing a temporary exemption for
piezoelectric devices before a replacement is made available [108,109]. Consequently, lead-
free piezoelectric ceramics including potassium sodium niobate ((KxNa1−x)NbO3, KNN)
and barium neodymium titanate ((BixNa1−x)TiO3, BNT) systems [110] have emerged for
actuators applications. Compared with lead-based ceramics, the piezoelectric properties of
lead-free piezoceramics are slightly inferior and lack stability in both properties and supply.
At present, their application in haptic actuators is still in the exploration stages. Moreover,
these perovskite structure ceramics, the wurtzite-structured AlN and ZnO piezoelectric
materials, also can deform, but the much lower piezoelectric coefficients significantly reduce
their competitiveness for displacement actuators [111–113]. In contrast to rigid ceramics,
piezoelectric and electrostrictive polymers, typically PVDF and its various copolymers such
as P(VDF-TrFE) and P(VDF-TrFE-CFE/CTFE) [114–116], are flexible and can be processed
at much lower temperatures into films, fibers, or even textiles to perform as haptic actuators
in wearable devices or soft robotics. However, the relatively low piezoelectric coefficient
and low mechanical force of the piezoelectric and electrostrictive polymers need to be
resolved for actuator applications.

According to the structural classification, piezoelectric actuators can be divided into
four categories, including bulk, multilayer/stack, thick film, and thin film actuators. Bulk
piezoelectric ceramic, mostly with single thicknesses in the mm range, is first used for
producing haptic actuators since they are easy to fabricate. The bulk piezoelectric actuators
based on PZT or PMN-PT ceramics working at frequencies in the kHz range typically
require hundreds of volts to achieve displacement magnitude of tens of micrometers. This
is the biggest obstacle for the practical application [117–120]. Consequently, these kinds of
actuators are always manufactured in large sizes, which is not acceptable for miniaturized
systems such as MEMSs.

Implementation of multilayer ceramics (MLCs) is a good way to reduce the high input
voltage. Stacking and cofire process involving screen printing [121] or tape-casting [122]
method are used to obtain the piezoelectric multilayer ceramics, in which solid solutions
with lower sintering temperature could be a significant advantage for the co-firing ap-
proach [123]. As the most commonly used piezoceramic, PZT multilayers have been used
as the core components to produce most of the commercial haptic actuators. An example
is the PowerHap™ piezoelectric actuators from TDK Corporation, which can generate
a displacement of 15–27 µm under 60 V [124]. Performance improvement is expected
to be achieved with structural and dimensional optimization guided by numerical sim-
ulation [125], such as for working at the adjusted resonance frequency. Solid solutions
with more complex compositions for larger piezoelectric outputs and lowered sintering
temperature, including PZT-PZNN, PMW-PNN-PZT [126], or PNN-PZN-PMN-PZ-PT [43],
are promising for haptic use. In-Tae Seo et al. [106] developed a piezoelectric haptic actuator
composed of 3-layer 0.5CPZT-PZNN with a small εT

33/εo of 1801 and a high d33 value
of 659 pm/V under 110 V. These PZT-based actuators basically meet the characteristic
requirements of tactile sensation with an operating frequency from one hundred to one
thousand hertz, making them suitable for use as vibrotactile. Although the implementation
of the multilayer structure could reduce the driving voltage from hundreds of volts for
piezoelectric bulk ceramics to tens of volts, the relatively high driving voltage is still an
issue in many applications for these piezoelectric ceramic actuators, in comparison with
the commercialized ERM and LRA whose driving voltage is 1–5 V with the similar dis-
placement magnitude for vibrotactile function. In some studies [127] and commercialized
products [128,129], integrated boost converters are proposed to be packaged together with
the piezoelectric ceramic actuators, for generating the voltages as required. This solution for
solving the high voltage problem results in the expense of device miniaturization. Lead-free
piezoelectric multilayers, for example, BF-BT [130] or CuO-KNN [131], are also emerging
as a new type of material, which aim to resolve the toxicity of lead-based piezoelectric
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ceramics. However, they have weaknesses related to the lower piezoelectric coefficient and
higher cost.

Compared with low-cost and easy-to-manufacture polycrystalline ceramics, the piezo-
electric single-crystal stacks such as PMN-PT [132–134] fabricated using the solid-state
crystal growth (SSCG) method and possessing a higher piezoelectric coefficient and elec-
tromechanical coupling factor could also be applied to produce actuators. For example,
J.H. Kim et al. obtained a potential PMN-PT single crystal haptic actuator with 37 µm
displacement and 0.25 g vibration acceleration at 200 Hz and 150 VPeak-to-Peak [135]. These
relaxor ferroelectric single crystals could attain the characteristics of haptic actuators at a
smaller size or lighter weight, but the high cost of fabrication makes them more suitable for
high-end applications, such as in aerospace [136].

There are also multilayer piezoelectric or electrostrictive P(VDF-TrFE)-based poly-
mer structures fabricated with successive solution depositions [137] or electrophoretic
deposition [138], promising to be used for the development of actuators. P(VDF-TrFE-
CTFE) multilayers, which exhibited deflection up to 213 µm at 320 Hz and 50 Vrms (root
mean square) [103], achieved the displacement required for haptic actuators. However,
the driving voltage was very high, especially for large-area applications.

With the rapid expansion of micromechanical systems (MEMSs) and nanoelectrome-
chanical systems (NEMSs), thin film-type piezoelectric haptic actuators are becoming
popular. Compared with bulk materials, the fabrication technologies of piezoelectric thin
films by sputtering or sol-gel deposition methods [139] are scalable with mass production.
Unlike the thickness expansion in bulk piezoceramics which produces a large out-of-plane
force, the displacements of the piezoelectric thin films are dominated by bending, with
a rather small out-of-plane force [140,141]. With the decrease in thicknesses and design
of the bending structure, thin film actuators could reach the same displacements of tens
to hundreds of microns at a lower voltage [142]. In the report by F. Casset et al. [143,144],
450 nm displacement was achieved using sol-gel PZT thin film deposited on silicon wafers
under 4 V, which was estimated to be further raised to 1 µm under 10 V using Finite
Element Method simulation. This indicated the probability of a lower driving voltage.
Furthermore, PZT thin film can be transparent due to its high bandgap (3.5 eV) [145] and
small thickness. This would be interesting for fully transparent tribo-modulated haptic op-
tics based on piezoelectric films, which can be achieved using transparent glass substrates
and transparent ITO/FTO electrodes. It has been demonstrated that high-quality PZT
layers grown on a Si substrate could be moved to a glass substrate using a layer transfer
method [146], but it is likely to damage the films and thus the yield needs to be improved
for mass production. Sebastjan Glinsek’s study [38] demonstrated that standing Lamb
waves could be induced by vibrating at 73 kHz in piezoelectric thin films, which allowed
the friction–modulation haptic interface to achieve complex tactile sensation, as illustrated
in Figure 4(c2). In 2022, Hui Hua et al. [36] improved the 2-µm thick sol-gel PZT thin
film on glass within 75% transparency and obtained an out-of-plane displacement of 1µm
under 10 VPeak-to-Peak. This revealed the feasibility and potential value of piezoceramic
thin films for transparent haptic actuators to be applied in display devices. Similar to
bulk piezoelectric materials, considering the harm to the environment and health, research
efforts and significant progresses have been made on lead-free piezoelectric films, including
the KNN-based [147–149] and BNT-based [150] materials. The piezoelectric coefficients of
these lead-free piezoceramics are close to PZT, and the longitudinal piezoelectric coefficient
could be improved to 250 pm/V [151]. These are thus potential lead-free candidates to
replace Pb-based thin films for haptic actuator applications.

The main disadvantages of the thin-film piezoelectric actuators include the small force,
and the large power consumption caused by the large capacitance and leakage, especially
when the haptic interaction area of display increases. For example, the power consumption
of the entire haptic device based on the PZT thin film actuators by Hui Hua et al. [36]
above reached 3.58 W, which is larger than multilayer ceramics [152,153]. In contrast to
the small thickness of a couple of micrometers or below, piezoelectric thick films usually
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have a thickness of tens to hundreds of micrometers, and the preparation methods include
screen printing, tape casting, thermal spray, and ink-jet printing. [142,154–159]. Longfei
Song et al. [160] tested both 10 µm thick film and 0.5 µm thin film haptic devices with the
PZT materials, showing that one thick-film actuator consumed 50 mW to obtain a 1µm
displacement compared with 750 mW to 0.4 µm deflection in one thin-film actuator at
24 Vrms. However, the production of cost-effective high-quality piezoelectric thick films
for haptic actuators remains to be further explored. The thermal spray process [161,162]
is one of the promising methods to produce large area lead-free thick films. KNN-based
piezoelectric thick films with a thickness of 120 µm and effective d33 of 125 pm/V [158]
have been demonstrated.

Comparisons among the four kinds of piezoelectric actuators with different material
structures are summarized in Table 3.

Table 3. Comparison of different piezoelectric actuators for haptic feedback applications.

Material Structure Thickness Range (µm) Driving
Voltage (V)

(Effective) Piezoelectric
Coefficient d33 (pm/V) Remarks

Bulk >~200 100–300 200–700
Commercialized; large

displacement and force; not
compatible with MEMSs

Multilayer Each layer: 10–70
Overall: >200 10–150 150–500

Commercialized; large
displacements and forces;

reduced driving voltage to tens
of volts

Thick film 10–200 10–150 50–200

Adequate displacements;
reduced driving voltages to

several volts; suitable for
MEMSs

Thin film 0.2–5 4–150 70–200
Adequate displacements; high
power consumption; suitable

for MEMSs

4. Conclusions and Outlook

We have reviewed the principles, performance properties, strengths, and weaknesses
of the various types of electromechanical actuators for haptic feedback applications.

The electrostatic haptic actuators using micromachined structures or soft elastomers
have low power consumption and fast response speed and are used in miniaturized and
integrated soft devices such as VR, but their high sensitivity to environmental changes
immensely impeded commercialization. Piezoelectric and electrostrictive haptic actuators
based on electroactive polymers are flexible for wearable medical devices and close to
simulating biological muscles, but their lower piezoelectric coefficients and requirements
for high driving voltage need to be overcome. The eccentric rotating mass (ERM) actu-
ators and linear resonance actuators (LRAs), both made of electromagnetic material are
two traditional actuators for tactile stimulation in the market. They offer large vibration
displacement with a low driving voltage. However, they are liable to noise impact, have
slow response speed, high power consumption, and a limited vibration frequency, which
restrict their haptic applications to simple vibration notification.

Piezoelectric actuators made of ceramics are suitable for touch surfaces driven at high
frequency, they can achieve rapid and accurate responses and have the ability to turn almost
any surface into touch control. The high input voltage is an important factor that hinders
the commercial haptic application of piezoelectric ceramics. Multilayer structures can
decrease the driving voltages from hundreds to tens of volts, and PZT-based piezoelectric
multilayer ceramic materials have already realized commercialized haptic applications.
With the increasing demand for MEMSs, piezoelectric thin film actuators are emerging in
the haptic field. PZT-based thin film actuators have recently exhibited technical feasibility
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and commercial viability to achieve both haptic requirements and high transparency. Most
importantly, the ultrasonic working frequency provides friction modulation, which makes
high-definition tactile sensing become possible.

In the future, lead-based piezoelectric ceramics such as PZT will gradually be replaced
with lead-free piezoelectric materials with high performances. Research and development
of lead-free piezoelectric thick film and thin film ceramics including KNN and BNT systems
will be one of the focuses of piezoelectric actuators for haptic applications.

In practical applications, how to achieve both small driving voltages and power
consumption needs to be addressed. The ability to provide feedback on multiple tactile
modes should also be another focus of future research. This will involve determining how
to generate suitable ultrasonic waves with piezoelectric actuators to control the frictions
and understand the fundamentals between friction modulation and tactile sensation, the
outcome of which will bring significant innovation to the haptic field.

As the potential core element of the touch screen, high transparency is the key to
achieving both visual and tactile feedback. Achieving good transparency in thin films
using suitable synthesis methods is the first step. How to use a glass surface to replace the
opaque metal substrate while retaining sufficient stability is becoming a challenge requiring
attention. In this direction, the development and integration of transparent electrodes in
piezoelectric actuator design need to be considered.

Realizing a large haptic surface area will be important for realizing scalable future
industry application. The advent of piezoelectric coatings and haptic actuators has opened
the opportunities for realizing various tactile surfaces, not only being limited to electronic
devices, but also for any surrounding surfaces desired for touchable with feedback. How
to overcome the manufacturing difficulties to produce high performance, environment
friendly, and cost-effective piezoelectric films actuators and how to integrate them with
huge numbers of sensors with minimized power consumption will be the key challenges.

In addition to current ultrasonic tactile display technology, emerging techniques such
as midair tactile display that provides non-contact tactile stimulation through air and skin
integration as haptic interface are expected to further improve the ultrasonic range of
application frequency and enhance the sensitivity of tactile perception.
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